30.07.2019

Искусственные органы виды. Как выращивают искусственные органы? Ана-то-мия дыхательной системы человека


В прошлом году создали эмбрион - помесь свиньи и человека, в этом году - поместили человеческие клетки в эмбрион овцы . Стволовые клетки перепрограммируют в разные другие, делают из кожи сетчатку глаза, мышцы и вообще что угодно, выращивают модели органов на крохотных чипах - зачем все это нужно? Какую пользу такие исследования могут принести обычному пациенту?

Будущее трансплантации

Польза на самом деле огромная. Никто из нас не застрахован от болезней и травм, результатом которых может стать отказ того или иного органа. Люди не саламандры и не черви и даже хвост-то себе отрастить не способны, не говоря уже о новой голове.

Рыбки данио-рерио могут восстановиться после травм сердца, а мы - не они, наша регенерация, увы, заставляет желать лучшего, поэтому для сотен тысяч человек единственный способ сейчас получить работающие сердце, легкие или печень - это пересадка органа от донора.

Реципиентов - сотни тысяч. Доноров - намного меньше, подходящих конкретному человеку - критически мало. Если в случае с почкой донор может быть живым (и, скажем, родственником, таких случаев полно), то с сердцем, например, такого уже не получится. Сотни человек ежедневно умирают только потому, что нужного донора не успели найти. Именно поэтому исследования в области выращивания искусственных органов критически важны.

При чем тут эмбрионы животных?

До выращивания новых органов прямо внутри пациентов науке еще очень и очень далеко, а вот модификация эмбрионов животных уже доступна. Первые живые химеры (так называют организмы, в которых сосуществует генетический материал из разных зигот, а зигота - это то, что получается после встречи половых клеток) показали, что в теле животного вполне могут расти человеческие клетки.

У эмбрионов свиней начали формироваться органы, в том числе сердце и печень. Получается, что при точной настройке вырастить человеческий орган внутри животного реально не только теоретически, но и практически, а теперь выяснилось, что и с овцами такое тоже может получиться. Таким образом, искусственные органы - это вопрос времени.

Правда, довольно отдаленного, потому что пока еще специалисты не разобрались, как дирижировать этим клеточным оркестром, да и этические вопросы, возникающие в процессе таких модификаций, довольно сложны. Специалистам приходится думать не только собственно об органах, но и о том, как удержаться на грани и не сделать свинью или овцу слишком человеком.

Разумеется, это не будет гибрид типа Минотавра (такого просто никто не будет выращивать, дураков нет, а если есть - им быстро настучат по рогам), но сейчас концентрация человеческих клеток в эмбрионах (которых, разумеется, после исследования уничтожили как раз во избежание эксцессов) - одна на 10 тысяч, а надо - 1 на 100 или, может быть, даже больше. В общем, непонятно пока, как настроить тонкую механику, но уже ясно, что это в принципе возможно.

Нынешние биотехнологии позволяют очень многое. Известно, например, что одни специалисты создали потенциально полезную для искусственных органов систему сосудов, «обесклетив» лист шпината . Все растительные клетки вычистили, а оставшуюся основу населили человеческими.

Другие исследователи сделали материал, из которого в будущем возможно будет делать, например, заплатки для сердца после инфаркта: искусственная ткань и сокращаться может, и электричество проводит. Здесь уже, наверное, ничего объяснять не надо - и так понятно, зачем нужна такая заплатка.

Впрочем, не единой трансплантацией будет жив человек. У искусственных органов или даже их мини-версий - полностью функциональных уменьшенных копий - есть и другая важнейшая функция. На них можно проверять действие новых препаратов и моделировать процесс течения заболеваний, не привлекая к исследованиям людей.

Работа в этом направлении ведется колоссальная - например, из крысиных сердец уже умеют делать уменьшенные модели человеческих, очищая их от животных клеток и заселяя, соответственно, клетками Homo sapiens , создавали мини-желудки, мини-легкие, мини-почки и даже модель женской репродуктивной системы, которую после определенной доработки потенциально можно использовать для персонифицированной медицины - заселять ее клетками конкретной пациентки и смотреть, как будут у нее работать лекарства.

Все это звучит довольно футуристично, но вспомните - всего лет 30 назад нельзя было и помыслить о смартфонах и мощных компьютерах, а сейчас? В начале прошлого века не было антибиотиков - сейчас их множество видов. Да что там говорить, люди уже и на пересадку головы замахнулись - правда, пока безуспешно, но раньше это даже представить нельзя было. Так что будущее уже наступает - сегодня.

Ксения Якушина

Фото istockphoto.com

Слайд 2

Введение

Одно из важных направлений современной медицины - создание искусственных органов. Искусственные органы - это созданные человеком органы - имплантаты, которые могут заменить настоящие органы тела.

Слайд 3

Искусственные органы- технические устройства, предназначенные для временной или постоянной замены функции того или иного внутреннего органа человека.

Слайд 4

Создание И.о. обусловлено также тем, что трансплантация не сможет полностью решить проблему замены нефункционирующих жизненно важных органов человека, т.к. количество пригодных для пересадки донорских органов намного меньше числа больных, нуждающихся в этой операции. И.о. не всегда полностью заменяют функцию естественного органа, особенно когда он обладает рядом сложных функций, например, печень, сердце.

Слайд 5

Чаще И.о. заменяют не весь орган, а наиболее важную его часть, например, искусственные клапаны сердца, предназначенные для обеспечения однонаправленного тока крови.

Слайд 6

Искусственные органы Неимплантируемые частично полностью Имплантируемые имплантируемые

Слайд 7

К неимплантируемымИ.о. можно отнести искусственную почку- аппарат для выведения из крови больного токсических продуктов обмена веществ, которые накапливаются при острой и хронической почечной недостаточности.

Слайд 8

Примеромчастично имплантируемогоИ.о., применяемого лишь только в эксперименте, может служить искусственное сердце с внешним приводом. В этой системе сам насос для перекачивания крови размещается внутри грудной полости, как правило, в пределах перикарда; системой шлангов насос связан с приводом, чаще всего пневматическим, и управляющим комплексов приборов

Слайд 9

Полностью имплантируемымИ.о. является такое устройство, все компоненты которого размещены внутри организма. примером этого являются электрокардиостимуляторы и искусственное сердце такой конструкции, где все узлы(насосы для крови, привод, система управления им, источник энергопитания) имплантируются внутрь организма.

Слайд 10

По времени функционирования И.о. можно разделить на: Аппараты, поддерживающие жизнедеятельность организма только при непрерывной их работе(напр., искусственное сердце) Аппарат, обеспечивающие жизнедеятельность организма при их прерывистом(дискретным) подключении (напр., искусственная почка)

Слайд 11

В проблеме И.о. большое значение имеет выбор материалов, из которых изготавливаются узлы аппаратов, непосредственно контактирующие с тканями и жидкими средами организма. Все эти материалы должны быть биологически инертными, т.е. не вызывающими воспалительной реакции окружающих тканей, не выделяющими со своей поверхности токсических химических веществ и т.д.

Слайд 12

Также важной проблемой в создании И.о. является адекватное поставленной цели инженерное решение. Как правило, при создании и.о. исследователи стремятся к тому, чтобы техническое устройство как можно точнее выполняло функцию естественного аналога. Конструктивные же решения при этом резко отличаются от архитектоники соответствующего органа. Это связано с отсутствием материалов, из которых можно было бы изготовить И.о., идентичных по своей конструкции анатомическому строению естественного органа, а также с определенным несовершенством современной технологии

Слайд 13

10 искусственных органов для создания настоящего человека

Слайд 14

1. Искусственный кишечник. Стадия разработки: успешно создан. Английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения. Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Слайд 15

2.Искусственное сердце. Стадия разработки: успешно создано, готово к имплантации. Первые искусственные сердца появились еще в 60-х годах прошлого века. Так называемое «временное» сердце Total Artificial Heart создано специально для пациентов, страдающих от нарушений сердечной деятельности. Этот орган поддерживает работу организма и фактически продлевает жизнь пациенту, который находится в ожидании органа для полноценной трансплантации. Первое «временное сердце» было имплантировано в 2007 году бывшему инструктору по фитнесу.

