29.09.2019

Энтропия – что это такое простыми словами. Что такое энтропия


ЭНТРОПИЯ

ЭНТРОПИЯ

(от греч. entropia – поворот, )

часть внутренней энергии замкнутой системы или энергетической совокупности Вселенной, которая не может быть использована, в частности не может перейти или быть преобразована в механическую работу. Точное энтропии производится с помощью математических расчетов. Наиболее отчетливо эффект энтропии виден на примере термодинамических процессов. Так, никогда совершенно не переходит в механическую работу, преобразуясь в др. виды энергии. Примечательно, что при обратимых процессах величина энтропии остается неизменной, при необратимых, наоборот, неуклонно возрастает, причем этот прирост происходит за счет уменьшения механической энергии. Следовательно, все то необратимых процессов, которые происходят в природе, сопровождается уменьшением механической энергии, что в конечном итоге должно привести к всеобщему параличу, или, говоря иначе, «тепловой смерти». Но такой правомочен лишь в случае постулирования тоталитарности Вселенной как замкнутой эмпирической данности. Христ. теологи, основываясь на энтропии, говорили о конечности мира, используя ее как существования Бога.

Философский энциклопедический словарь . 2010 .

ЭНТРОПИЯ

(греч. ἐντροπία – поворот, превращение) – состояния термодинамич. системы, характеризующая направление протекания самопроизвольных процессов в этой системе и являющаяся мерой их необратимости. Понятие Э. введено в 1865 Р. Клаузиусом для характеристики процессов превращения энергии; в 1877 Л. Больцман дал ему статистич. истолкование. При помощи понятия Э. формулируется второе начало термодинамики: Э. термоизолированной системы всегда только увеличивается, т.е. такая , предоставленная самой себе, стремится к тепловому равновесию, при к-ром Э. максимальна. В статистич. физике Э. выражает неопределенность микроскопич. состояния системы: чем больше микроскопич. состояний системы соответствуют данному макроскопич. состоянию, тем выше термодинамич. и Э. последнего. Система с маловероятной структурой, предоставленная самой себе, развивается в сторону наиболее вероятной структуры, т.е. в сторону возрастания Э. Это, однако, относится только к замкнутым системам, поэтому Э. не может быть использована для обоснования тепловой смерти вселенной. В теории и н ф о р м а ц и и Э. рассматривается как недостатка информации в системе. В кибернетике при помощи понятий Э. и негэнтропии (отрицат. энтропии) выражают меру организованности системы. Будучи справедливой применительно к системам, подчиняющимся статистич. закономерностям, эта мера, однако, требует большой осторожности при переносе на биологические, языковые и социальные системы.

Лит.: Шамбадаль П., Развитие и приложения понятия Э., [пер. с .], М., 1967; Пирс Дж., Символы, сигналы, шумы, [пер. с англ.], М., 1967.

Л. Фаткин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


Синонимы :

Смотреть что такое "ЭНТРОПИЯ" в других словарях:

    - (от греч. entropia поворот, превращение), понятие, впервые введённое в термодинамике для определения меры необратимого рассеяния энергии. Э. широко применяется и в др. областях науки: в статистической физике как мера вероятности осуществления к.… … Физическая энциклопедия

    ЭНТРОПИЯ, показатель случайности или неупорядоченности строения физической системы. В ТЕРМОДИНАМИКЕ энтропия выражает количество тепловой энергии, пригодной для совершения работы: чем энергии меньше, тем выше энтропия. В масштабах Вселенной… … Научно-технический энциклопедический словарь

    Мера внутренней неупорядоченности информационной системы. Энтропия увеличивается при хаотическом распределении информационных ресурсов и уменьшается при их упорядочении. По английски: Entropy См. также: Информация Финансовый словарь Финам … Финансовый словарь

    - [англ. entropy Словарь иностранных слов русского языка

    Энтропия - Энтропия ♦ Entropie Свойство состояния изолированной (или принимаемой за таковую) физической системы, характеризуемое количеством самопроизвольного изменения, на которое она способна. Энтропия системы достигает максимума, когда она полностью … Философский словарь Спонвиля

    - (от греч. entropia поворот превращение) (обычно обозначается S), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к… … Большой Энциклопедический словарь

    Беспорядок, разлад Словарь русских синонимов. энтропия сущ., кол во синонимов: 2 беспорядок (127) … Словарь синонимов

