29.06.2019

История возникновения антибиотиков. История происхождения антибиотиков. Краткая история открытия антибиотиков: пенициллина, стрептомицина и остальных


ГБОУ города Москвы Гимназия №1505

«Московская городская педагогическая гимназия-лаборатория»

Реферат
Устойчивость бактерий к антибиотикам

Алексеенок Мария

Руководитель: Ноздрачева А. Н.

Глава 1. Антибиотики ………………..……………………………….…………………11

  1. Что такое антибиотики? ……………..……………………………….….………4
  2. История создания антибиотиков …..……………………………….……………4
  3. Как антибиотики воздействуют на бактерии? ..………………….……………4
  4. Почему антибиотик не убивает клетки хозяйского организма? …..…………..5
  5. Возникновение устойчивости бактерий к антибиотикам ……………….……5

……………………6

Глава 3.Горизонтальный перенос генов ………………….………………………….8

Глава 4.Биопленки ………………………..………………..……………………….…..9

Заключение ………………………………………………………………………………..10

Список литературы ………………………………….…………………………………..10
Введение

В наше время в медицине широко используются антибиотики. Но в процессе их использования, обнаружилось возникновение устойчивости к антибиотикам у бактерий. И чем дольше человечество лечится антибиотиками, тем быстрее бактерии приспосабливаются к новым препаратам, так как отбираются не только сами гены устойчивости, но и механизмы их быстрого приобретения патогенными бактериями. Наука начала исследовать причины данного явления и выявила несколько механизмов устойчивости бактерий к антибиотикам.

Эта тема рассмотрена многими учеными, и потому написана научным языком. Меня проблема устойчивости заинтересовала по двум причинам. Во-первых, у меня заболел дедушка, и в процессе его лечения возникла проблема, так как бактерии-возбудители его болезни оказались устойчивыми практически ко всем антибиотикам. Также моя мама занимается изучением этой проблемы, и мне стало интересно разобраться в этой теме. Я поняла, что эта проблема действительно важна для всех. Поэтому я решила написать про устойчивость бактерий к антибиотикам понятным для школьников языком.

Целью моего реферата, является изучение и изложение понятным для школьников языком механизмов устойчивости бактерий к антибиотикам.

Мной были поставлены следующие задачи:

1. Дать определение антибиотикам

2. Рассказать, кто и когда открыл антибиотики.

3. Описать механизм действия антибиотиков на бактерии.

4. Ответить на вопрос: «Почему антибиотик не убивает эукариотические клетки?»

5. Описать механизмы устойчивости бактерий к антибиотикам.

6. Рассказать, что такое биопленки и горизонтальный перенос генов, и какую роль они играют в устойчивости бактерий к антибиотикам.

Структура работы: реферат состоит из введения, глав с теоретическим обзором, заключения и источников.

Глава 1. Антибиотики

1.1 Что такое антибиотики?

Изначально антибиотики определялись как органические вещества природного или полусинтетического происхождения, способные убивать бактерии или замедлять их рост. В последнее время врачи и ученые перестали разделять понятия антибиотики и химиопрепараты (антибиотики полностью синтетического происхождения) .

1.2 История создания антибиотиков

Еще с древних времен люди использовали плесень для обеззараживания ран. Но первый антибиотик (пенициллин) был открыт в 1928 году Александром Флемингом. Пенициллин для лечебного применения разработали ученые Флори и Чейн .

После открытия пенициллина ученые открыли множество других антибиотиков, таких как: актиномицин, неомицин, стрептотрицин, бацитрацин, полимиксин, виомицин, хлорамфеникол. Учеными были разработаны химические модификации природных антибиотиков, обладающие лучшими лечебными свойствами. Они были менее токсичны, дольше не разрушались в организме человека, лучше проникали в органы и ткани, были способны подавлять больше видов бактерий .
1.3. Как антибиотики воздействуют на бактерии?