Слайд 16

3.Искусственная кровь. Стадия разработки: кислородная терапия. Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине. Искусственная кровь выполняет две основные функции: 1) увеличивает объем кровяных телец 2) выполняет функции обогащения кислородом. Если будет создана полноценная искусственная кровь, то по вкладу в развитие науки это открытие будет сравнимо разве что с возможным полетом человека на Марс.

Слайд 17

4.Искусственные кровеносные сосуды. Стадия разработки: подготовка экспериментов на людях. Ученые недавно разработали искусственные кровеносные сосуды, используя коллаге. Использования коллагена из лосося абсолютно безопасно, поскольку современная наука не знает ни одного вируса, который способен передаваться от лосося человеку. Пока эксперименты проводятся на животных, однако ученые готовятся к экспериментам на людях. Исследователи уверены, что созданные ими биоматериалы можно будет использовать для замены поврежденных кровеносных сосудов человека

Слайд 18

5.Искусственные кости. Стадия разработки: проводятся клинические исследования. Ученые довольно давно занимаются проблемой создания искусственных костей. Недавно было обнаружено, что лимонная кислота в сочетание с октандиолом создает вещество желтого цвета, похожее на резину, которому можно придать любую форму и заменить им поврежденную часть кости. Полученный полимер, смешанный с гидроапатитовым порошком, в свою очередь «превращается» в очень твердый материал, который можно использовать для восстановления сломанных костей.

Слайд 19

6.Искусственная матка. Стадия разработки: успешно созданные прототипы. Ученые уже давно работают над созданием искусственной матки, чтобы эмбрионы могли развиваться вне женских репродуктивных органов. Прототипы создавались учеными на основе клеток, выделенных из организма женщины Новая разработка в будущем позволит женщинам, страдающим от бесплодия, иметь детей. Противники новой технологии утверждают, что разработка ученых может в будущем ослабить связь матери и ребенка. Создание искусственной матки также поднимает этические вопросы о возможном клонировании человека и даже о введении запрета на аборты, поскольку эмбрион сможет выжить и в искусственной матке.

Слайд 20

7. Искусственная кожа. Стадия разработки: исследователи на пороге создания настоящей кожи. Созданная в 1996 году искусственная кожа используется для пересадки пациентам, чей кожных покров был сильно поврежден сильными ожогами. В 2001 году на основе этого метода была создана самовосстанавливающаяся искусственная кожа. Английские ученые открыли удивительный метод регенерации кожи. Созданные в лабораторных условиях клетки, генерирующие коллаген, воспроизводят реальные клетки человеческого организма, которые не дают коже стареть. С возрастом количество этих клеток уменьшается, и кожа начинает покрываться морщинами. Искусственные клетки, введенные непосредственно в морщины, начинают вырабатывать коллаген и кожа начинает восстанавливаться.

Слайд 21

8. Искусственная сетчатка. Стадия разработки: создана и успешно прошла тестирования, находится на стадии промышленного производства. Искусственная сетчатка Argus II в скором времени будет лечить людей, страдающих от различных форм слепоты, таких как дегенерация желтого пятна и пигментная дегенерация сетчатки. Дегенерация желтого пятна - это атрофия или дегенерация диска зрительного нерва, расположенного вблизи центра сетчатки. Пигментная дегенерация сетчатки - редкое наследственное заболевание, связанное с нарушением работы и выживанием палочек, а затем и колбочек.

Слайд 22

9. Искусственные конечности. Стадия разработки: эксперименты. Как известно, саламандры могут регенерировать оторванные конечности. Почему бы людям не последовать их примеру? Недавно проведенные исследования подарили людям с ампутированными конечностями надежду на возможную регенерацию утраченных частей тела. Ученые успешно вырастили новые конечности на саламандре, используя экстракт из мочевого пузыря свиньи. Исследователи находятся на самой ранней стадии развития новой технологии, которая только будет разработана - до ее применения на людях еще далеко.

Слайд 23

10. Искусственные органы, созданные из стволовых клеток. Стадия разработки: созданы прототипы, требуются дальнейшие исследования. Когда команда английских ученых смогла создать сердечный клапан из стволовых клеток пациента, сразу же начались разговоры о создании искусственного сердца при помощи схожих технологий. Более того, это научное направление признано более перспективным, так как органы, созданные из стволовых клеток пациента, имеют гораздо больше шансов прижиться.

Слайд 24

Искусственные легкие(оксигенаторы)

Аппарат «искусственное сердце - легкие», аппарат, обеспечивающий оптимальный уровень кровообращения и обменных процессов в организме больного или в изолированном органе донора; предназначен для временного выполнения функций сердца и лёгких. Блок-схема аппарата искусственного и кровообращения.

Слайд 25

АИК включает комплекс взаимосвязанных систем и блоков: «искусственное сердце» - аппарат, состоящий из насоса, привода, передачи и нагнетающий кровь с необходимой для жизнеобеспечения объёмной скоростью кровотока; «искусственные лёгкие» - газообменное устройство, так называемый оксигенатор, служит для насыщения крови кислородом, удаления углекислого газа и поддержания кислотно-щелочного равновесия в физиологических пределах. Аппарат искусственного кровообращения АИК-5 кардиохирургического назначения.

Слайд 26

Искусственное сердце

Искусственное сердце – альтернатива пересадке. Сердце или искусственные желудочки применяются у больных в терминальной стадии сердечной недостаточности для спасения их жизни и поддержки кровообращения до того момента, когда найдется подходящей для пересадки сердца донорский орган. В 1998 году впервые в мире был имплантирован искусственный желудочек с принципиально новым принципом действия, сконструированный при участии специалистов NASA и Майкла ДеБейки. Этот маленький насос массой всего 93 грамма способен перекачивать до 6-7 литров крови в минуту и тем самым обеспечивать нормальную жизнедеятельность всего организма.

Слайд 27

Ученые заявляют, что они разработали полностью рабочий прототип искусственного сердца, который готов для пересадки человеку. Устройство не только воспроизводит сердцебиения, очень схожие с настоящими, но также снабжено специальными электронными сенсорами, позволяющим регулировать сердечный ритм и кровоток.

Слайд 28

Кардиостимуляторы

Одним из наиболее высокотехнологичных видов медицинского оборудования является кардиостимулятор. Кардиостимулятор представляет собой устройство, предназначенное для поддержания ритма сердца. Данный прибор является незаменимым для людей с такими заболеваниями сердца, как брадикардия – недостаточно частое сердцебиение – или атриовентрикулярная блокада.

Слайд 29

Кардиостимуляторы - устройства, работающие в асинхронном режиме, осуществляя при этом стимуляцию сердцебиения с фиксированной частотой. Более совершенные кардиостимуляторы явили собой двухкамерные электростимуляторы. Сегодня используются кардиостимуляторы двухкамерного типа, они позволяют не только стимулировать работу сердца, но и определять у больного фибрилляции, трепетания предсердий. При этом кардиостимулятор способен переключаться на другой, более безопасный режим работы в случае обнаружения отклонений. В данном случае исключается возможность поддержания и стимуляции наджелудочковой тахикардии.

