22.09.2019

Цитоплазматическая мембрана состав. Цитоплазматическая мембрана: функции, строение. Наружная цитоплазматическая мембрана


Развивался таким образом, что функция каждой его системы стала результатом функции суммы клеток, из которых состоят органы и ткани данной системы. Каждая клетка организма располагает набором структур и механизмов, позволяющих ей осуществлять собственный метаболизм и выполнять присущую ей функцию.

В состав клетки входят цитоплазматическая или поверхностная мембрана; цитоплазма, имеющая ряд органелл, включений, элементов цитоскелета; ядро, содержащее ядерный геном. Органеллы клетки и ядро отграничены в цитоплазме внутренними мембранами. Каждая структура клетки выполняет в ней свою функцию, а все они вместе взятые обеспечивают жизнеспособность клетки и выполнение ею специфических функций.

Ключевая роль в осуществлении клеточных функций и их регуляции принадлежит цитоплазматической мембране клетки.

Общие принципы строения цитоплазматической мембраны

Для всех клеточных мембран характерен один принцип строения (рис. 1), в основе которого лежат физико-химические свойства сложных липидов и белков, входящих в их состав. Мембраны клетки располагаются в водной среде и для понимания физико-химических явлений, влияющих на их структурную организацию, полезным является описание взаимодействия липидных и белковых молекул с молекулами воды и друг с другом. Ряд свойств клеточных мембран также вытекает из рассмотрения этого взаимодействия.

Известно, что плазматическая мембрана клетки представлена двойным слоем сложных липидов, покрывающим поверхность клетки на всем ее протяжении. Для создания липидного бислоя в ее структуру могли быть отобраны природой и включены только те молекулы липидов, которые обладают амфифильными (амфипатическими) свойствами. Этим условиям отвечают молекулы фосфолипидов и холестерола. Их свойства таковы, что одна часть молекулы (глицерольная для фосфолипидов и циклопентановая для холестерола) обладает полярными (гидрофильными) свойствами, а другая (жирнокислотные радикалы) — неполярными (гидрофобными) свойствами.

Рис. 1. Строение цитоплазматической мембраны клетки.

Если определенное количество молекул фосфолипидов и холестерола поместить в водную среду, то они спонтанно начнут собираться в упорядоченные структуры и формировать замкнутые пузырьки (липосомы ), в которых оказывается заключенной часть водной среды, а поверхность становится покрытой непрерывным двойным слоем (бислоем ) фосфолипидных молекул и холестерола. При рассмотрении характера пространственного расположения молекул фосфолипидов и холестерола в этом бислое видно, что молекулы данных веществ располагаются своими гидрофильными частями в сторону наружного и внутреннего водных пространств, а гидрофобными — в противоположных направлениях — внутрь бислоя.

Что заставляет молекулы этих липидов самопроизвольно формировать в водной среде бислойные структуры, подобные структуре бислоя клеточной мембраны? Пространственное расположение амфифильных молекул липидов в водной среде диктуется одним из требований термодинамики. Наиболее вероятной пространственной структурой, которую сформируют в водной среде молекулы липидов, будет структура, обладающая минимумом свободной энергии .

Такой минимум свободной энергии в пространственной структуре липидов в воде будет достигнут в случае, когда и гидрофильные, и гидрофобные свойства молекул будут реализованы в виде соответствующих межмолекулярных связей.

При рассмотрении поведения сложных амфифильных молекул липидов в воде можно объяснить и некоторые свойства клеточных мембран . Известно, что если механически повредить плазматическую мембрану (например, проколоть ее электродом или через прокол удалить ядро и поместить в клетку другое ядро), то через мгновение за счет сил межмолекулярного взаимодействия липидов и воды мембрана самопроизвольно восстановит целостность . Под действием таких же сил можно наблюдать слияние бислоев двух мембран при их соприкосновении (например, везикул и пресинаптической мембраны в синапсах). Способность мембран сливаться при их непосредственном контакте является частью механизмов обновления структуры мембран, транспорта компонентов мембран из одного субклеточного пространства в другое, а также частью механизмов эндо- и экзоцитоза.