Антибиотик необратимо связывается с мишенью (ферментами, участвующими в синтезе ДНК, РНК, белков и клеточной стенки), что приводит к остановке ключевой (жизненно важной) реакции. В результате этого, бактерия гибнет или перестает делиться (рис.1) .

Рисунок 1. Механизм действия антибиотиков на бактерии.

1.4. Почему антибиотик не убивает клетки хозяйского организма?

Поскольку структура эукариотических белков, отвечающих за ключевые биохимические реакции в клетке, отличается от прокариотических, то антибиотики, действующие на бактерии, не токсичны для эукариотов. Самой безопасной группой антибиотиков являются пенициллины, так как они нарушают образование пептидогликана, входящего в состав клеточной стенки бактерий. А у эукариот пептидогликан не образуется .

1.5. Возникновение устойчивости бактерий к антибиотикам

Создание первых антибиотиков помогло человечеству справиться со многими смертельными заболеваниями. Например, с туберкулезом, воспалением легких, различных стафилококковых инфекций и многих других. Однако, чуть более чем через 10 лет после начала применения первых антибиотиков выяснилось, что у бактерий возникает к ним устойчивость. Кроме этого в последние годы ученые обнаружили, что теперь к новым антибиотикам устойчивость возникает быстрее, чем раньше. Многолетние научные исследования всех проблем, связанных с возникновением устойчивости у бактерий, выявили три основные причины этого явления. Первая – горизонтальный перенос генов

устойчивости, вторая – возникновение спонтанных мутаций и третья – образование бактериями биопленок.

А теперь детально остановимся на основных механизмах и путях возникновения устойчивости к антибиотикам.

Глава 2. Механизмы устойчивости бактерий к антибиотикам
Рисунок 2. Биохимические механизмы лекарственной устойчивости. Составлено на основании схемы, приведенной в статье С. З. Миндлин, М.А. Петрова, И. А. Басс, Ж. М. Горленко. Происхождение, эволюция и миграция генов лекарственной устойчивости // Генетика.

2006. Т. 42. №11. С. 1495.
Различные биохимические механизмы приводят к устойчивости бактерий к антибиотикам (рис. 2) .

Выделяют следующие механизмы:

  1. Снижение проницаемости мембраны.
  2. Активный вынос антибиотика из клетки.
  3. Инактивация антибиотика.
  4. Модификация антибиотика.
  5. Модификация молекулы-мишени.

Известны также и другие более редкие механизмы устойчивости.

Первый механизм заключается в снижении проницаемости клеточной мембраны за счет изменения ее химического состава.

Если же антибиотик проник в бактерию, то он может либо активно выносится из клетки, либо инактивироваться. Активный транспорт антибиотика из клетки происходит благодаря работе специализированных белков, которые образуют трансмембранные помпы, транспортирующие антибиотики. Инактивация происходит за счет того, что бактерия образует специальные ферменты, которые изменяют химическую структуру антибиотика, в результате чего он теряет свою антибактериальную активность. Изменения химической структуры могут происходить путем деградации или модификации антибиотика. Деградация – процесс разрушения молекулы антибиотика, например за счет гидролиза. Модификация – процесс изменения структуры молекулы антибиотика, например за счет присоединения дополнительных функциональных химических групп.Функциональная группа - структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства .

Другим механизмом является модификация молекулы-мишени бактерии, в результате чего нарушается связывание антибиотика и мишени. Мишень – это молекула, с которой связывается антибиотик и нарушает ее функции, что в результате убивает бактерию. Чаще всего мишенями служат ДНК-полимераза, РНК-полимераза, рибосома. А для ß-лактамаз мишенью является дипептид, из которого формируется клеточная стенка. Модификация мишени происходит за счет возникновения спонтанных генных мутаций или наличия специальных генов. Устойчивость к рифампицину — яркий пример устойчивости, возникшей за счет генной мутации. Рифампицин связывается с одним из белков (бэта-субъединицей), входящим в состав РНК-полимеразы, в результате чего происходит инактивация всего фермента. Устойчивость к рифампицину возникает в результате мутаций в гене, кодирующем бэта субъединицу. Это происходит за счет трансверсии последовательности AT в TA. В результате в белке бэта-субъединицы аспарагиновая кислота заменяется на валин. В результате этого рифампицин уже не способен связываться с таким измененным ферментом. Относительно высокая частота возникновения мутаций в гене бэта-субъединицы РНК-полимеразы приводит к быстрому отбору устойчивых мутантов, что в значительной степени ограничивает использование этого антибиотика против чувствительных бактерий .