Слайд 30

Временный электрокардиостимулятор

Временная электрокардиостимуляция - один из методов терапии, способствующий предотвращению смертельных случаев. Временный электрокардиостимулятор устанавливается пациенту доктором-реаниматологом, в случае если у пациента неожиданно нарушается ритм сердца, именуемый аритмией, также известной как абсолютная блокада сердца. Наиболее часто блокада сердца встречается при инфаркте миокарда.

Слайд 31

Установка кардиостимулятора

На сегодняшний день имеется совершенно новое поколение данного устройства – трехкамерный кардиостимулятор, однако он находится еще в стадии внедрения в эксплуатацию. Наиболее эффективный и максимально безопасный кардиостимулятор для поддержания ритма сердцебиения, который предназначен для диагностики сердечных заболеваний и использования в условиях клиники. Высокоэффективный кардиостимулятор помогает больным, страдающим заболеваниями сердца, поддерживать хорошее самочувствие и жизнеспособность.

Слайд 32

Кардиовертер-дефибриллятор

Кардиовертер-дефибриллятор - это современное устройство стимуляции, использующееся в целях предотвращения неожиданного прекращения работы сердца у больных, страдающих желудочковой тахикардию.

Слайд 33

Кардиостимулятор (ЭКС) объединяет в себе два элемента: стимулятор электрических разрядов и от одного до трех проводов-электородов, которые играют роль спиралеобразного проводника, характеризующегося изрядной гибкостью и гладкостью, являющегося стойким к изгибам и скручиваниям, происходящим по причине телодвижений и сердечных сокращений.

Слайд 34

Кардиостимуляторы и спорт

Слайд 35

Биологические протезы клапана сердца

На раннем этапе развития кардиохирурги пытались применять в качестве заместительного материала клапанные устройства, основанные на биологических тканях ксеногенного (т.е. заимствованного у животных) или аллогенного (т.е. заимствованного у человека) происхождения. Главным недостатком этих устройств явился ограниченный срок службы клапана в связи с постепенным разрушительным воздействием на биоткани со стороны организма реципиента.

Слайд 36

Двустворчатые протезы

  • Слайд 37

    Биологический ксеноаортальный протез BRAILE (Бразилия) Биологический ксеноперикардиальный протез BRAILE (Бразилия) Биологический ксеноперикардиальный протез Mitraflow Synergy (США) Биологический ксеноаортальный протез “LABCOR” (США) Российский биологический ксеноаортальный протез “КемКор” Гомоаортальный трансплантат (гомографт,аллографт).

    Слайд 38

    Вывод:

    Медицина не стоит на месте, она развивается и в скором будущем созданные искусственные органы смогут полностью заменить больные органы человека. Следовательно продолжительность жизни станет выше. Медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

    Слайд 39

    Список использованной литературы

    Галлетти П. М., Бричер Г. А., Основы и техника экстракорпорального кровообращения, пер. с англ., М., 1966. Н. А. Супер. www.google.kz www.mail.ru www.wikipedia.ru

    Посмотреть все слайды

    Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы -- вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

    Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

    «Искусственное сердце»

    Более 2300 лет назад греческий философ Аристотель учил, что сердце является вместилищем души. Сегодня мы знаем: величиной с кулак и весящий 300 граммов полый мускул каждую минуту прокачивает все шесть литров крови человека через сеть сосудов, протянувшуюся более чем на 1000 километров, и обеспечивает питательными веществами каждую из 100 миллиардов клеток тела. В зависимости от возраста и нагрузки, сердце бьется 40-200 раз в минуту, при этом ритм орган задает себе сам: электрический задатчик такта в сердечной стенке управляет ударами в зависимости от физических требований. Имплантируемый насос из стали, снабженный батарейкой и индукционной катушкой для заряда через кожу, в будущем должен заменять неизлечимо больное сердце. При небольших дефектах, например, клапанов, хирурги пересаживают запчасти из свиных сердец или из пластика. Если сердце то и дело сбивается с ритма, корректирующие импульсы задает электронный водитель сердечного ритма, вшиваемый в грудную клетку.

    Исследования поначалу проводились в направлении частичной замены функции одного из отделов сердца (правый или левый желудочек), и только с созданием аппарата искусственного кровообращения стало возможным всерьез задуматься над тем, как полностью заменить сердце механическим аналогом. Великий советский ученый-экспериментатор Владимир Демихов еще в 1937 году показал принципиальную возможность поддержания кровообращения в организме собаки с помощью пластикового насоса, приводимого в движение электродвигателем. Два с половиной часа, которые прожила собака с этим механическим устройством, имплантированным на место удаленного собственного сердца, стали отсчетом новой эры в медицине.

    Эстафету подхватили американские ученые, но лишь два десятилетия спустя В. Кольф и Т. Акутсу разработали искусственное сердце из полихлорвинила, состоящее из двух мешочков, включенных в единый корпус. Оно имело 4 трехстворчатых клапана из того же материала и работало от пневмопривода, расположенного снаружи. Эти исследования положили начало целой серии конструктивных решений искусственного сердца с внешним приводом. Почти четверть века потребовалась для того, чтобы в эксперименте были достигнуты стабильные результаты выживания животных и созданы предпосылки для использования этой технологии в клинической практике. Работы по созданию искусственного сердца интенсивно проводились несколькими группами ученых в США, СССР, ФРГ, Франции, Италии, Японии.

    К 1970 году были получены обнадеживающие показатели - животные выживали до 100 часов (Университет штата Юта, Солт-Лейк-Сити, США). Однако затем в связи с хроническими неудачами экспериментаторов встал вопрос: а возможно ли в принципе выживание животного с искусственным сердцем более 100 часов? К счастью, на него сравнительно быстро удалось ответить утвердительно - к 1974 году была достигнута выживаемость животных в течение месяца, а три года спустя организм уже 75 проц. животных стабильно работал в течение этого срока. Полученные результаты позволили считать, что метод замены собственного сердца искусственным,как временная мера может быть применен в клинике.

    Модель искусственного сердца, разработанного в Берлине. Эта модель была впервые имплантирована профессором Хетцером в 1987 г.

    Идея имплантации искусственного сердца для поддержания жизни реципиента на период поиска подходящего донора была реализована в 1969 году, когда американский хирург Д.Кули произвел имплантацию искусственного сердца больному, которого после резекции обширной аневризмы левого желудочка не удавалось отключить от аппарата искусственного кровообращения. Через 64 часа работы искусственное сердце было заменено на аллотрансплантат, однако еще 36 часов спустя больной погиб от пневмонии. Это был первый случай двухэтапной операции трансплантации сердца, которая сегодня распространена очень широко. В настоящее время, правда, на первом этапе проводят имплантацию не искусственного сердца, а искусственного левого желудочка, но об этом дальше.

    Начиная с 1982 года Де Вриз выполнил шесть операций по имплантации искусственного сердца с внешним приводом больным в терминальной стадии сердечной недостаточности. Уже первый больной, несмотря на ряд технических осложнений, прожил с искусственным сердцем "Джарвик-7" 112 суток, затем выживаемость больных была доведена до 603 суток. Все шесть пациентов в конце концов погибли от инфекций. Эти операции, несмотря на общественный интерес, не получили распространения в дальнейшем, так как у больных, привязанных к громоздкому внешнему приводу, не было ни единого шанса на сколько-нибудь полноценную жизнь.