    - (от греч. en в, внутрь и trope поворот, превращение), величина, характеризующая меру связанной энергии (D S), которая в изотермическом процессе не может быть превращена в работу. Она определяется логарифмом термодинамической вероятности и… … Экологический словарь

    энтропия - и, ж. entropie f., нем. Entropie <гр. en в, внутрь + trope поворот, превращение. 1. Физическая величина, характеризующая тепловое состояние тела или системы тел и возможные изменения этих состояний. Вычисление энтропии. БАС 1. ||… … Исторический словарь галлицизмов русского языка

    ЭНТРОПИЯ - ЭНТРОПИЯ, понятие, вводимое в термодинамике и являющееся как бы мерой необратимости процесса, мерой перехода энергии в такую форму, из к рой она не может самопроизвольно перейти в другие формы. Все мыслимые процессы, протекающие в любой системе,… … Большая медицинская энциклопедия

Энтропия - это слово, которое многие слышали, но мало кто понимает. И стоит признать, что до конца осознать всю сущность этого явления действительно сложно. Однако это не должно нас пугать. Очень многое из того, что нас окружает, мы, по сути, объяснить можем лишь поверхностно. И речь не идет о восприятии или знании какого-то конкретного индивидуума. Нет. Мы говорим обо всей совокупности научных знаний, которыми располагает человечество.

Серьезные пробелы имеются не только в знаниях галактических масштабов, например, в вопросах о и червоточинах, но и в том, что окружает нас постоянно. Например, до сих пор ведутся споры о физической природе света. А кто может разложить по полочкам понятие времени? Подобных вопросов - великое множество. Но в этой статье речь пойдет именно об энтропии. Многие годы ученые бьются над понятием "энтропия". Химия и физика рука об руку идут в изучении этого Мы постараемся выяснить, что же стало известно к нашему времени.

Введение понятия в научном кругу

Впервые понятие энтропии в среду специалистов ввел выдающийся немецкий математик Рудольф Юлиус Эммануэль Клаузиус. Если говорить простым языком, ученый решил выяснить, куда девается энергия. В каком смысле? Для иллюстрации не будем обращаться к многочисленным опытам и сложным умозаключениям математика, а возьмем пример, больше знакомый нам по повседневной жизни.

Вам должно быть прекрасно известно, что когда вы заряжаете, скажем, аккумулятор мобильного телефона, количество энергии, которое аккумулируется в элементы питания, будет меньше реально полученной от сети. Происходят определенные потери. И в повседневной жизни мы к этому привыкли. Но дело в том, что подобные потери происходят и в других замкнутых системах. А для физиков-математиков это уже представляет серьезную проблему. Исследованием этого вопроса и занимался Рудольф Клаузиус.

В результате он вывел прелюбопытнейший факт. Если мы, опять-таки, уберем сложную терминологию, он сведется к тому, что энтропия - это разница между идеальным и реальным процессом.

Представьте, что вы владеете магазином. И вы получили под реализацию 100 килограмм грейпфрутов по цене 10 тугриков за килограмм. Поставив наценку в 2 тугрика на кило, вы в результате продажи получите 1200 тугриков, отдадите положенную сумму поставщику и оставите себе прибыль в размере двухсот тугриков.

Так вот, это было описание процесса идеального. И любой торговец знает, что к тому времени, как продадутся все грейпфруты, они успеют усохнуть на 15 процентов. А 20 процентов и вовсе сгниют, и их придется просто списать. А вот это уже процесс реальный.

Так вот, понятие энтропии, которое ввел в математическую среду Рудольф Клаузиус, определяется как взаимосвязь системы, в которой прирост энтропии зависит от отношения температуры системы к значению абсолютного нуля. По сути, оно показывает значение отработанной (потерянной) энергии.

Показатель меры хаоса

Еще можно с некоторой долей убежденности утверждать, что энтропия - это мера хаоса. То есть если взять в качестве модели замкнутой системы комнату обычного школьника, то не убранная на место школьная форма будет уже характеризовать некоторую энтропию. Но ее значение в этой ситуации будет небольшим. А вот если в дополнение к этому раскидать игрушки, принести с кухни попкорн (естественно, немного уронив) и оставить в беспорядке на столе все учебники, то энтропия системы (а в данном конкретном случае - этой комнаты) резко повысится.