Из более редких механизмов известно образование метаболического шунта – замены одной цепи реакций на другую. Например, этот механизм используется бактериями энтерококков для устойчивости к ванкомицину.

Этот антибиотик необратимо связывается с дипептидом D-Ala-D-Ala, входящего в состав молекулы-предшественника, из которой формируется клеточная стенка. В результате такой связи клеточная стенка не может образовываться, и бактерия всегда погибает. Ученые думали, что устойчивости к такому антибиотику не возникнет, но через 30 лет она появилась. У устойчивых штаммов обнаружили вместо дипептида D-Ala-D-Ala другой – D-Ala-D-Lac, с которым антибиотик не связывается. У устойчивых бактерий обнаруживают семь дополнительных генов, полученных путем горизонтального переноса. Именно эти гены участвуют в синтезе альтернативного предшественника клеточной стенки. Причем только после попадания в клетку антибиотика .

Существует и такой интересный механизм устойчивости как имитация молекулы-мишени. В ходе исследований у бактерий Mycobacterium smegmatis и Mycobacterium bovis обнаружили белок, который сворачивается в третичную структуру, очень похожую на структуру двойной спирали ДНК. Этот белок состоит из 5 аминокислот, свернутых в правозакрученную спираль точно такой же ширины, с таким же зарядом и спектром поглощения света как у молекулы ДНК. Антибиотик (из группы фторхинолонов), проникший в клетку, связывается с белком, а не с ДНК. В результате антибиотик не влияет на синтез ДНК .

Одна бактериальная клетка может обладать одновременно несколькими различными механизмами устойчивости к одному антибиотику .

Устойчивость бактерий к антибиотикам бывает врожденной и приобретенной. Врожденная устойчивость может быть обусловлена особенностью строения внешних структур или способностью данного вида или рода бактерий выделять вещество, инактивирующее антибиотик. А приобретенная устойчивость возникает при передаче генов путем горизонтального переноса генов, либо за счет возникновения спонтанной мутации. Все механизмы, которыми обладает бактерия передаются по наследству, так как они кодируются на ДНК .

Глава 3. Горизонтальный перенос генов

Горизонтальный перенос генов (ГПГ) – это процесс передачи генетической информации организму, не являющемуся потомком. Для ГПГ необходимо участие как минимум двух независимых процессов: физического переноса ДНК и встраиванию перенесенной ДНК в реципиентный геном, благодаря чему происходит стабильное наследование приобретенных таким путем признаков .

Главную роль в ГПГ играют разные мобильные генетические элементы: плазмиды, транспозоны, IS-элементы и другие.

Плазмиды – внехромосомные генетические элементы, в виде замкнутой или линейной молекулы ДНК, способные долго автономно существовать в клетке. Плазмиды осуществляют физический перенос генов между клетками разных бактерий. Также они являются платформой, на которой происходит постоянный обмен генетическим материалом за счет различных систем рекомбинации. Рекомбинация – процесс обмена похожими участками ДНК.

Транспозон – последовательность ДНК, способная перемещаться внутри генома. Транспозоны содержат гены транспозиции и дополнительные гены и ограничены специальными прямыми или инвертированными концевыми повторами.

IS-элементы схожи с транспозонами, но они кодируют только белки, участвующие в процессе транспозиции. Также они могут являться частью сложных транспозонов.

Из-за массового неконтролируемого употребления антибиотиков и плохой экологии, произошло снижение природных барьеров, ограничивающих возможность ГПГ у бактерий. Это привело к тому, что гены устойчивости к антибиотикам.