    В нашей стране серьезные исследования в области создания искусственного сердца возобновились в 1966 году по инициативе и под руководством тогда еще никому неизвестного молодого хирурга, а впоследствии академика Валерия Шумакова сначала в Институте клинической и экспериментальной хирургии, а с 1975 года - в НИИ трансплантологии и искусственных органов. В течение многих лет над этим работали сотрудники НИИТиИО В. Толпекин, А. Дробышев, Г. Иткин. В 70-е годы советские ученые шли вровень с американскими в разработке искусственного сердца. Не случайно в 1974 году министры иностранных дел СССР и США А. Громыко и Г. Киссенджер в числе других важных документов подписали межправительственное соглашение по исследованиям в области искусственного сердца и вспомогательного кровообращения. Как говорит Валерий Шумаков, этому соглашению в отличие от многих других была уготована счастливая судьба. Оно выполнялось на протяжении двух десятилетий, в результате были созданы искусственное сердце и искусственные желудочки сердца, применявшиеся в клинической практике.

    В НИИТиИО были проведены исследования по созданию насосных устройств, систем управления и контроля работы протеза сердца в длительных медико-биологических экспериментах на телятах. Длительность работы модели искусственного сердца с внешним приводом "Поиск-10М" была доведена к 1985 году до 100 суток. Все это позволило начать его клинические испытания. Показаниями к применению искусственного сердца были резкое ухудшение состояния пациентов, включенных в лист ожидания на пересадку сердца; критические ситуации у больных, которые после окончания операции не могут быть отключены от аппарата искусственного кровообращения; резко прогрессирующие явления отторжения трансплантата.

    С декабря 1986 года специалистами НИИТиИО было выполнено 17 трансплантаций искусственного сердца "Поиск-10М", из них 4 в Польше, куда бригада выезжала по экстренному вызову. К сожалению, несмотря на героические усилия врачей, максимальная продолжительность работы искусственного сердца не превысила 15 суток. Но, как это ни цинично звучит в данном случае, отрицательный результат в науке - тоже результат.

    Мы убедились, что искусственное сердце с внешним приводом имеет серьезные отрицательные стороны, - говорит заведующий лабораторией вспомогательного кровообращения и искусственного сердца НИИТиИО профессор Владимир Толпекин. Прежде всего, это большая травматичность, ведь сначала нужно удалить собственное сердце больного и лишь потом на его место поставить сердце искусственное. При этом возникает много осложнений, воспаление тканей, из-за чего повторная трансплантация затруднительна.

    Из 17 больных, которым трансплантировали "Поиск-10М", донорское сердце удалось пересадить лишь одному, но и у него за 3,5 суток жизни на искусственном сердце ткани изменились настолько сильно, что на 7-е сутки после пересадки донорского органа развился воспалительный процесс, приведший к смерти. В настоящее время лишь одна фирма в мире выпускает искусственное сердце с внешним приводом, и на практике в последнее время они практически не применяются ни в качестве "моста" к трансплантации донорского сердца, ни тем более как длительно работающий орган. В результате искусственное сердце было вытеснено менее травматичной системой - искусственным левым желудочком (обход левого желудочка).

    Типы тканей

    Эпителиальная ткань

    Эпителиальная (покровная) ткань , или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

    Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией ).

    Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

    Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

    Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

    Соединительная ткань

    <<<назад

    Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

    В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

    В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

    В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

    Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

    Костная ткань

    <<<назад

    Костная ткань , образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

    В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

    Хрящевая ткань

    <<<назад

    Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

    Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

    Жировая ткань

    <<<назад

    Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани – теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

    Мышечная ткань

    <<<назад

    Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

    Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

    Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани – гладкую (неисчерченную) и поперечнополосатую (исчерченную).

    Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

    Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

    Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

    Нервная ткань

    <<<назад

    Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

    Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны . Аксоны образуют нервные волокна.

    Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.

    В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

    Теперь всю полученную информацию мы можем объединить в таблицу.
    <<<назад

    Типы тканей

    Группа тканей Виды тканей Строение ткани Местонахождение Функции
    Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
    Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
    Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
    Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
    Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
    Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
    Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество – неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
    Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами – сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
    Мышечная Поперечно–полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца.Имеет свойства возбудимости и сократимости
    Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
    Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
    Короткие отростки нейронов – древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
    Нервные волокна – аксоны (нейриты) – длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) – к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)

    Органы – это части организма, выполняющие определённые функции. Они имеют определенную форму и место расположение.

    Строение.

    Обычно орган состоит из нескольких видов тканей, но какая – то из них может преобладать: главная ткань желез – эпителиальная, а мускула – мышечная. Так, например, в печени, легких, почках, железах основной, «рабочей» тканью является эпителиальная, в кости – соединительная, в мозге – нервная. Орган имеет свою, только ему свойственную форму и положение в организме. В зависимости от выполняемых функций разным бывает и строение органа.

    Органы анатомически и функционально объединяются в системы органов , т. е. в группы органов, связанных друг с другом анатомически, имеющих общий план строения, единство происхождения и выполняющих одну общую функцию.

    Функция

    В организме человека выделяют следующие системы органов: пищеварительную, покровную, дыхательную, мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную . Некоторые органы объединяются по функциональному принципу в аппараты . В аппаратах органы имеют различное строение и происхождение, но их объединяет участие в выполнении общей функции, например, опорно – двигательный, эндокринный аппарат.

    В покровную систему входят кожа и слизистые оболочки, выстилающие полость рта, дыхательных путей, органов пищеварения. Покровная система предохраняет организм от высыхания, температурных колебаний, повреждения, проникновения в организм ядовитых в-в и болезнетворных микроорганизмов.

    Система опоры и движения включает в себя кости и мышцы. Кости, объединенные в скелет, создают опору для всех частей тела. Кости защищают внутренние органы и совместно с мышцами обеспечивают подвижность тела.

    Выделительная система обеспечивает удаление из организма жидких продуктов обмена.

    Дыхательная система состоит из целого ряда полостей и трубок и обеспечивает обмен газов между кровью и внешней средой.

    Пищеварительная система включает в себя органы, обеспечивающие переваривание пищи и всасывание в кровь питательных в-в.

    Функция половой системы – размножение. В её органах формируются половые клетки, а в женских половых органах, кроме того, происходит развитие плода.

    Эндокринная система включает в себя целый ряд желёз внутренней секреции, вырабатывающих и выделяющих в кровь биологически активные в-ва (горомоны), участвующие в регуляции функций всех клеток и тканей организма.

    Кровеносная система состоит из сердца и сосудов, а циркулирующая в них кровь обеспечивает обмен в-в.

    Нервная система объединяет все вышеперечисленные системы, регулирует и согласовывает их деятельность, а посредством рецепторов (органов чувств) осуществляет связь организма с окружающей средой. Психическая деятельность формируется нервной системой. Благодаря деятельности нервной и эндокринной систем организм функционирует как единое целое.

    Орган или система органов вне организма функционировать не может, а организм не может функционировать без любой из своих систем.

    Это интересно!

    Создание искусственных органов и тканей

    М.В.Плетников
    перевод с английского Science, 1995,
    Vol. 270, N 5234, pp. 230-232.

    Создание искусственных органов и тканей оформилось в самостоятельную отрасль науки около десяти лет тому назад. Первые достижения этого направления – создание искусственной кожи и хрящевой ткани, образцы которых уже проходят первые клинические испытания в центрах трансплантации. Одно из последних достижений состоит в конструировании хрящевой ткани, способной к активной регенерации.

    Это действительно огромный успех, поскольку поврежденная суставная ткань не регенерирует в организме. В клиниках США ежегодно оперируют более 500 тыс. больных с повреждениями суставного хряща, но подобное хирургическое вмешательство лишь на короткое время облегчает боль и улучшает движения в суставе.