Сложные материи

Энтропия вещества - очень сложный для описания процесс. Многие ученые на протяжении последнего столетия внесли свой вклад в изучение механизма ее работы. Причем понятие энтропии используют не только математики и физики. Она также занимает заслуженное место в химии. А некоторые умельцы с ее помощью объясняют даже психологические процессы в отношениях между людьми. Проследим разницу в формулировках трех физиков. Каждая из них раскрывает энтропию с другой стороны, а их совокупность поможет нам нарисовать для себя более целостную картину.

Утверждение Клаузиуса

Невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой.

Убедиться в этом постулате несложно. Вы никогда не сможете холодными руками согреть, скажем, замерзшего маленького щенка, как бы вам ни хотелось ему помочь. Поэтому придется засунуть его за пазуху, где температура выше, чем у него в данный момент.

Утверждение Томсона

Невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела.

А если совсем просто, то это означает, что физически невозможно сконструировать вечный двигатель. Не позволит энтропия замкнутой системы.

Утверждение Больцмана

Энтропия не может уменьшаться в замкнутых системах, то есть в тех, что не получают внешней энергетической подпитки.

Эта формулировка пошатнула веру многих приверженцев теории эволюции и заставила их всерьез задуматься о наличии у Вселенной разумного Творца. Почему?

Потому что по умолчанию в замкнутой системе энтропия всегда увеличивается. А значит, усугубляется хаос. Уменьшить ее можно лишь благодаря внешней энергетической подпитке. И этот закон мы наблюдаем каждый день. Если не ухаживать за садом, домом, машиной и т. д., то они попросту придут в негодность.

В мегамасштабах наша Вселенная - тоже замкнутая система. И ученые пришли к выводу, что само наше существование должно свидетельствовать о том, что откуда-то эта внешняя подпитка энергией происходит. Поэтому сегодня никого не удивляет то, что астрофизики верят в Бога.

Стрела времени

Еще одну весьма остроумную иллюстрацию энтропии можно представить в виде стрелы времени. То есть энтропия показывает, в какую сторону будет двигаться процесс в физическом отношении.

И действительно, вряд ли, узнав об увольнении садовника, вы будете ожидать, что территория, за которую он отвечал, станет более аккуратной и ухоженной. Как раз наоборот - если не нанять другого работника, через какое-то время даже самый красивый сад придет в запустение.

Энтропия в химии

В дисциплине "Химия" энтропия является важным показателем. В некоторых случаях ее значение влияет на протекание химических реакций.

Кто не видел кадров из художественных фильмов, в которых герои очень аккуратно переносили емкости с нитроглицерином, опасаясь спровоцировать взрыв неосторожным резким движением? Это было наглядным пособием к принципу действия энтропии в химическом веществе. Если бы ее показатель достиг критической отметки, то началась бы реакция, в результате которой происходит взрыв.

Порядок беспорядка

Чаще всего утверждают, что энтропия - это стремление к хаосу. Вообще слово «энтропия» означает превращение или поворот. Мы уже говорили, что оно характеризирует действие. Очень интересна в этом контексте энтропия газа. Давайте попробуем представить, как она происходит.

Берем замкнутую систему, состоящую из двух соединенных емкостей, в каждой из которых находится газ. Давление в емкостях, пока они не были герметично соединены между собой, было разным. Представьте, что произошло на молекулярном уровне, когда их соединили.

Толпа молекул, находившаяся под более сильным давлением, тут же устремилась к своим собратьям, жившим до того достаточно вольготно. Тем самым они увеличили там давление. Это можно сравнить с тем, как плещется вода в ванной. Набежав на одну сторону, она тут же устремляется к другой. Так же и наши молекулы. И в нашей идеально изолированной от внешнего воздействия системе они будут толкаться до тех пор, пока во всем объеме не установится безукоризненное равновесие. И вот, когда вокруг каждой молекулы будет ровно столько же пространства, сколько и у соседней, все успокоится. И это будет наивысшая энтропия в химии. Повороты и превращения прекратятся.

Стандартная энтропия

Ученые не оставляют попыток упорядочить и классифицировать даже беспорядок. Так как значение энтропии зависит от множества сопутствующих условий, было введено понятие «стандартная энтропия». Значения сведены в специальные таблицы, чтобы можно было легко проводить вычисления и решать разнообразные прикладные задачи.

По умолчанию значения стандартной энтропии рассматривают при условиях давления в одну атмосферу и температуры в 25 градусов Цельсия. При повышении температуры данный показатель также растет.

Коды и шифры

Существует еще и информационная энтропия. Она призвана помогать в шифровке кодированных посланий. В отношении информации энтропия - это значение вероятности предсказуемости информации. А если совсем простым языком, то это то, насколько легко будет взломать перехваченный шифр.