стали передаваться с большей частотой, чем раньше.

Глава 4. Биопленки

Устойчивость к антибиотикам может также возникать благодаря формированию бактериями биопленок. Биопленки – надклеточная система, состоящая из бактериального сообщества, имеющая пленочную структуру . Биопленки способны выживать при максимальных терапевтических дозировках антибиотиков. Биопленки могут проявлять устойчивость к нескольким антибиотикам. Это происходит по следующим причинам.

  1. Существование в биопленках особых персистирующих форм бактерий или персистеров. Персистер – это особая форма клетки, в которой не происходят биохимические реакции. Таким образом, антибиотик не воздействует на клетку, потому что в ней не происходят реакции, а антибиотик воздействует на функционирующие клетки. Через некоторое время клетка выходит из такого состояния и начинает функционировать.
  2. Фильтрационная способность матрикса. Из-за того, что матрикс бактериальных биоплёнок состоит из различных биополимеров – полисахаридов, белков и даже ДНК, матрикс не только связывает клетки в единую структуру, но и заполняет межклеточные пространства, что позволяет биопленке выводить антибиотики.
  3. Популяции бактерий, составляющие биопленку, также могут обладать разными вышеупомянутыми защитными механизмами, дополняющими друг друга.

Таким образом, образование бактериальных биопленок, делает бактерии более устойчивыми к антибиотикам, чем свободноживущие клетки .
Заключение

Развитие и распространение множественной устойчивости к антибиотикам среди болезнетворных бактерий уже сейчас создает серьезные проблемы при лечении инфекций человека и животных. Кроме того существует реальная опасность того, что в дальнейшем лечение антибиотиками вообще станет неэффективным. Поэтому нужны новые механизмы борьбы с болезнетворными бактериями. В данный момент учеными разрабатываются новые стратегии для борьбы с бактериальными заболеваниями. Но сейчас основной задачей человечества является прекращение бесконтрольного использования антибиотиков. Другими словами не следует использовать антибиотики без серьезной угрозы здоровью.

В данной работе цели и задачи мной были достигнуты.
Список литературы:

  1. Миндлин С.З., Петрова М.А., Басс И.А., Горленко Ж.М. Происхождение, эволюция и миграция генов лекарственной устойчивости // Генетика. 2006. Т. 42. №11. С. 1495-1511.
  2. Петрова М.А. Горизонтальный перенос генов устойчивости к соединениям ртути и антибиотикам в природных популяциях палеобактерий. Диссертация на соискание степени доктора биологических наук. Москва: 2013. С. 52-89.
  3. Егоров Н. С. Основы учения об антибиотиках. Учебник (изд. 6-е). М.: Издательство МГУ, 2004. С. 7-61.
  4. Энциклопедия для детей Аванта+ // Химия. Т.17. М.: Аванта+, 2004. С. 329.
  5. Ovchinnikov Yu.A., Monastyrskaya G.S., Gubanov V.V., Lipkin V.M., Sverdlov E.D., Kiver I.F., Bass I.A., Mindlin S.Z., Danilevskaya O.N., Khesin R.B. Primary structure of Escherichia coli RNA polymerase nucleotide substitution in the beta subunit gene of the rifampicin resistant rpoB255 mutant // Molecular and General Genetics. 1981. V.184. №3. С. 536-538
  6. Чеботарь И.В., Маянский А.Н.,Кончакова Е.Д., Лазарева А.В., Чистякова В.П. Антибиотикорезистентность биопленочных бактерий // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14, № 1. С. 51-58.

Достарыңызбен бөлісу:

Антибиотики

Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов.

Антибиотики. История получения и применения антибиотиков

Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

Учение об антибиотиках — молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин — антибиотик, открывший летоисчисление эры антибиотиков.

Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат — сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина — алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

И. И. Мечников (1845 — 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение — микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

Открытие Флеминга

В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) — фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году — явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция…, оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных… Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

Побочные действия

Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.

Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.

В 1871-1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.

С именем русского ученого И. И. Мечников а (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.

Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств.

История открытия антибиотиков

Как оказалось, ацидофильная палочка обладает более ярко выраженными антагонистическими свойствами по сравнению с болгарской палочкой.

В конце XIX - начале XX в. были открыты антагонистические свойства у спорообразующих бактерий. К этому же периоду относятся первые работы, в которых описываются антагонистические свойства у актиномицетов. Позднее из культуры почвенной спороносной палочки Bacillus brevis Р. Дюбо (1939) удалось выделить антибиотическое вещество, названное тиротрицином, которое представляло собой смесь двух антибиотиков - тироцидина и грамицидина. В 1942 г. советскими исследователями Г. Ф. Гаузе и М. Г. Бражниковой был выделен из подмосковных почв новый штамм Bacillus brevis, синтезирующий антибиотик грамицидин С, отличающийся от грамицидина Дюбо.

В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения - мицетин - и изучили условия биосинтеза и применения мицетина в клинике.

А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicillium notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.

С открытия пенициллина началась новая эра в лечении инфекционных болезней - эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов - продуцентов антибиотиков стали носить целенаправленный характер.

В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942 г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство.

Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.

В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грам отрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогранулематоза, трахомы и др.). К таким антибиотикам относятся хлорамфеникол (левомицетин), хлортетрациклин (биомицин), окситетрациклин (террамицин), тетрациклин, неомицин (колимицин, мицерин), канамицин, паромомицин (мономицин) и др. Кроме того, в распоряжении врачей в настоящее время имеется группа антибиотиков резерва, активных в отношении устойчивых к пенициллину грамположительных болезнетворных мик роорганизмов, а также противогрибные антибиотики (нистатин, гризеофульвин, амфотерицин В, леворин).

В настоящее время число известных антибиотиков приближается к 2000, однако в клинической практике используется всего около 50.

Антибиотик – это химическое вещество, которое производится одним организмом и разрушает другой. Название «антибиотик» произошло от слова «антибиоз» (с гр. «anti» — «против», «bios» — «жизнь») – термина, который в 1889 году ввел ученик Луи Пастера Пол Виллемин. Он означает процесс, посредством которого одна жизнь может быть использована для разрушения другой.

"Жизнь против жизни"

В широком понимании антибиотики – это общее название лекарственных средств, которые используют для борьбы с бактериальными заболеваниями. Они содержат вещества, которое вырабатывается некоторыми микробами. Антибиотики получают из растений, грибов, воды, почвы и даже воздуха. Попадая в организм, они атакуют и убивают инфекцию, но не повреждают здоровые клетки. Антибиотики используются для лечения различных опасных болезней, таких как туберкулез, сифилис, дифтерия и много других.

Люди используют антибиотики уже более 2500 лет. Конечно, раньше они имели несколько другой вид, нежели тот, к которому привык современный человек. Никаких таблеток и капсул – только то, что можно было достать в природе. К примеру, в качестве антибиотиков часто использовали плесень – она помогала вылечить сыпь, гнойные раны и кожные инфекции.

В конце 1800-х начался настоящий бум в сфере медицинских исследований. Главной причиной является изобретение инструмента, без которого сегодня не обходится ни одна лаборатория – микроскопа. Ученые впервые открыли для себя мир микроорганизмов, которых нельзя увидеть невооруженным глазом.

Луи Пастер обнаружил, что не все бактерии безвредны для человека. Он исследовал анализы множества больных пациентов и доказал существование болезнетворных бактерий. После него исследованием инфекций занялся Роберт Кох, который разработал метод выделения и размножения бактерий. С того момента ученые пытались разработать препараты, которые смогут убивать микробы, но все они оказывались либо опасными, либо неэффективными.

Открытие Александра Флеминга

Тысячи лет человечество безрезультатно боролось с эпидемиями смертоносных болезней. 90% детей умирали в младенческом возрасте от инфекций, которые сегодня можно вылечить за несколько дней. Еще двести лет назад не существовало эффективного лечения таких заболеваний, как пневмония, гонорея или ревматическая лихорадка.