    В настоящее время предпринимаются попытки выращивания в лабораторных условиях печени. Но печень – сложно устроенный орган, состоящий из разных типов клеток, обеспечивающих очищение крови от токсинов, преобразование поступивших извне питательных веществ в усваиваемую организмом форму и выполняющих целый ряд других функций. Поэтому создание искусственной печени требует гораздо более сложной технологии: все эти разнообразные типы клеток должны быть размещены строго определенным образом, то есть основа, на которой они базируются, должна обладать высокой избирательностью.

    Среди органов и тканей, которые в настоящее время интенсивно исследуются с целью их биотехнологического воссоздания, можно отметить также костную ткань, сухожилия, кишечник, сердечные клапаны, костный мозг и трахею. Помимо работ по созданию искусственных органов и тканей человеческого организма ученые продолжают разрабатывать и методы вживления в организм больных диабетом людей клеток, продуцирующих инсулин, а людям, страдающим болезнью Паркинсона, – нервных клеток, синтезирующих нейромедиатор дофамин, что позволит избавить пациентов от ежедневных утомительных инъекций.

    Каждая клетка организма выполняет определенную работу и поэтому нуждается в постоянном притоке кислорода и питательных веществ, а также в непрерывном удалении продуктов обмена. Кислород и питательные вещества могут проникать сквозь мембрану клетки только тогда, когда они находятся в растворенном состоянии. Каждую клетку омывает жидкость, которая содержит все необходимое для ее жизнедеятельности. Это – тканевая жидкость . Из него клетки получают O 2 и питательные вещества, а в него отдают углекислый газ и отработанные продукты обмена.

    Бесцветная прозрачная тканевая жидкость заполняет в организме промежутки между клетками. Она образуется из жидкой части крови – плазмы, проникающей в межклеточные щели через стенки кровеносных сосудов, и из продуктов обмена, постоянно поступающих из клеток. Ее объем у взрослого человека составляет приблизительно 20 л.

    Кровеносные капилляры не подходят к каждой клетке, поэтому питательные вещества и кислород из капилляров по законам диффузии вначале поступают в тканевую жидкость, а из нее поглощаются клетками. Следовательно, через тканевую жидкость осуществляется связь между капиллярами и клетками. Диоксид углерода, вода и другие продукты обмена, образующиеся в клетках, также за счет разности концентраций выделяются из клеток сначала в тканевую жидкость, а потом поступают в капилляры. Кровь из артериальной становится венозной и доставляет продукты распада к почкам, легким, коже, через которые они удаляются из организма.

    Питательные вещества поступают в организм через органы пищеварения, а продукты распада выводятся из него через органы выделения. Связь между этими органами и клетками тела осуществляется через внутреннюю среду организма, которая состоит из крови, тканевой жидкости и лимфы.

    1–клетки крови, 2–капилляр, 3–клетки тканей, 4–тканевая жидкость,
    5–начало лимфатических капилляров

    Кислород и питательные вещества поступают в межклеточное вещество из крови, циркулирующей по замкнутой системе кровеносных сосудов. Мельчайшие кровеносные сосуды – капилляры пронизывают все ткани организма. Через стенки капилляров в межклеточное вещ – во постоянно поступают содержащиеся в крови различные химические соединения и вода и поглощаются продукты обмена, выделяемые клетками.

    В межклетниках слепо начинаются лимфатические капилляры, в них поступает тканевая жидкость, которая в лимфатических сосудах становится лимфой. Цвет лимфы желтовато–соломенный. Она на 95% состоит из воды, содержит белки, минеральные соли, жиры, глюкозу, а также лимфоциты (разновидность лейкоцитов). Состав лимфы напоминает состав плазмы , но белков здесь меньше, и в разных участках тела – она имеет свои особенности. Например, в области кишечника в ней много жировых капель, что придает ей беловатый цвет.

    ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ТРАНСПЛАНТОЛОГИЮ

    Начиная краткий обзор трансплантологических методов лече­ния больных, приведем сообщение, датированное 1993 г (Нью-Йорк): "В одной из клиник США проведена уникальная хирургическая опера­ция - пятилетней английской девочке Лоре Дейвис пересадили печень, желудок, почки, поджелудочную железу и часть кишечника. Необхо­димость в столь сложной операции возникла в связи с тем, что девочка родилась с врожденным пороком органов пищеварения. В июне про­шлого года ей пересадили часть кишечника и печень. Однако летом этого года началась реакция отторжения организмом пересаженных органов....". Указанное сообщение показывает, что в настоящее время клиническая трансплантология, опережая самые смелые фантастиче­ские мысли, прочно вошла в практику лечения ранее обреченных па­циентов.

    Понятие о трансплантологии как о науке. Трансплантология - это наука о пересадках органов и тканей. Успехи трансплантологии, опирающиеся на достижения современной научно-технической рево­люции, получили признание общественности и практических врачей. Наиболее фко об этом свидетельствует накопленный к настоящему времени опыт пересадок почки, сердца, печени и применения искусст­венных устройств для поддержания функции жизненно важных орга­нов. При этом аутотрансплантацией считают пересадку собственной ткани (или органа) в другую позицию (например - аутотрансплантация пальцев или кожи). Изотрансплантация предполагает пересадку между двумя генетически идентичными орга­низмами (однояйцевыми близенецами). Подобные операции очень редки. Гомотрансплантация (аллотрансплантация) - это трансплантация органа или ткани от одного человека другому. Гетеротрансплантация (ксенотрансплантация) означает пересадку от животных человеку с применением ксеногенного органа или ткани.

    Донор - это человек, у которого забирают орган (или ткань) для последующей операции трансплантации. Рецепиент - человек, которому имплантируют донорский орган (или ткань).

    Донорский орган при трансплантации может быть инплантирован как в ортотопическую (прежнюю) или гетеротопическую (на дру­гое место) позицию.

    Трансплантология выкристаллизовалась из хирургии и в совре­менном понятии основной деятельностью трансплантологов является хирургическая, но с многими специфическими особенностями, включающими иммунологический подбор рецепиентов и доноров; решение вопросов иммуносупрессии и вторичной инфекции; забора, транспор­тировки и временной консервации органов и тканей, а также ряд дру. гих важных проблем, в том числе и временного поддержания функции больных до операции (и в последствии трансплантированных после операции) органов при помощи искусственных систем.

    Создание искусственных органов находится в числе основных направлений современной науки и решается на стыке биологических, медицинских и точных наук. Под искусственными органами принято понимать «устройства, предназначенные для постоянной или временной активной замены функции природного прототипа (В.И.Шумаков, 1990). Необходимость разработки искусственных органов обусловлена возможностью временного замещения утраченной функции природного прототипа, тем более, что хирургическая служба пересадки органов от доноров не может полностью обеспечить каждого больного из-за дефицита самих донорских органов.

    Последние 20 лет отмечены бурным развитием трансплантолс гии, при этом советские ученые и медики внесли существенный вклад в развитие данной науки. Прежде всего этому способствовало решение технологических задач для создания биологически инертных материа­лов, способных не изменять своих свойств со временем, не вызывать тромбов и воспалительных реакций.

    Особое значение в решении указанной задачи сыграла разработ­ка экспресс-методов оценки гемосовместимости, токсичности и других качественных характеристик полимеров.

    Значительное значение в развитии науки об искусственных ор­ганах имели разработки в области вспомогательного кровообращения, создания различных моделей искусственного сердца; совершенствова­нии биологических и полимерно-металлических конструкций клапанов сердца; новых моделей дозаторов лекарственных веществ и электро­стимуляторов; разработку и серийный выпуск фракционаторов крови, гибридных перфузионных систем и совершенствование устройств для детоксикации и модификации крови (гемосорбции, обменного грави­тационного и фильтрационного плазмафереза, ультрафильтрации и гемодиализа). Все это позволило оценить данное направление меди­цинской науки как приорететное и требующее дальнейших изысканий.