Как это работает? На первый взгляд кажется, что без хоть каких-нибудь исходных данных понять закодированное послание нельзя. Но это не совсем так. Тут в дело вступает вероятность.

Представьте себе страницу с шифрованным посланием. Вам известно, что использовался русский язык, но символы абсолютно незнакомые. С чего начать? Подумайте: какова вероятность того, что на этой странице встретится буква «ъ»? А возможность наткнуться на литеру «о»? Систему вы поняли. Высчитываются символы, которые встречаются чаще всего (и реже всего - это тоже немаловажный показатель), и сопоставляются с особенностями языка, на котором было составлено послание.

Кроме того, существуют частые, а в некоторых языках и неизменные буквосочетания. Эти знания также используются для расшифровки. Кстати, именно этот способ использовал знаменитый Шерлок Холмс в рассказе «Пляшущие человечки». Таким же образом взламывали коды в преддверии Второй мировой войны.

А информационная энтропия призвана увеличить надежность кодировки. Благодаря выведенным формулам математики могут анализировать и улучшать предлагаемые шифровщиками варианты.

Связь с темной материей

Теорий, которые пока только ждут своего подтверждения, великое множество. Одна из них связывает явление энтропии со сравнительно недавно открытой Она гласит, что утраченная энергия просто преобразуется в темную. Астрономы допускают, что в нашей Вселенной всего 4 процента приходится на известную нам материю. А остальные 96 процентов заняты неизученной на данный момент - темной.

Такое название она получила из-за того, что не взаимодействует с электромагнитным излучением и не испускает его (как все известные до этого времени объекты во Вселенной). А потому на данном этапе развития науки изучение темной материи и ее свойств не представляется возможным.

Введение 4

Понятие энтропии 5

Измерение энтропии 8

Понятия и примеры возрастания энтропии 9

Заключение 13

Список литературы 14

Введение

Естествознание – это раздел науки основанный на воспроизводимой эмпирической проверке гипотез и создании теорий или эмпирических обобщений, описывающих природные явления.

Предмет естествознания - факты и явления, воспринимаемые нашими органами чувств. Задача ученого обобщить эти факты и создать теоретическую модель изучаемого явления природы включающую законы управляющие им. Явления, например, закон всемирного тяготения, даются нам в опыте; один из законов науки - закон всемирного тяготения, представляет собой варианты объяснения этих явлений. Факты, будучи установлены, сохраняют свою актуальность всегда, законы могут быть пересмотрены или скорректированы в соответствии с новыми данными или новой концепцией их объясняющей. Факты действительности являются необходимой составляющей научного исследования.

Основной принцип естествознания гласит 1: знания о природе должны допускать эмпирическую проверку. Это не означает, что научная теория должна немедленно подтверждаться, но каждое ее положение должно быть таким, чтобы такая проверка была возможна в принципе.

От технических наук естествознание отличает то, что оно преимущественно направлено не на преобразование мира, а на его познание. От математики естествознание отличает то, что оно исследует природные, а не знаковые системы. Попробовать связать естествознание, технические и математическую науки попробуем с помощью понятия – «энтропия».

Таким образом, целью данной работы является рассмотрение и решение следующих задач:

    Понятие энтропии;

    Измерение энтропии;

    Понятия и примеры возрастания энтропии.

Понятие энтропии

Понятие энтропии было введено Р. Клаузиусом 2 , сформулировавшим второе начало термодинамики, согласно которому переход теплоты от более холодного тела к более теплому не может происходить без затраты внешней работы.

Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

Рудольф Клаузиус дал величине S имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование).

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

где dS - приращение (дифференциал) энтропии, а δQ - бесконечно малое приращение количества теплоты.

Заметим, что энтропия является функцией состояния, поэтому в левой части равенства стоит её полный дифференциал. Напротив, количество теплоты являетсяфункцией процесса, в котором эта теплота была передана, поэтому δQ ни в коем случае нельзя считать полным дифференциалом.

Энтропия, таким образом, определена вплоть до произвольной аддитивной постоянной. Третье начало термодинамикипозволяет определить её точно: при этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Энтропия – это количественная мера той теплоты, которая не переходит в работу.

S 2 -S 1 =ΔS=

Или, другими словами, энтропия – мера рассеивания свободной энергии. А ведь нам уже известно, что любая открытая термодинамическая система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Поэтому если в силу причин система отклонилась от стационарного состояния, то вследствие стремления системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние.