Больницы были переполнены людьми с заражением крови, которое началось из-за банальной царапины или раны. Конечно, впоследствии все они умирали. Все изменилось только после изобретения антибиотика под названием пенициллин.

Антибиотики являются соединениями, продуцируемыми бактериями и грибами, которые способны убивать или ингибировать конкурирующие виды микроорганизмов. Это явление давно известно – еще древние египтяне применяли примочки с заплесневелого хлеба для инфицированных ран. Но пенициллин, первый настоящий антибиотик, был обнаружен только в 1928 году. Его открыл Александр Флеминг – профессор бактериологии в больнице Святой Марии в Лондоне.

Вернувшись из отпуска 3 сентября 1928 года, Флеминг начал сортировать чашки Петри, содержащие колонии стафилококковых бактерий, которые вызывают боль в горле, фурункулы и абсцессы. В одной из чашек он заметил что-то необычное. Она была усеяна колониями стафилококка, за исключением одной области. Крохотная зона, где находилась капля плесени, была абсолютно чистой от бактерий. Пространство вокруг плесени, которою позже назвали редким штаммом Penicillium notatum, было прозрачным. Казалось, что плесень выделяла нечто, препятствующее росту бактерий.

Флеминг обнаружил, что плесень способна убивать широкий спектр вредных бактерий, таких как стрептококк, менингококк и дифтерийная палочка. Затем он начал работать над новым заданием. Ученый поставил перед своими учениками Стюартом Крэддоком и Фредериком Ридли трудную задачу – они должны были выделить из плесени чистый пенициллин. Эксперимент до конца не удался – они смогли подготовить только растворы сырого материала.

Флеминг опубликовал свои результаты в «Британском журнале экспериментальной патологии» в июне 1929 года. В докладе он лишь слегка коснулся потенциальных терапевтических преимуществ пенициллина. На этом этапе было похоже, что главной целью его исследований будет поиск нечувствительных к пенициллину бактерий. Это, по крайней мере, имело практическое значение для бактериологов и сохраняло их интерес к пенициллину.

Другие ученые, в том числе Гарольд Райстрик, профессор биохимии Лондонской школы гигиены и тропической медицины, также пытались очистить пенициллин. Но все они потерпели неудачу.

Исследование пенициллина в Оксфордском университете

Говард Флори, Эрнст Чейн и их коллеги из школы патологии сэра Уильяма Данна в Оксфордском университете превратили пенициллин из лабораторного любопытства в жизненно важный препарат. Их работа по очистке пенициллина началась 1939 году. Из-за военных условий проводить исследования было особенно трудно. Для выполнения программы экспериментов на животных и клинических испытаний команде необходимо было обработать до 500 литров фильтрата плесени в неделю.

Они начали выращивать его в разнообразных емкостях, которые совсем не были похожи на сосуды для культивирования: ваннах, подносах, молочных бутылках и пищевых банках. Позже на их заказ был разработан специальный ферментационный сосуд. Ученые наняли команду «пенициллиновых девочек», которые следили за ферментацией. Фактически, лабораторию Оксфорда превратили в пенициллиновую фабрику.

Между тем, биохимик Норманн Хитли извлек пенициллин из огромных объемов фильтрата путем экстракции его в амилацетат, а затем обратно в воду с использованием противоточной системы. Эдвард Абрахам, другой биохимик, которого наняли для ускорения производства, задействовал недавно открытую методику хроматографии на колонке удаления примесей из пенициллина.

В 1940 году Говард Флори провел важные эксперименты, которые показали, что пенициллин может защитить мышей от инфицирования смертоносными стрептококками. Затем, 12 февраля 1941 года 43-летний полицейский Альберт Александер стал первым человеком, который испытал на себе оксфордский пенициллин. Он поцарапал губы во время обрезки роз, после чего развилась угрожающая жизни инфекция с огромными абсцессами, которые поразили глаза, лицо и легкие.