Энергия межмолекулярных связей в липидном бислое очень низкая, поэтому создаются условия для быстрого перемещения в мембране молекул липидов и белков и для изменения структуры мембраны при воздействии на нее механических сил, давлений, температуры и других факторов. Наличие в мембране двойного липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создаст препятствие для свободного прохождения воды и растворимых в ней веществ через клеточную мембрану. Толщина липидного бислоя составляет около 5 нм.

В состав клеточных мембран также входят белки. Их молекулы по объему и массе в 40-50 раз больше, чем молекулы мембранных липидов. За счет белков толщина мембраны достигает 7-10 нм. Несмотря на то что суммарные массы белков и липидов в большинстве мембран почти равны, количество молекул белков в мембране в десятки раз меньше, чем молекул липидов.

Что же произойдет, если белковая молекула окажется помещенной в фосфолипидный бислой липосом, наружные и внутренние поверхности которых полярны, а внутрилипидный неполярен? Под влиянием сил межмолекулярных взаимодействий липидов, белка и воды произойдет формирование такой пространственной структуры, в которой неполярные участки пептидной цепи будут стремиться расположиться в глубине липидного бислоя, в то время как полярные — занять положение на одной из поверхностей бислоя и могут к тому же оказаться погруженными во внешнюю или внутреннюю водную среду липосомы. Очень сходный характер расположения белковых молекул имеет место и в липидном бислое клеточных мембран (рис. 1).

Обычно белковые молекулы локализуются в мембране разрозненно одна от другой. Возникающие в неполярной части бислоя липидов очень слабые силы гидрофобных взаимодействий между углеводородными радикалами липидных молекул и неполярными участками белковой молекулы (липид-липидные, липид-белковые взаимодействия) не препятствуют протеканию процессов тепловой диффузии этих молекул в структуре бислоя.

Когда с помощью тонких методов исследования была изучена структура клеточных мембран, то оказалось, что она очень сходна с той, которая самопроизвольно формируется фосфолипидами, холестеролом и белками в водной среде. В 1972 г. Синджером и Никольсом была предложена жидкостно-мозаичная модель строения клеточной мембраны и сформулированы ее основные принципы.

Согласно этой модели, структурную основу всех клеточных мембран составляет жидкоподобный непрерывный двойной слой амфипатических молекул фосфолипидов, холестсрола, гликолипидов, самопроизвольно формирующих его в водной среде. В липидном бислое асимметрично расположены белковые молекулы, выполняющие специфические рецепторные, ферментативные и транспортные функции. Белковые и липидные молекулы обладают подвижностью и могут совершать вращательные движения, диффундировать в плоскости бислоя. Белковые молекулы способны изменять их пространственную структуру (конформацию), смещаться и изменять свое положение в липидном бислое мембраны, погружаясь на различную глубину или всплывая на его поверхность. Структура липидного бислоя мембраны неоднородна. В нем имеются участки (домены), получившие название «рафты», которые обогащены сфинголипидами и холестеролом. «Рафты» отличаются фазовым состоянием от состояния остальной части мембраны, в которой они располагаются. Особенности строения мембран зависят от выполняемой ими функции и функционального состояния.

Исследование состава клеточных мембран подтвердили, что основными их компонентами являются липиды, составляющие около 50% массы плазматической мембраны. Около 40-48% массы мембраны приходится на белки и 2-10% — на углеводы. Остатки углеводов либо входят в состав белков, образуя гликопротеины, либо липидов, образуя гликолипиды. Фосфолипиды являются главными структурными липидами плазматических мембран и составляют 30-50% их массы.

