29.09.2019

История изобретения термометра и виды температур. Температурная шкала


История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32

Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр

Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

Температура поверхности Солнца

5800

5526

9980

1823

4421

¹ Нормальная температура человеческого тела - 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

o C

459.67
-450
-400
-350
-300
-250
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-95
-90
-85
-80
-75
-70
-65

273.15
-267.8
-240.0
-212.2
-184.4
-156.7
-128.9
-123.3
-117.8
-112.2
-106.7
-101.1
-95.6
-90.0
-84.4
-78.9
-73.3
-70.6
-67.8
-65.0
-62.2
-59.4
-56.7
-53.9

60
-55
-50
-45
-40
-35
-30
-25
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5

51.1
-48.3
-45.6
-42.8
-40.0
-37.2
-34.4
-31.7
-28.9
-28.3
-27.8
-27.2
-26.7
-26.1
-25.6
-25.0
-24.4
-23.9
-23.3
-22.8
-22.2
-21.7
-21.1
-20.6

4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20.0
-19.4
-18.9
-18.3
-17.8
-17.2
-16.7
-16.1
-15.6
-15.0
-14.4
-13.9
-13.3
-12.8
-12.2
-11.7
-11.1
-10.6
-10.0
-9.4
-8.9
-8.3
-7.8
-7.2

20
21
22
23
24
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
125
150
200

6.7
-6.1
-5.6
-5.0
-4.4
-3.9
-1.1
1.7
4.4
7.2
10.0
12.8
15.6
18.3
21.1
23.9
26.7
29.4
32.2
35.0
37.8
51.7
65.6
93.3

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T 0 где T- температура в кельвинах, t- температура в градусах цельсия, T 0 =273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Температурой также называют физическую величину, характеризующую степень нагретости тела, но этого для понимания смысла и значения понятия температура не достаточно. В этой фразе наблюдается лишь замена одного термина другим и не более понятным. Обычно физические понятия связаны с какими-то фундаментальными законами и получают смысл только в связи с этими законами. Понятие температура связано с понятием теплового равновесия и, следовательно, с законом макроскопической необратимости.

Изменение температуры

В состоянии термодинамического равновесия все тела, образующие систему, имеют одинаковую температуру. Измерение температуры можно произвести только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые можно измерить непосредственно. Применяемые для этого вещества (тела) называют термометрическими.

Пусть два теплоизолированных тела приведены в тепловой контакт. От одного тела к другому устремится поток энергии, будет происходить процесс теплопередачи. При этом считается, что тело, которое отдает тепло имеет большую температуру, чем тело к которому поток тепла устремился. Естественно, что через некоторое время поток энергии прекращается, наступает тепловое равновесие. Предполагается, что температуры тел выравниваются и устанавливается где-то в интервале между исходными значениями температур. Так, получается, что температура -- некоторая метка теплового равновесия. Получается, что любая величина t, которая удовлетворяет требованиям:

  1. $t_1>t_2$, если поток тепла идет о первого тела ко второму;
  2. $t"_1=t"_2=t,\ t_1 > t > t_2$, при установлении теплового равновесия может быть принята за температуру.

При этом предполагается, что тепловое равновесие тел подчиняется закону транзитивности: если два тела находятся в равновесии с третьим, то они находятся в тепловом равновесии и между собой.

Важнейшей особенностью приведённого определение температуры является его неоднозначность. Мы по-разному можем выбрать величины, удовлетворяющие поставленным требованиям (что отразится в способах измерения температуры), и получить несовпадающие температурные шкалы. Температурные шкалы -- это способы деления на части интервалов температур.

Приведем примеры. Как известно, прибор для измерения температуры -- термометр. Рассмотрим два типа термометров различного устройства. В одном роль температуры тела выполняет длина ртутного столбика в капилляре термометра, в случае когда термометр находится в тепловом равновесии с телом, температуру которого мы измеряем. Длина ртутного столбика удовлетворяет условиям 1 и 2, которые приведены выше и предъявляются к температуре.