Как видно из выше написанного, энтропия характеризует определенную направленность процесса в замкнутой системе. В соответствии со вторым началом термодинамики 3 возрастанию энтропии соответствует направление теплового потока от более горячего тела к менее горячему. Непрерывное возрастание энтропии в замкнутой системе происходит до тех пор, пока температура не выровняется по всему объему системы. Наступает, как говорят, термодинамическое равновесие системы, при котором исчезают направленные тепловые потоки и система становится однородной.

Абсолютное значение энтропии зависит от целого ряда физических параметров. При фиксированном объеме энтропия увеличивается с увеличением температуры системы, а при фиксированной температуре увеличивается с увеличением объема и уменьшением давления. Нагревание системы сопровождается фазовыми превращениями и снижением степени упорядоченности системы, поскольку твердое тело переходит в жидкость, а жидкость превращается в газ. При охлаждении вещества происходит обратный процесс, упорядоченность системы возрастает. Эта упорядоченность проявляется в том, что молекулы вещества занимают все более определенное положение относительно друг друга. В твердом теле их положение фиксировано структурой кристаллической решетки.

Другими словами - энтропия выступает мерой хаоса 4 (споры определения которого ведутся уже давно).

Все процессы в природе протекают в направлении увеличения энтропии. Термодинамическому равновесию системы соответствует состояние с максимумом энтропии. Равновесие, которому соответствует максимум энтропии, называется абсолютно устойчивым. Таким образом, увеличение энтропии системы означает переход в состояние, имеющее большую вероятность. То есть энтропия характеризует вероятность, с которой устанавливается то или иное состояние, и является мерой хаотичности или необратимости. Это мера хаоса в расположении атомов, фотонов, электронов и других частиц. Чем больше порядка, тем меньше энтропия. Чем больше информации поступает в систему, тем система более организована, и тем меньше её энтропия:

(По теории Шеннона 5)

Довольно быстро вы поймете, что ничего у вас не получится, но не расстраивайтесь: вы не собрали кубик Рубика, зато проиллюстрировали второе начало термодинамики:

Энтропия изолированной системы не может уменьшаться.

Героиня фильма Вуди Аллена Whatever Works дает такое определение энтропии: это из-за чего тяжело засунуть обратно в тюбик зубную пасту. Она еще интересно объясняет принцип неопределенности Гейзенберга, еще один повод посмотреть фильм.

Энтропия - это мера беспорядка, хаоса. Вы пригласили друзей на новогоднюю вечеринку, прибрались, помыли пол, разложили на столе закуску, расставили напитки. Одним словом, все упорядочили и устранили столько хаоса, сколько смогли. Это система с маленькой энтропией.

Вы все, наверное, представляете, что происходит с квартирой, если вечеринка удалась: полный хаос. Зато у вас утром есть в распоряжении система с большой энтропией.

Для того, чтобы привести квартиру в порядок, надо прибраться, то есть потратить на это много энергии. Энтропия системы уменьшилась, но никакого противоречия со вторым началом термодинамики нет - вы же добавили энергию извне, и эта система уже не изолированная.

Неравный бой

Один из вариантов конца света - тепловая смерть Вселенной вследствие второго начала термодинамики. Энтропия вселенной достигнет своего максимума и ничего в ней больше происходить не будет.

В общем случае звучит все довольно уныло: в природе все упорядоченные вещи стремятся к разрушению, к хаосу. Но откуда тогда на Земле жизнь? Все живые организмы невероятно сложные и упорядоченные и каким-то образом всю свою жизнь борются с энтропией (хотя в конце концов она всегда побеждает).

Все очень просто. Живые организмы в процессе жизнедеятельности перераспределяют энтропию вокруг себя, то есть отдают свою энтропию всему, чему только могут. Например, когда мы едим бутерброд, то красивый упорядоченный хлеб с маслом мы превращаем известно во что. Получается, что свою энтропию мы отдали бутерброду, а в общей системе энтропия не уменьшилась.

А если взять Землю в целом, то она вообще не является замкнутой системой: Солнце снабжает нас энергией на борьбу с энтропией.

Понятие “Энтропия” (ударение на последнем слоге) впервые появилось в термодинамике. Там оно обозначает степень рассеивания энергии в замкнутой системе. В общем смысле под энтропией понимают степень развития хаоса или разрушения первоначально установленного порядка в замкнутой системе.