Углеводные остатки молекул гликолипидов обычно располагаются на внешней поверхности мембраны и погружены в водную среду. Они играют важную роль в межклеточных, клеточно-матриксных взаимодействиях и распознавании антигенов клетками иммунной системы. Молекулы холестерола, встроенные в фосфолипидный бислой, способствуют сохранению упорядоченного расположения жирнокислотных цепей фосфолипидов и их жидкокристаллического состояния. В связи с наличием высокой конформационной подвижности ацильных радикалов жирных кислот фосфолипидов они формируют достаточно рыхлую упаковку липидного бислоя и в нем могут образовываться структурные дефекты.

Белковые молекулы способны пронизывать всю мембрану так, что их концевые участки выступают за се поперечные пределы. Такие белки называют трансмембранными , или интегральными . В составе мембран имеются также белки, только частично погруженные в мембрану или располагающиеся на ее поверхности.

Многие специфические функции мембран определяются белковыми молекулами, для которых липидная матрица является непосредственным микроокружением и от ее свойств зависит осуществление функций белковыми молекулами. Среди важнейших функций мембранных белков можно выделить: рецепторную — связывание с такими сигнальными молекулами, как нейромедиаторы, гормоны, ингерлейкины, факторы роста, и передача сигнала на пострецепторные структуры клетки; ферментативную — катализ внутриклеточных реакций; структурную — участие в формировании структуры самой мембраны; транспортную — перенос веществ через мембраны; каналообразующую — формирование ионных и водных каналов. Белки совместно с углеводами участвуют в осуществлении адгезии-слипания, склеивания клеток при иммунных реакциях, объединении клеток в слои и ткани, обеспечивают взаимодействие клеток с внеклеточным матриксом.

Функциональная активность мембранных белков (рецепторов, ферментов, переносчиков) определяется их способностью легко изменять свою пространственную структуру (конформацию) при взаимодействии с сигнальными молекулами, действии физических факторов или изменении свойств среды микроокружения. Энергия, требующаяся для осуществления этих конформационных изменений структуры белков, зависит как от внутримолекулярных сил взаимодействия отдельных участков пептидной цепи, так и от степени текучести (микровязкости) мембранных липидов, непосредственно окружающих белок.

Углеводы в виде гликолипидов и гликопротеинов составляют лишь 2-10% от массы мембраны; количество их в разных клетках изменчиво. Благодаря им осуществляются некоторые виды межклеточных взаимодействий, они принимают участие в узнавании клеткой чужеродных антигенов и совместно с белками создают своеобразную антигенную структуру поверхностной мембраны собственной клетки. По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для передачи сигнальных молекул друг другу.

Благодаря низкой энергии взаимодействия входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ. Незначительные по силе воздействия на мембрану, сравнимые с энергией межмолекулярных связей белков и липидов, могут вести к изменению конформации белковых молекул, проницаемости ионных каналов, изменению свойств мембранных рецепторов, других многочисленных функций мембраны и самой клетки. Высокая чувствительность структурных компонентов плазматической мембраны имеет решающее значение в восприятии клеткой информационных сигналов и их преобразовании в ответные реакции клетки.

Функции цитоплазматической мембраны клетки

Цитоплазматическая мембрана выполняет многие функции, обеспечивающие жизненные потребности клетки и, в частности, ряд функций необходимых для восприятия и передачи клеткой информационных сигналов.

Среди важнейших функций плазматической мембраны можно выделить:

  • отграничение клетки от окружающей се среды с сохранением формы, объема и существенных различий между клеточным содержимым и внеклеточным пространством;
  • перенос веществ внутрь клетки и из нее на основе свойства избирательной проницаемости, активного и других видов транспорта;
  • поддержание трансмембранной разности электрических потенциалов (поляризации мембраны) в покое, ее изменение при различных воздействиях на клетку, генерация и проведение возбуждения;
  • участие в обнаружении (рецепции) сигналов физической природы, сигнальных молекул за счет формирования сенсорных или молекулярных рецепторов и передаче сигналов внутрь клетки;
  • образование межклеточных контактов (плотный, щелевой и десмосомальный контакт) в составе образуемых тканей или при адгезии клеток различных тканей;
  • создание гидрофобного микроокружения для проявления активности ферментов, связанных с мембраной;
  • обеспечение иммунной специфичности клетки за счет наличия в структуре мембраны антигенов белковой или гликопротеиновой природы. Иммунная специфичность имеет значение при объединении клеток в ткань и взаимодействии с клетками, осуществляющими иммунный надзор в организме.