    История трансплантологии и роль отечественных ученых.

    История трансплантологии насчитывает многовековой период. Еще в Аюрведе (древнем индийском трактате о способах лечения) имеется упоминание в факте пересадки нижней конечности от негра белому человеку. Данное сообщение свидетельствует о необычайной смелости врачей-хирургов и о том, что уже в древние времена мысли о возмож­ной замене больного органа на здоровый занимали умы медиков.

    История научной трансплантологии началась в XIX веке. Мно­гие десятилетия эта наука плодотворно развивалась в рамках хирур­гии. Наибольший вклад в развитие трансплантологии внесли хирурги, особенно из тех, кто занимался восстановительной и пластической хирургией. К числу таких исследователей и клиницистов относят Эри­ха Лексера. В частности, данный хирург занимался вопросами свобод­ной пересадки костей от трупа больным пациентам и разрабатывал методы аллотрансплантации суставов. В 1907 году в Кенигсберге Лексер выполнил первую в мире успешную клиническую аллотрансплантацию сустава. Лексер занимался также трансплантациями сосудов, а именно вен; а также сухожилий; фасций и жировой ткани. В периоде 1914-1924 он издал 2-томное руководство "Свободные транспланта­ции". Это издание долгие годы было на вооружении трансплантологов и хирургов.

    Русский ученый профессор С.В. Шамов не без оснований назы­вал переливание крови пересадкой крови. Ведь действительно, в дан­ном случае ткань одного человека (кровь) вводится другому, то есть имеет место гомологическая трансплантация.

    Основные положения теории трансплантационного иммунитета разработал наш соотечественник И.И.Мечников.

    В 1929 году видный русский ученый С.С.Брюхоненко на съезде патофизиологов впервые в мире демонстрировал аппарат («автожектор»), предназначенный для оксигенации и нагнетания крови. При этом изолированная от туловища голова собаки, перфузируемая согре­той и оксигенированной кровью сохраняла рефлексы, лакала воду и пыталась лаять. Для того времени это был гигантский скачок вперед, позволивший создать в скором времени аппараты для искусственного кровообращения и по сути дела открыть этап операций на "сухом" сердце.

    Нельзя не вспомнить о великом исследователе и эксперимента­торе, нашем современнике В.П. Демихове, работы которого по пере­садке сердца, комплекса "сердце-легкие", создании банка органов, аортокоронарном шунтировании, а также гемикорпорэктомии с после­дующей трансплантацией туловища являются классикой в трансплан­тологии. Полученные отечественным ученым результаты послужили путеводной вехой клинической пересадки указанных органов. В.П. Демиховым еще в 1960 г показана принципиальная возможность под­держания кровообращения в организме животного с помощью механического устройства, имплантированного на место удаленного собст­венного сердца. После такой операции собака жила в течение 2,5 ча­сов. Хирург Барнард (ЮАР), впервые выполнивший клиническую пе­ресадку сердца, и другие видные исследователи считали В.П. Демихова своим учителем.

    Первую в мире клиническую пересадку почки выполнил в Кие­ве в апреле 1933 года отечественный хирург Ю.Ю.Вороной. Почку от трупа в 1965 году первым в Союзе пересадил академик Б.В.Петровский.

    Все изложенное выше свидетельствует о большом пути, прой­денном экспериментальной и клинической трансплантологией, о вкла­де многих и многих исследователей и о существенной роли отечест­венных ученых в развитие науки о методах пересадки органов и тка­ней.

    К настоящему времени уже сделано большое число самых раз­ных трансплантаций, позволивших спасти жизнь и улучшить ее каче­ство многим тысячам больных. В таблицах 1 и 2 приведена сводная статистика о числе и результатах данных операций.

    Рекорды международной выживаемости трансплантатов (1992 г)

    Приведенные в таблицах 1 и 2 данные убедительно свидетель­ствуют о возрастающем интересе хирургов к трансплантологиии о су­щественном позитивном вкладе данной науки в сохранении жизни и здоровья населения планеты.

    Забор органов, проблема "смерти мозга", иммуносупрессия.

    В числе ведущих медико-биологических "нехирургических" проблем в трансплантологии находятся проблемы, связанные со смер­тью мозга, сроками и способами забора органов и тканей, иммуноло­гическим подбором пары "донор-рецепиент" и последующей иммуно­логической супрессией.

    Необходимо отметить, что имеются определенные ограничения забора органов со стороны доноров. При отсутствии таковых донорами могут быть люди, в возрасте от 5 до 50 лет. К ним относятся:

    Изолированная черепно-мозговая травма.

    Разрыв аневризмы сосудов головного мозга.

    Некоторые заболевания головного мозга.

    Суицидные попытки.

    Отравление барбитуратами.

    При этом доноры не должны страдать хроническими органиче­скими заболеваниями жизненно важных органов или инфекционной патологией.

    Не вдаваясь глубоко в данные проблемы, отметим, что термин "смерть мозга" является не только медицинским, но и общефилософ­ским понятием. Вплоть до недавнего времени (до 1993 г) советские трансплантологи не имели юридической базы для изъятия органов у больных при гибели коры головного мозга и работающем сердце. Это создавало целый ряд серьезных препятствий для пересадки сердца, легкого, почки и печени. В самом деле, ранее считали, что если бьется сердце, то человек жив и изымать его органы - это преступление. В настоящее время в большинстве развитых стран мира принято, что в тех ситуациях, когда зафиксирована гибель коры головного мозга и неблагоприятный прогноз становится ясным, возможно использовать функционирующие органы больного для спасения жизни других лю­дей.

    В настоящее время критериями смерти мозга счи­тают прямую линию на энцефалограмме; отрицательные атропиновый тест и тест с насыщением крови кислородом; отсутствие нистагма при раздражении слухового канала водой. Данные положения совпадают с международными требованиями и защищены соответствующим зако­нодательством. В России органное донорство регулируется двумя законами - Законом «О трансплантации органов и (или) тканей челове­ка», принятом 22 декабря 1992 г.. и Законом «О погребении и похо­ронном деле», принятом 8 декабря 1995 г. В совокупности они допус­кают изъятие органов у трупов при согласии родственников или их законных представителей или при их отсутствии, как это бывает при гибели неизвестных лиц.

    В специализированных учреждениях имеются функциональные подразделения, ответственные за выявление, типирование и забор ор­ганов - так называемые центры забора. Центры являются ко­ординационной структурой, определяющей и реализующей тактику получения донорских трансплантатов с их иммунологической селек­цией и распределением на основе "листа ожидания". Такие центры обладают опытом обмена донорскими органами подобными структу­рами в США, Израиле, Германии, Англии и других странах. Вся рабо­та в них ведется в режиме круглосуточного дежурства, а сами трансплантологические операции носят характер экстренных, ввиду ограни­ченных временных сроков хранения донорских органов.

    Современная схема забора органов предусматривает следую­щее: оповещение о больном со смертью мозга; экспресс обследование на месте бригадой трансплантологов и изъятие на месте (почка) или транспортировку донора в трансплантологический центр (сердце, лег­кие и др). Как правило, стараются применить схему полиорганного забора (рис.1) с последующим типированием иммунологических пока­зателей и оповещением нескольких подходящих рецепиентов, находя­щихся в листе ожидания.

    ßРис. 1. Схема мультиорганного забора органов.

    При отсутствии таких больных в известность ставят другие трансплантологические центры у нас в стране и за рубежом. При этом очень важен фактор времени, так как результаты пересадок сущест­венно зависят от сроков ишемии и консервации донорских органов.