Энтропия в закрытой системе, как её понимают физики

Пример из жизни: Возьмём некую замкнутую систему. Допустим, Ребенок + Кожаный мяч в комнате. Ребенок произвольно пользуется мячом – играет, ударяет об пол, подбрасывает к потолку… Через 6 месяцев активного использования мяч заметно сдулся, играть им стало труднее. Замкнутая система открывается: приходит папа с насосом и накачивает мяч. Функции мяча, подвергнутого энтропии, восстанавливаются.

2 закон термодинамики гласит, что энтропия в замкнутой системе не может уменьшаться, она только увеличивается.

Даже если замкнутая система с мячом не предполагает активного разрушающего фактора (играющий ребёнок), энтропия всё равно будет, хоть и с меньшими показателями.

Пример 2. Мяч 6 месяцев пролежал в комнате: сдулся незначительно, но сильно покрылся пылью и немного выцвел со стороны, обращенной к окну.

Чтобы энтропия уменьшилась в закрытой системе, надо ее открыть и добавить в неё ресурс из другой системы. Чтобы мяч восстановить в прежних размерах, нужно внести в замкнутую систему изменения с помощью папиной энергии и нового воздуха, закачанного насосом в мяч. Чтобы мяч, пролежавший в комнате, вернул первоначальные свойства, мама должна вытереть его мокрой тряпкой от пыли, а сестра – покрыть новой краской.

Понятием энтропии пользуются многие сферы человеческих знаний и деятельности:

  • биология и медицина;
  • химия;
  • физика;
  • информатика и программирование;
  • социология;
  • психология и др.

Энтропия в биосистемах

Все биосистемы (живые системы) являются открытыми, а не закрытыми, поэтому понятие энтропии в биосистеме несколько отличается от энтропии неживых объектов, рассматриваемых физиками.

Биосистемы находятся в состоянии динамического равновесия. Оно существует по другим законам, нежели термодинамическое равновесие. Системы любого живого организма открыты для взаимодействия друг с другом в рамках самого организма, а сам организм в свою очередь открыт для взаимодействия с окружающей средой местности планеты. Планета, как живой организм, в свою очередь, подвержена влиянию и взаимодействию с одной стороны – с живыми организмами, её населяющими, а с другой – с космическими объектами и явлениями.

Все это создаёт разветвлённую систему корректировок, чтобы поддерживать между всеми и во всех живых организмах гомеостаз – то есть баланс. Явление энтропии (разрушения и разбалансировки) является самым сложным в больших живых системах. Ведь они используют увеличивающуюся энтропию одних своих частей в качестве пищи и строительного материала для уменьшения энтропии в других своих частях.

Энтропия в теории информации и коммуникаций

Над данной темой в этой сфере работал Клод Шеннон. Он изучал рациональные способы передачи информации через зашумлённый канал. По Шеннону, энтропия – это мера непредсказуемости какого-либо опыта, события, испытания. Это количество информации на 1 сообщение источника, выдающего независимые сообщения.

Он рассматривал информационную энтропию в своей «Математической теории Коммуникации», где ввёл связанное понятие «вероятность». По Шеннону, чем меньше вероятность какого-либо события, тем больше информации оно содержит.

Энтропия в социуме

Это степень отклонения социальной системы, организации (предприятия) и т.д. от принятой нормы (эталона) и установленных целей. На социальную энтропию влияют:

  • Деятельность людей;
  • Ошибки управления;
  • Недостаток информации;
  • Ошибки планирования;
  • Ошибками в подборе персонала.

Обобщая до бытового уровня, можно сказать, что “Энтропия” – это мера или степень беспорядка (хаоса) или неопределённости.

Существуют 3 понятия, противоположные энтропии:

  1. Негэнтропия;
  2. Синтропия;
  3. Отрицательная энтропия.

Но эти термины действуют только для живых систем. Негэнтропия в живой системе – это энтропия, которую живая система экспортирует, чтобы снизить свою собственную энтропию. Другими словами, синтропия – это свободная или освободившаяся энергия одного организма или группы организмов, отправляемая на упорядочивание и уравновешивание другого организма в системе.

Жизнь потребляет то, что меньше упорядочено (убитый организм, ставший пищей) и превращает это в то, что более упорядочено (живые клетки, ткани, органы, системы, целые организмы). Поэтому считается что жизнь сама по себе имеет свойство отрицательной энтропии.




© 2024
womanizers.ru - Журнал современной женщины