Приведенный перечень функций клеточных мембран свидетельствует о том, что они принимают участие в осуществлении не только клеточных функций, но и базисных процессов жизнедеятельности органов, тканей и целостного организма. Без знания ряда явлений и процессов, обеспечиваемых мембранными структурами, невозможно понимание и осознанное выполнение некоторых диагностических процедур и лечебных мероприятий. Например, для правильного применения многих лекарственных веществ необходимо знание того, в какой мере каждое из них проникает через клеточные мембраны из крови в тканевую жидкость и в клетки.

Биологические мембраны. Цитоплазматическая мембрана: строение, свойства, функции.

Для клеток характерен мембранный принцип строения.

Биологическая мембрана – тонкая пленка, белково-липидная структура, толщиной 7 - 10 нм, расположенная на поверхности клеток (клеточная мембрана), образующая стенки большинства органоидов и оболочку ядра.

В 1972 г. С. Сингером и Г. Николсом была предложена жидкостно-мозаичная модель строения клеточной мембраны. Позднее она была практически подтверждена. При рассмотрении в электронном микроскопе можно увидеть три слоя. Средний, светлый, составляет основу мембраны - билипидный слой, образованный жидкими фосфолипидами («липидное море»). Молекулы мембранных липидов (фосфолипиды, гликолипиды, холестерол и др.) имеют гидрофильные головки и гидрофобные хвосты, поэтому упорядоченно ориентированы в бислое. Два темных слоя – это белки, располагающиеся относительно бислоя липидов по-разному: периферические (прилегающие )- большинство белков, находятся на обеих поверхностях липидного слоя; полуинтегральные (полупогруженные ) – пронизывают только один слой липидов; интегральные (погруженные ) – проходят через оба слоя. У белков имеются гидрофобные участки, взаимодействующие с липидами, и гидрофильные – на поверхности мембраны в контакте с водным содержимым клетки, или тканевой жидкостью.

Функции биологических мембран :

1) отграничивает содержимое клетки от внешней среды и содержимое органоидов, ядра от цитоплазмы;

2) обеспечивают транспорт веществ в клетку и из нее, в цитоплазму из органоидов и наоборот;

3) участвуют в получении и преобразовании сигналов из окружающей среды, узнавании веществ клеток и т.д.;

4) обеспечивают примембранные процессы;

5) участвуют в преобразовании энергии.

Цитоплазматическая мембрана (плазмалемма, клеточная мембрана, плазматическая мембрана) – биологическая мембрана, окружающая клетку; основная, универсальная для всех клеток составная часть поверхностного аппарата. Толщина ее около 10 нм. Имеет характерное для биологических мембран строение. В цитоплазматической мембране гидрофильные головки липидов обращены к наружной и внутренней сторонам мембраны, а гидрофробные хвосты – внутрь мембраны. Периферические белки связаны с полярными головками липидных молекул гидростатическими взаимодействиями. Они не образуют сплошного слоя. Периферические белки связывают плазмалемму с над- или субмембранными структурами поверхностного аппарата. Некоторые молекулы липидов и белков плазмалемма животных клеток имеют ковалентные связи с молекулами олиго- иполисахаридов, которые расположены на наружной поверхности мембраны. Сильно разветвленные молекулы образуют с липидами и белками гликолипиды и гликопротеиды соответственно. Сахаридный слой - гликокаликс (лат. гликис – сладкий и калюм – толстая кожа) покрывает всю поверхность клетки и представляет собой надмембранный комплекс животной клетки. Олигосахаридные и полисахаридные цепи (антенны) выполняют ряд функций: распознавания внешних сигналов; сцепления клеток, их правильной ориентации при образовании тканей; иммунного ответа, где гликопротеиды играют роль иммунного ответа.