    В настоящее время подбор донора осуществляется по двум ос­новным системам антигенов: АВО (антигены эритроцитов) и HLA (ан­тигены лейкоцитов или антигены гистосовместимости).

    Иммуносупрессивная терапия после трансплан­тации - это основа консервативного лечения. При подавлении трансплантологического иммунитета длительное время использовали гор­моны - преднизолон и стероидные препараты. Разработки последних 20 лет позволили внедрить новые фармакологические средства, су­прессивное действие которых существенно выше, а побочные эффекты (цитотоксичность, гормональные язвы, артериальная гипертензия, сеп­сис) ниже. Таким препаратом, например, является циклоспорин "А", созданный фирмой "Сандос" (Швейцария). По структуре - это метабо­лит некоторых низших грибов, обладающий иммунодепрессивным действием без миелотоксичных реакций. Циклоспорин "А" предот­вращает распознавание антигена лимфоцитами, которые не превраща­ются в цитотоксичные киллеры. Введение в 80-х годах в клиническую практику данного препарата имело революционный характер и почти повсеместно увеличило выживаемость трансплантатов на 15-20%. Од­нако к настоящему времени выявлены и отрицательные побочные дей­ствия циклоспорина "А" - гепато- и нефротоксичность, а также увели­чение частоты вирусных инфекций у рецепиентов.

    Следует отметить, что применение циклоспорина "А " мало по­влияло на лечение кризов отторжения - самых опасных иммунологиче­ских состояний, обусловленных несовместимостью антигенных струк­тур пары "донор-рецепиент". В данном случае применяют моноклональные антитела, стероидные гормоны, антимоноцитарный глобулин и обменный плазмаферез. К другим фармакологическим препаратам, подавляющим трансплантационный иммунитет являются азатиоприн, ортоклон и антилимфоцитарные сыворотки.

    Изложенное свидетельствует о значительной специфике лече­ния трансплантологических больных, что требует специальных много­профильных знаний.

    Помимо чисто хирургических причин неблагоприятных исходов (кровотечения; несостоятельность соустий, интраоперационная эмбо­лия, сердечная слабость, травматический шок и другие) в трансплан­тологии, наиболее частыми осложнениями являются острое отторже­ние органа; нежизнеспособность трансплантата; сепсис; сердечно-сосудистая недостаточность и синдром взаимного отягощения с нару­шением функции нескольких жизненноважных органов.

    Частная трансплантология

    С е р д ц е. В эксперименте первую пересадку сердца, как указывалось ранее, осуществил отечественный ученый, хирург-трансплантолог В.П.Демихов в 50-х годах.

    Пересадка сердца у больного впервые выполнена К.Барнардом из ЮАР (1967 г). Пациент после операции прожил 16 суток. С этой поры открыта новая важная веха лечения больных с необратимыми и несовместимыми с жизнью нарушениями структуры и функции серд­ца.

    В СССР первая трансплантация сердца сделана А.В.Вишневским (больной после операции прожил 33 часа). Успешная пересадка сердца осуществлена академиком РАН профессором В.И.Шумаковым в 1986 году. Всего за период с 1986 по 2001 год толь­ко в НИИ трансплантологии и искусственных органов РАМН выпол­нено 99 пересадок этого органа. Данные операции проведены также в ВНЦХ РАМН, а также в Вильнюсе. Таким образом, можно уже гово­рить о завершении этапа отработок и о запуске их "на поток".

    Показаниями к ортотопической трансплантации сердца считают тяжелую хроническую недостаточность кровообращения, ре­зистентную к медикаментозной терапии (дилатационная кардиомиопатия; ИБС и др.).

    Противопоказаниями к данной операции считают ле­гочную гипертензию выше 50 мм рт.ст.; хронические заболевания по­чек; печени; желудочно-кишечные заболевания; болезни перифериче­ских сосудов и крови, а также злокачественные опухоли.

    Забор сердца может быть дистанционный (в лечебном учрежде­нии, где находится донор) или в учреждении, где планируется опера­ция пересадки. В ряде ситуаций перед пересадкой сердца используют разные варианты подключения вспомогательного кровообращения или искусственного имплантируемого сердца в целях продления жизни рецепиенту и для поиска необходимого донорского сердца.

    Основными осложнениями после пересадки сердца являются острая (чаще правожелудочковая) сердечная недостаточность и острые кризы отторжения. Частота инфекционных осложнений достигает 12-16%. Пересадка сердца осуществляется в ортотопическую позицию.

    В нашей стране к настоящему времени успешных пересадок комплекса "сердце-легкие" в настоящее время нет. Показаниями к данной операции служат грубые, несовместимые с жизнью сочетанные поражения сердца и легких.

    Почка. Пересадку почки на заре развития метода начинали осуществлять от живых родственников. В последующем (и по настоя­щее время) применять стали пересадку трупной почки с давностью тепловой ишемии не более суток.

    Из истории вопроса о пересадке почки известно, что первую пе­ресадку этого органа в эксперименте выполнена Каррелем и Ульманом (1902). В 1934 году отечественным хирургом Вороным сделана первая попытка трансплантации почки больной при острой почечной недоста­точности. В 1953 г Хьюм сделал первую в мире успешную клиниче­скую трансплантацию почки от родственного донора.

    В настоящее время в России ежегодно почку пересаживают около 700 пациентов (в странах Европы - около 10000).

    К настоящему времени наиболее перспективна пересадка почки, которую забрали в процессе мультиорганного забора при смерти моз­га. Пересадка почки - наиболее разработанный аспект проблемы кли­нической трансплантологии. Как свидетельствует табл. 1 и табл.2 сей­час имеются тысячи больных с пересаженными почками, у которых сроки выживания трансплантатов вполне удовлетворительны. В тех­ническом отношении современное решение места пересадки почки - это пересадка к внутренним подвздошным сосудам с анастомозом мо­четочника и мочевого пузыря. По числу реимплантаций к настоящему времени есть пациенты с 3-5 пересадками почек. Следует помнить, что до 40-50% почечных трансплантатов гибнет в течение 1-го года после операции.

    Показаниями к пересадке почки в настоящее время счи­тают терминальную стадию хронической почечной недостаточности (ХПН) разной причины (хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, мочекаменную болезнь с исходом в гидронефроз и др.). Следует отметить, что трансплантацию почки осуществляют в гетеротопическую позицию на подвздошные сосуды.

    Печень. Первая ортотопическая пересадка печени осуще­ствлена профессором Старлзом в 1963 году. В СССР первую ортотопическую трансплантацию печени выполнили в 1990 году больной с гепатоцеллюлярным раком печени. Из показаний к пересадке данного органа наибольшую группу составляют пациенты с циррозом и раком печени. Операция по срокам составляет 12-16 часов. Объем гемотрансфузий за время операции и после нее может достигать 12-15 лит­ров крови при общем объеме трансфузий - до 30 литров. В периоде операции, наряду с чисто хирургическими задачами, решаются проблемы вено-венозного перфузионного обхода печени (рис.2), трансфузиологии и анестезиологического пособия.

    ß Рис.2. Схема перфузионного обхода печение при ее пересадке.

    Показаниями к пересадке печени являются цирроз, пер­вичный рак печени, склерозирующии холангит, атрезия желчевыводящих путей и другие заболевания.

    Абсолютным противопоказанием к пересадке пече­ни считают сепсис вне билиарной системы; метастатические пораже­ния вне печени; активный алкоголизм; выраженную гипоксию; несо­гласие больного или родственников на операцию; прогрессирующие сердечно-легочные заболевания; СПИД. При этом основную группу рецепиентов составляют больные с циррозом и с раком печени.