Существует и другой способ измерения температуры: с помощью термопары. Термопарой называют электрическую цепь с гальванометром и двумя спаями разнородных металлов (рис. 1). Один спай помещен в среду с фиксированной температурой, например тающий лед, другой в среду, температуру которой надо определить. В этом случае температурным признаком считают ЭДС термопары. Эти два способа измерения температуры не будут давать одинаковых результатов. И для того, чтобы перейти от одной температуре к другой, необходимо построить градировочную кривую, устанавливающую зависимость ЭДС термопары от длины ртутного столбика. Тогда равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы ртутного термометра и термопары образуют две совершенно разные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Можно взять одинаковые по устройству термометры, но с различными "термическими телами" (например, ртутью и спиртом). Их температурные шкалы также не совпадут. График зависимости длины ртутного столбика от длины спиртового столбика не будут линейными.

Отсюда следует, что понятие температуры, основанное на законах теплового равновесия, не однозначно. Такая температура называется эмпирической, она зависит от способа измерения температуры. Нуль шкалы эмпирической температуры всегда выбивается произвольно. По определению эмпирической температуры физический смысл имеет только разность температур, то есть ее изменение. Любая эмпирическая температурная шкала приводится к термодинамической температурной шкале введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой.

Температурные шкалы

Для построения шкалы температур приписывают численные значения температуры двум фиксированным реперным точкам. За тем делят разность температур реперных точек на выбранное произвольным образом число частей, получая единицу измерения температуры. В качестве исходных значений, служащих при построении шкалы температуры для установления начала отсчета и ее единицы -- градуса, применяют температуры перехода химически чистых веществ из одного агрегатного состояния в другое, например температуру плавления льда $t_0$ и кипения воды $t_k$ при нормальном атмосферном давлении ($\approx 10^5Па).$ Величины $t_0\ и\ t_k$ имеют разные значения:

  • по шкале Цельсия (стоградусной шкале): температура кипения воды $t_k=100^0C$, температура плавления льда $t_0=0^0С$. Шкала Цельсия -- это такая шкала в которой температуры тройной точки воды 0,010С при давлении 0,06 атм. (Тройной точкой воды называют определенную температуру и давление, при которых могут существовать в равновесии одновременно вода, ее пар и лед.);
  • по шкале Фаренгейта температура кипения воды $t_k=212^0F;$ $t_0$=3$2^0F$ -- точка таянья льда;
  • Связь между температурами, выраженными в градусах Цельсия и Фаренгейта, имеет вид:

    \[\frac{t^0C}{100}=\frac{t^0F-32}{180}\ \ или\ t^0F=1,8t^0C+32\ \left(1\right);\]

    Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря в пропорции 1:1:1.

  • по шкале Кельвина: температуру отсчитывают от абсолютного нуля (t=-273,50C) и называют термодинамической или абсолютной температурой. T=0K -- это состояние, соответствующее полному отсутствию тепловых колебаний. Температура кипения воды по этой шкале $t_k=373К,$ температура плавления льда $t_0=273К$. Связь между температурой по кельвину и температурой по Цельсию:
  • \
  • по шкале Реомюра температура кипения воды $t_k=80^0R$, температурa плавления льда $t_0=0^0R.$ Шкала практически вышла из употребления. Связь между температурами, выраженными в градусах Цельсия и градусом Реомюра:
  • \

    В термометре Реомюра использовался спирт.