Рис. Строение плазмалеммы

Химический состав плазмолеммы: 55% - белки, 35-40% - липиды, 2-10% - углеводы.

Наружная клеточная мембрана образует подвижную поверхность клетки, которая может иметь выросты и выпячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы. Клеточная поверхность неоднородна: структура ее в разных участках неодинакова, неодинаковы и физиологические свойства этих участков. В плазмалемме локализованы некоторые ферменты (около 200), поэтому действие факторов внешней среды на клетку опосредуется ее цитоплазматической мембраной. Поверхность клетки обладает высокой прочностью и эластичностью, легко и быстро восстанавливается после небольших повреждений.

Строение плазматической мембраны определяет ее свойства:

Пластичность (текучесть), позволяет мембране менять свою форму и размеры;

Способность к самозамыканию, дает возможность мембране восстанавливать целостность при разрывах;

Избирательная проницаемость, обеспечивает прохождение различных веществ через мембрану с разной скоростью.

Основные функции цитоплазматической мембраны:

· определяет и поддерживает форму клетки (формообразовательная );

· отграничивает внутренне содержимое клетки (барьерная), играя роль механического барьера ; собственно барьерную функцию обеспечивает билипидный слой, не давая содержимому растекаться и препятствуя проникновению в клетку чужеродных веществ;

· защищает клетку от механических воздействий (защитная) ;

· регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава (регуляторная) ;

· распознает внешние сигналы, «узнает» определенные вещества (например, гормоны) (рецепторная ); некоторые белки плазмалеммы (рецепторы гормонов; рецепторы В-лимфоцитов; интегральные белки, выполняющие специфические ферментативные функции, осуществляющие процессы пристеночного пищеварения) способны узнавать определенные вещества и связываться с ними, таким образом рецепторные беки участвуют в отборе молекул, поступающих в клетку;

Цитоплазматическая мембрана

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы

Цитоплазматическая мембрана, плазмалемма - основная, универсаль­ная для всех клеток составная часть поверхностного аппарата. Ее толщина составляет около 10 нм. Она ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ с окружающей средой.

Химическими компонентами мембраны явля­ются липиды и белки. Липидысоставляют в среднем 40 % массы мембран. Среди них преобладают фосфолипиды.

Молекулы липидов располагаются в виде двой­ного слоя (билипидный слой). Каждая молекула липида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране их гидрофильные головки обращены к наружной и внутренней поверхности мембра­ны, а гидрофобные хвосты - внутрь мембраны (рис.).

Кроме основного билипидного слоя, в состав мембран входят белки двух разновидностей: пе­риферические и интегральные. Периферические белки связа­ны с полярными головками липидных молекул элект­ростатическими взаимодействиями. Они не образуют сплошного слоя. Периферические белки связывают плазмалемму с над- или субмембран­ными структурами поверхностного аппарата.

Интегральные белки более или менее глубоко погружены в мембрану, либо пронизывают ее насквозь (см. рис.).

С некоторыми молекулами липидов и белков плазмалеммы животных клеток связаны ковалентными связями молекулы полисахаридов. Их короткие, сильно разветвленные молекулы образуют гликолипиды и гликопротеиды . Полисахаридный слой покрывает всю поверхность клетки. Он называется гликокаликсом (от лат. гликис - сладкий и калюм - толстая кожа), и представляет собой надмембранный комплекс животной клетки.

Функции плазмалеммы. Плазмалемма выполняет барьерную, рецепторную и транспортную функции.