    Поджелудочная железа . Если хирургические аспекты пересад­ки сердца, комплекса сердце-легкие; почки и печени уже решены, то нельзя сказать то же самое о пересадке поджелудочной железы. Пер­вую пересадку этого органы выполнили в 1966 году Келли и Лиллехай. К настоящему времени в мире осуществлено свыше 10000 трансплан­таций.

    При этом возможны как ортотопическая (с сохранением экзокринной функции), так и гетеротопическая (с прекращением экзокринной функции) железы. В ряде случаев используют пломбировку про­токов полимеризующимися смесями. Наиболее перспективна пересад­ка железы с анастомозом площадки 12-перстной кишки с большим дуоденальным сосочком - с одной стороны, и кишечником или моче­вым пузырем - с другой.

    Достаточно перспективным считают трансплантации клеточных структур и тканей (костного мозга, островкового аппарата поджелу­дочной железы, печени, надпочечников, селезенки и др.).

    ИСКУССТВЕННЫЕ ОРГАНЫ

    Полимеры медицинского назначения. В конце 70-х го­дов, в связи с широким внедрением в практику здравоохранения аппа­ратов для искусственного кровообращения и гемодиализа, а также им­плантируемых устройств, резко возросло число публикаций, посвя­щенных разработке и исследованию гемосовместимых полимеров и заданным комплексом физико-химических и медико-биологических свойств.

    Необходимость в полимерных материалах медицинского назна­чения подтверждается данными долгосрочного прогнозирования ис­пользования искусственных органов в мире в 1990 г, по сравнению с 1980 г, сделанном департаментом науки и техники Японии. Так, по­требность в биоматериалах возрасла для изготовления костей и суста­вов - в 1,3 раза; кровеносных сосудов - в 3,2; аппаратов "сердце-легкие" - в 2,3; клапанов сердца - в 3,0; водителей ритма сердца - в 1,5; искусственных почек - в 2,2; аппаратов вспомогательного кровообра­щения (искусственный желудочек сердца) - в 3,3 раза. В среднем предполагаемый ежегодный прирост производства изделий для сер­дечно-сосудистой хирургии до 1990 года составит 10-15%.

    Таким образом, важность данного аспекта и его перспектива в трансплантологии сомнению не подлежит.

    Искусственное сердце. Концепция замещения функ­ции сердца механическим аналогом не нова. Еще в 1812 году la Gallois заметил, что если удастся заместить сердце каким-либо насосом крови, то можно успешно сохранить живой любую часть тела. Первые успешные экспериментальные исследования по имплантируемому сердцу выпонены W.Kolff (1980). Полученные результаты позволили считать, что метод замены собственного сердца искусственным, как временная мера, может быть применен в клинике. К настоящему времени в мире проведено свыше 50 операций в клинике, где имплантация искусственного сердца явилась временной мерой для сохранения жизни пациенту. В 1/3 клинических наблюдений имплан­тация искусственного сердца была первым этапом операции с после­дующей заменой насоса трансплантатом.

    Вспомогательное кровообращение. В лече­нии острой сердечной недостаточности различного генеза, которая резистента к применению фармакологических препаратов большое значение придают методам вспомогательного кровообращения.

    Поскольку основным воздействием вспомогательного кровооб­ращения является влияние его на метаболизм сердечной мышцы, этот показатель и положен в основу классификации методов вспомогатель­ного кровообращения:

    1- методы, улучшающие метаболизм миокарда за счет снижения постнагрузки - методы контрпульсации;

    2- методы, улучшающие метаболизм за счет уменьшения преднагрузки - методы шунтирования;

    3- методы, улучшающие метаболизм за счет уменьшения конечно-диастолического объема - кардиомассаж и внутрижелудочковое вспомогательное кровообращение;

    4 - методы, улучшающие непосредственно коронарную перфу­зию - ретроградная перфузия и окклюзия коронарного синуса, перфу­зия коронарных артерий.

    Для использования вспомогательного кровообращения приме­няют различные устройства - насосы (мембранные, роликовые, желу­дочковые; турбинные) (рис.3.4,5); баллончик Брегмана (рис.6.) с датаскопом - синхронизатором пневмопривода с фазами работы сердца; пластиковые приспособления на конечности и грудную клетку при наружней контрпульсации; различные катетеры с окклюзионными манжетками и устройством для оксигенации крови и т.д.

    ßРис.3. Вспомогательное кровообращение с применением искусственного желудочка сердца.

    Рис.4. Возможные локализации подключения искусственных желу­дочков сердца для вспомогательного кровообращения.

    ß Рис.5. Разрез искусственного желудочка сердца:1-клапан входа крови; 2-клапан выхода крови; 3-пневмопривод; 4-камера крови; 5-воздушная камера.

    Рис.6. Места введения баллончика Брегмана для вспомогательного кровообращения.

    Для вспомогательного кровообращения могут использоваться также имплантируемые системы как полностью автономные, так и частично автономные.

    Применение искусственной оксигенации крови при гипоксиях, в частности при критических состояниях различного генеза, является чрезвычайно важной проблемой медици­ны. Лечение острой гипоксии чаще всего связывают с различными режимами искусственной вентиляции (ИВЛ) легких (собственно гово­ря их протезированием), реже - с применением гипербарической окси­генации. Однако, в ряде клинических ситуаций использование указан­ных методов явно недостаточно. В случае острой дыхательной недос­таточности применяют внелегочные пути и устройства для экстра­корпоральной оксигенации крови - чаще речь идет о м е м б р энной оксигенации. Принцип действия данных приборов заключается в использовании полунепроницаемых мембран, с одной стороны которых протекает кровь, с другой - подается газ под давле­нием. При этом кислород диффундирует в кровь, а из крови элимини­руется углекислая кислота. Оксигенация не менее 1/3 минутного вы­броса сердца с помощью этого экстракорпорального устройства, под­ключенного к периферическим сосудам, позволяет заместить на время до 3-х суток оксигенирующую функцию легких. В этом периоде воз­можно провести ряд мер интенсивного лечения больных и добиться успеха.

    Мембранные оксигенаторы могут быть применены также при операциях на открытом сердце в сочетании с искусственным кровооб­ращением. В данном случае они более предпочтительтны (особенно при длительных перфузиях) перед другими конструкциями оксигена­торов - пузырьковыми; пено-пленочными и др.

    Важным направлением клинического применения мембранных оксиненаторов служат гибридные перфузионные системы и изолиро­ванные перфузии цельных органов, например селезенки.

    В случае поражения функции печени и почек применяют искус­ственные перфузионные системы, временно замещающие функцию жизненноважных органов типа гибридных систем (с применением жи­вых изолированных гепатоцитов) (Рис.7,8); гемосорбции и обменного плазмафереза; гемодиализа. Принцип действия этих устройств разли­чен, тем не менее из организма при помощи указанных устройств уда­ется вывести токсичные и балластные субстанции и тем самым обес­печить условия жизни пациенту.

    При наличии у больного некорригируемого инсулином сахарно­го диабета могут быть использованы: подсадка клеток инсулярного аппарата, выделенных или полученных при культивации; аппарат типа "Биостатор" с обратной связью для коррекции в реальном режиме вре­мени уровня сахара в крови; паракорпоральные и имплантируемые дозаторы инсулина.

    Таким образом, приведенные данные о результатах многих ме­дикотехнических и клинических проблем науки о трансплантологии и искусственных органах убедительно свидетельствуют о успехах лече­ния самых тяжелых больных различного профиля, а также о множест­ве имеющихся нерешенных проблем. Все это диктует необходимость поиска решений и развития данной науки.




  • © 2024
    womanizers.ru - Журнал современной женщины