  • по шкале Ранкина точка кипения воды $t_k=671,67^{0\ }Ra$, температурa плавления льда $t_0={491,67}^0Ra.$ Начинается шкала от абсолютного нуля. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.
  • Соотношение между кельвином и градусом Ранкина: 1К=1,$8^{0\ }Ra$, градусы Фаренгейта переводятся в градусы Ранкина по формуле:

    \[^0Ra=^0F+459,67\left(4\right);\]

В технике и в быту используется температура по шкале Цельсия. Единица этой шкалы называется градусом Цельсия ($^0С).\ $ В физике пользуются термодинамической температурой, которая не только более удобна, но и имеет глубокий физический смысл, так как определяется средней кинетической энергией молекулы. Единица термодинамической температуры -- градус кельвина (до 1968 г.), или сейчас просто кельвин (К), является одной из основных единиц в СИ. Температура T=0К называется абсолютным нулем температуры. Современная термометрия основана на шкале идеального газа, где в качестве термометрической величины используют давление. Шкала газового термометра абсолютна (T=0, p=0). При решении задач чаще всего вам придется использовать именно эту шкалу температур.

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .



Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

Зачем в физике применяются несколько шкал измерения температуры ? Ну ведь есть - "по Цельсию" - и хватило бы , а то - "по Фаренгейту", "по Реомюру", "по Кельвину", да ещё и "по Ранкину", "по Ньютону"... каждый хотел встрять в историю и в науку.

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Шкала Кельвина (K)

Была предложена в 1848 году английским ученым Уильямом Томсоном (он же лорд Кельвин ) как более точный способ измерения температуры. По этой шкале нулевая точка, или абсолютный нуль, представляет собой самую низкую температуру, какая только возможна, т. е. некое теоретическое состояние вещества, при котором его молекулы полностью перестают двигаться. это значение было получено путём теоретического изучения свойств газа, находящегося под нулевым давлением. По стоградусной шкале абсолютный нуль, или нуль Кельвина, соответствует -273,15ºС. Следовательно на практике 0ºС может быть приравнен к 273К. До 1968 года единица измерения кельвин (К) именовалась как градус Кельвина (ºК). Используется в термодинамике.

Температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.15 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия (ºC)

В 1742 году шведский астроном Андерс Цельсий предложил свою шкалу, в которой за нуль принималась температура смеси воды и льда, а температура кипения воды приравнивалась к 100º. За градус принимается сотая часть интервала между этими реперными точками. Эта шкала более рациональна, чем шкалы Фаренгейта и Реомюра, и широко используется в науке и в быту.

Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта (ºF)

Была предложена зимой 1724 года немецким учёным Габриэлем Фаренгейтом . По этой шкале за нуль принималась точка, до которой в один очень холодный зимний день (дело было в Данциге и там жил Фаренгейт) опустилась ртуть в термометре учёного. В качестве другой отправной точки он выбрал температуру человеческого тела. Этот интервал разделен на 100 градусов. По этой не слишком логичной системе точка замерзания воды (то есть - ноль градусов Цельсия) на уровне моря оказалась равной +32º, а точка кипения воды +212º. Шкала популярна в Великобритании и, в особенности, в США.

Градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 5/9 °С.


Шкала Реомюра (ºR)

В 1731 году французский учёный Рене Антуан де Реомюр предложил температурную шкалу, основанную на использовании спирта, обладающего свойством расширяться (вместе с описанием изобретённым им спиртовым термометром). За нижнюю реперную точку была принята точка замерзания воды. Градус Реомюр произвольно определил как одну тысячную от объёма, который занимает спирт в резервуаре и трубке термометра при нулевой точке. При нормальных условиях точка кипения воды по этой шкале составляет 80º. Шкала Реомюра ныне повсеместно вышла из употребления.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Шкала Ранкина (ºRa)

Была предложена шотландским инженером и физиком Уильямом Ранкином (Уильям Джон Макуорн Ранкин (Ренкин)) . Нуль её совпадает с нулём термодинамической температуры, а по размеру 1ºRa равен 5/9 К. Т. е. принцип тот же, что и в шкале Кельвина, только по размерности шкала Ранкина совпадает не со шкалой Цельсия, а со шкалой Фаренгейта. Данная система измерения температуры распространения не получила.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32


Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр
Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

100

212

Температура поверхности Солнца

5800

5526

9980

1823

4421


¹ Нормальная температура человеческого тела — 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.


Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

ТЕМПЕРАТУРНАЯ ШКАЛА

ТЕМПЕРАТУРНАЯ ШКАЛА , градуированная шкала для измерения температуры. Для создания какой-либо температурной шкалы требуется выбрать термометрический параметр, который изменяется линейно с температурой (например, объем газа при постоянном давлении или расширение жидкости в трубке), две или более фиксированные, легко воспроизводимые точки, (например, точки кипения и замерзания воды) и задать произвольные деления (называемые градусами) между фиксированными точками. В качестве термометрических параметров обычно используют расширение газа, спирта, ртути, электрическое сопротивление и длину волны света. Наиболее распространены такие температурные шкалы как шкала ФАРЕНГЕЙТА, ЦЕЛЬСИЯ (стоградусная) и КЕЛЬВИНА (или абсолютная); они сокращенно обозначаются как °F, °C, и К. В шкале Фаренгейта как фиксированные точки первоначально использовались точка замерзания воды (принятая равной 32 °F) и температура человеческого тела (96 °F, позже - 98,6 °F). Интервал между ними был поделен на 64 градуса; температура кипения воды путем экстраполяции определяется как 212 °F. Шкала Цельсия использует в качестве 0 °С и 100 °С точки замерзания и кипения воды, соответственно; интервал поделен на 100 градусов. Ноль на шкале Кельвина, или термодинамической, (-273,15 °С, -459,67 °F)


Научно-технический энциклопедический словарь .

Смотреть что такое "ТЕМПЕРАТУРНАЯ ШКАЛА" в других словарях:

    ТЕМПЕРАТУРНАЯ ШКАЛА - ряд числовых точек на шкале термометра, распределённых внутри температурного интервала, ограниченного двумя точками постоянной температуры, принимаемыми за основные главные опорные точки (обычно для одинаковых физ. состояний, напр. температуры… … Большая политехническая энциклопедия

    температурная шкала - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN temperature scale …

    температурная шкала - temperatūros skalė statusas T sritis Energetika apibrėžtis Verčių, nurodančių atitinkamų temperatūros matavimo vienetų seką, visuma. atitikmenys: angl. temperature scale vok. Temperaturskala, f rus. температурная шкала, f pranc. échelle de… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    температурная шкала - шкала температур … Cловарь химических синонимов I

    Сейчас для измерения температуры воздуха, воды, тела и т.п. мы пользуемся шкалой ЦЕЛЬСИЯ, в которой один градус равняется 1/100 разности температур кипения воды и таяния льда. Существует еще и шкала РЕОМЮРА, в которой градус равен 1/80… … Энциклопедия русского быта XIX века

    температурная шкала Кельвина - Термодинамическая шкала температуры (ТК), в которой 0°K=–273.16°C (1K=1°C). Syn.: абсолютная температурная шкала; шкала Келвина … Словарь по географии

    температурная шкала Фаренгейта - Температурная шкала с точкой замерзания воды 32°F и точкой кипения 212°F [перевод в температурную шкалу Цельсия (С) делается по формуле: C=(F 32)5/9] … Словарь по географии

    температурная шкала Цельсия - Температурная шкала (t°С), предложенная шведским астрономом А. Цельсиусом, которая делит интервал между точкой замерзания и точкой кипения воды на 100 частей, так что точка замерзания воды при стандартном атмосферном давлении равна 0°С, а… … Словарь по географии

    температурная шкала Реомюра - термометр Реомюра — Тематики нефтегазовая промышленность Синонимы термометр Реомюра EN Reaumur scale … Справочник технического переводчика

    температурная шкала Рэнкина - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Rankine scale … Справочник технического переводчика




© 2024
womanizers.ru - Журнал современной женщины