Барьерная функция . Окружая клетку со всех сторон, цитоплазматическая мембрана играет роль механического барьера – преграды между сложно организованным внутриклеточным содержимым и внешней средой. Барьерную функцию обеспечивает билипидный слой, не давая содержимому клетки растекаться и препятствуя проникновению в клетку чужеродных для нее веществ.

Рецепторная функция. Некоторые белки мембраны способны узнавать определенные вещества и связываться с ними. Таким образом рецепторные белки участвуют в отборе молекул, поступающих в клетки. К рецепторным белкам относятся, например, антигенраспознающие рецеп­торы В-лимфоцитов, рецепторы гормонов и т.д. К этому же типу можно отнести интегральные белки, выполняющие специфические ферментативные функции, осуществляю­щие процессы пристеночного пищеварения в кишечнике.

В плазматическую мембрану встроены также сиг­нальные белки, способные в ответ на действие раз­личных факторов окружающей среды изменять свою пространственную структуру и таким образом пере­давать сигналы внутрь клетки. Следовательно, плаз­матическая мембрана обеспечивает раздражи­мость организмов (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.



В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию очень сложной системы маркеров, позволяющих отличить «свои» клетки (той же особи или того же вида) от «чужих». Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (коньюгация у бактерий, образование тканей у животных).

С цитоплазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, у фотосинтезирующих бактерий и цианобактерий на мембранах локализованы рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазмалемме светочувствительных клеток животных расположена специальная система фоторецепторов (родопсин). С помощью фоторецепторов световой сигнал превращается в химический, что в свою очередь приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функ­ций мембраны является перенос веществ. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке.

Диффузия - движение веществ через мембрану по гради­енту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Этот процесс происходит без затраты энергии вслед­ствие хаотического движения молекул. Диф­фузный транспорт веществ осуще­ствляется либо через билипидный слой (жирорастворимые вещества), либо при участии транспортных белков мем­браны (рис.). В этом случае транспортные белки образуют молекулярные комплексы - каналы, через которые проходит растворенные молекулы и ионы.

Облегченная диффузия - на­блюдается тогда, когда специаль­ные мембранные белки-переносчи­ки избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом переносимые частицы переме­щаются по градиенту концентра­ции, но быстрее, чем при обычной диффузии. Диффузия и облегченная диффузия являются пассивными видами транспорта.

Наконец, наиболее важный вид транспорта - активный мембранный транспорт. Его принципиальное отличие от пассивного транспорта состоит в возможности переноса вещества против градиента концентрации. Для этого в мембране имеются специальные насосы, работающие с ис­пользованием энергии (чаще всего АТФ).

Одним из наиболее распростра­ненных мембранных насосов является так называемая калиево-натриевая АТФаза (К\Na-АТФаза). Благодаря ее работе из клетки непрерыв­но удаляются ионы Na + и закачиваются ионы К + . Таким образом в клетке и вне ее поддерживается разность концент­раций этих ионов, что лежит в основе многих биоэлектрических и транспорт­ных процессов.

В результате активного транс­порта с помощью мембранного на­соса происходит также регуляция концентрации Mg 2+ и Са 2+ в клетке.

Наряду с ионами путем активного транспорта через цитоплазматическую мембрану в клетку поступают моносахариды, аминокислоты и другие вещества.

Своеобразной и относительно хорошо изученной раз­новидностью мембранного транспорта является транс­порт в мембранной упаковке. Он особенно важен для клеток протистов, пищеварительных и секреторных клеток, фагоцитов и др. Различают эндоцитоз и экзоцитоз - в зависимости от того, в каком направлении переносятся вещества (в клетку или из нее).

Эндоцитоз (от греч. эндон - внутри и китос - клетка) - поглощение клеткой пищевых частиц. При эндоцитозе определенный участок плазмалеммы захватывает, обволакивает внеклеточный материал, заключая его в мембранную упаковку, возникшую за счет впячивания мембраны (рис.).

Эндоцитоз разделяют на фаго­цитоз (захват и поглощение круп­ных твердых частиц) и пиноцитоз (поглощение жидкости). Путем эн­доцитоза осуществляется питание гетеротрофных протистов, защит­ные реакции организма (поглощение лейкоцитами чужеродных части­ц) и др. Он не характе­рен для растений и грибов (подумайте, почему).

Экзоцитоз - транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю сре­ду. Вакуолярный пузырек перемещается к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Таким способом выделяют­ся пищеварительные ферменты, секретор­ные гранулы, гор­моны, гемицеллюлоза и др.

1. Что такое плазмалемма? Можно ли ее видеть в световой микроскоп? 2. Каковы химический состав и строение плазмалеммы? 3. Какие функции выполняет плазмалемма? 4. Какие вещества и как обеспечивают выполнение плазмалеммой сигнальной функции? 5. Как осуществляется перенос веществ через мембрану? 6. В чем состоит принципиальное отличие пассивного транс­порта от активного? 7. Что общего и отличного между процессами фагоцитоза и пиноцитоза? Клетки каких организмов могут осуществлять эти процессы? Свой ответ обоснуйте.

Цитоплазматическая мембрана (плазмалемма) — основная, универсальная для всех клеток часть поверхностного аппарата. Ее толщина составляет около 10 нм. Плазмалемма ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ между клеткой и внеклеточной средой.

Основными компонентами мембраны являются липиды и белки. Липиды составляют около 40 % массы мембран. Среди них преобладают фосфолипиды.

Молекулы фосфолипидов располагаются в виде двойного слоя (липидный бислой). Как вы уже знаете, каждая молекула фосфолипида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты — внутрь мембраны (рис. 30).

Кроме липидов, в состав мембран входят белки двух типов: интегральные и периферические. Интегральные белки более или менее глубоко погружены в мембрану либо пронизывают ее насквозь. Периферические белки располагаются на внешней и внутренней поверхностях мембраны, причем многие из них обеспечивают взаимодействие плазмалеммы с надмембранными и внутриклеточными структурами.

На внешней поверхности цитоплазматической мембраны могут располагаться молекулы олиго- и полисахаридов. Они ковалентно связываются с мембранными липидами и белками, образуя гликолипиды и гликопротеины. В клетках животных такой углеводный слой покрывает всю поверхность плазмалеммы, образуя надмембранный комплекс. Он называется гликокаликсом (от лат. гликис сладкий, калюм — толстая кожа).

Функции цитоплазматической мембраны. Плазмалемма выполняет ряд функций, важнейшими из которых являются барьерная, рецепторная и транспортная.

Барьерная функция. Цитоплазматическая мембрана окружает клетку со всех сторон, играя роль барьера — преграды между сложно организованным внутриклеточным содержимым и внеклеточной средой. Барьерную функцию обеспечивает, прежде всего, липидный бислой, не позволяющий содержимому клетки растекаться и препятствующий проникновению в клетку чужеродных веществ.

Рецепторная функция. В цитоплазматическую мембрану встроены белки, способные в ответ на действие различных факторов внешней среды изменять свою пространственную структуру и таким образом передавать сигналы внутрь клетки. Следовательно, цитоплазматическая мембрана обеспечивает раздражимость клеток (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.

Некоторые рецепторные белки цитоплазматической мембраны способны распознавать определенные вещества и специфически связываться с ними. Такие белки могут участвовать в отборе необходимых молекул, поступающих в клетки.

К рецепторным белкам относятся, например, антигенраспознающие рецепторы лимфоцитов, рецепторы гормонов и нейромедиаторов и т. д. В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию сложной системы маркеров, позволяющих отличать s.свои:/ клетки (той же особи или того же вида) от s.чужих:/. Благодаря этому клетки могут вступать друг с другом во взаимодействия (например, конъюгация у бактерий, образование тканей у животных).

В цитоплазматической мембране могут быть локализованы специфические рецепторы, реагирующие на различные физические факторы. Например, в плазмалемме светочувствительных клеток животных расположена специальная фоторецепторная система, ключевую роль в функционировании которой играет зрительный пигмент родопсин. С помощью фоторецепторов световой сигнал превращается в химический, что, в свою очередь, приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функций плазмалеммы является обеспечение транспорта веществ как в клетку, так и из нее во внеклеточную среду. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: простая диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке (рис. 31).

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалем-му могут проходить небольшие молекулы (например, Н 2 0, 0 2 , С0 2 , мочевина) и ионы. Как правило, неполярные вещества транспортируются непосредственно через липидный бислой, а полярные молекулы и ионы — через каналы, образованные специальными мембранными белками. Простая диффузия происходит относительно медленно. Для ускорения диффузного транспорта существуют мембранные белки-переносчики. Они избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией. Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Диффузия (простая и облегченная) — разновидности пассивного транспорта. Он характеризуется тем, что вещества транспортируются через мембрану без затрат энергии и только в том направлении, где наблюдается меньшая концентрация данных веществ.


Активный транспорт — перенос веществ через мембрану из области низкой концентрации этих веществ в область более высокой. Для этого в мембране имеются специальные насосы, работающие с использованием энергии (см. рис. 31). Чаще всего для работы мембранных насосов используется энергия АТФ.

Одним из наиболее распространенных мембранных насосов является натрий-калиевая АТ Фаза (Na + /K + - АТ Фаза). Она удаляет из клетки ионы Na + и закачивает в нее ионы К + - Для работы Ыа + /К + -АТФаза использует энергию, выделяемую при гидролизе АТФ. Благодаря этому насосу поддерживается разность концентраций Na + и К + в клетке и внеклеточной среде, что лежит в основе многих биоэлектрических и транспортных процессов.

В результате активного транспорта с помощью мембранных насосов происходит также регуляция содержания Mgr + , Са 2+ и других ионов в клетке.

Путем активного транспорта через цитоплазматическую мембрану могут перемещаться не только ионы, но и моносахариды, аминокислоты, другие низкомолекулярные вещества.

Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является транспорт в мембранной упаковке. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта — эндоцитоз и экзоцитоз.

Эндоцитоз (отгреч. эндон — внутри, китос — клетка, ячейка) — поглощение клеткой внешних частиц путем образования мембранных пузырьков. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал и захватывает его, заключая в мембранную упаковку (рис. 32).

Выделяют такие разновидности эндоцитоза, как фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости).

Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организма (поглощение лейкоцитами чужеродных частиц) и др.

Экзоцитоз (от греч. экзо — снаружи) — транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю среду. Например, пузырек комплекса Гольджи перемещается к цитоплазматической мембране и сливается с ней, а содержимое пузырька выделяется во внеклеточную среду. Таким способом клетки выделяют пищеварительные ферменты, гормоны и другие вещества.

1. Можно ли увидеть плазмалемму в световой микроскоп? Каковы химический состав " и строение цитоплазматической мембраны?

2. Что такое гликокаликс? Для каких клеток он характерен?

3. Перечислите и поясните основные функции плазмалеммы.

4. Какими способами может осуществляться транспорт веществ через мембрану? В чем заключается принципиальное отличие пассивного транспорта от активного?

5. Чем отличаются процессы фагоцитоза и пиноцитоза? В чем проявляется сходство этих процессов?

6. Сравните различные типы транспорта веществ в клетку. Укажите черты их сходства и различия.

7. Какие функции не смогла бы выполнять цитоплазматическая мембрана, если бы в ее состав не входили белки? Ответ обоснуйте.

8. Некоторые вещества (например, диэтиловый эфир, хлороформ) проникают через биологические мембраны даже быстрее, чем вода, хотя их молекулы намного больше молекул воды. С чем это связано?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах




© 2024
womanizers.ru - Журнал современной женщины