Через несколько дней после инъекции состояние пациента заметно улучшилось. Но запасы лекарств закончились, и через несколько дней он умер. Гораздо лучшие результаты последовали за другими пациентами, и вскоре возникли планы сделать пенициллин доступным для британских солдат, которые получали ранения на поле боя.

Производство пенициллина в США во время Второй мировой войны

Говард Флори признал, что крупномасштабное производство пенициллина невозможно осуществить в Британии, где химическая промышленность была полностью поглощена военными действиями. При поддержке фонда Рокфеллера Флори и его коллега Норман Хитли летом 1941 года отправились в Соединенные Штаты. Они планировали заинтересовать американскую фармацевтическую промышленность производством пенициллина в больших масштабах.

Йельский физиолог Джон Фултон связал своих британских коллег с людьми, которые могли бы помочь им в достижении этой цели. И вскоре она была достигнута – заняться производством решила Северная региональная исследовательская лаборатория Департамента (NRRL) в Пеории, штат Иллинойс.

Через несколько недель ученый Эндрю Мойер обнаружил, что можно значительно увеличить выход пенициллина, заменив лактозу, которые использовали оксфордские исследователи, сахарозой. Вскоре после этого он сделал еще более важное открытие – Мойер увидел, что добавление кукурузного раствора в среду для ферментации привело к десятикратному увеличению выхода.

Вскоре начался глобальный поиск лучших штаммов, которые продуцируют пенициллин. Образцы почв отправлялись в NRRL со всего мира. По иронии судьбы, наиболее подходящей оказалась заплесневевшая дыня с фруктового рынка Пеории. Более продуктивный мутант так называемого штамма канталупы был получен с использованием рентгеновских лучей в Институте Карнеги. Время шло, а применение пенициллина все еще ограничивалось клиническими испытаниями.

Стадии ферментации, восстановления, очистки и упаковки быстро уступили совместным усилиям ученых-химиков и инженеров, которые работали над экспериментальным производством пенициллина. 1 марта 1944 года компания Pfizer открыла первый коммерческий завод для крупномасштабного производства пенициллина в Бруклине, Нью-Йорк.

"Чудо-лекарство"

Тем временем клинические исследования в военном и гражданском секторах подтвердили терапевтические свойства пенициллина. Они показали, что препарат эффективен при лечении широкого спектра болезней, включая стрептококковые, стафилококковые и гонококковые инфекции. Армия США установила ценность пенициллина для лечения хирургических и раневых инфекций.

Клинические исследования также продемонстрировали его эффективность против сифилиса, и к 1944 году он стал основным средством лечения этой болезни в вооруженных силах Великобритании и Соединенных Штатов. Поскольку слухи относительно этого нового «чудо-лекарства» стала доходить до общественности, спрос на пенициллин увеличился. Но сначала поставки были ограничены, и приоритет отдавался военному использованию.

К счастью, с начала 1944 года производство пенициллина начало резко увеличиваться – с 21 до 1663 миллиардов единиц. А уже в 1945 году эта цифра составляла 6,8 триллионов. Американскому правительству удалось в конечном итоге снять все ограничения на доступность препарата, и состоянием на 15 марта 1945 года пенициллин стал доступен каждому потребителю – приобрести его можно было в ближайшей аптеке.

К 1949 году годовой объем производства пенициллина в Соединенных Штатах составлял 133,229 миллиарда единиц, а цена упала с 20 долларов (1943 год) до 10 центов.

На страже человечества

В настоящее время используется на фармацевтическом рынке доступно более 70 различных видов антибиотиков. Большинство из них используется для лечения инфекций, некоторые – для грибов и простейших. Сегодня они считаются полностью безопасным лекарством, конечно, при условии соблюдения дозировки.

Ученые постоянно работают над изобретением новых антибиотиков. Они испытывают тысячи природных растений и химических веществ. Это обусловлено тем, что инфекции вырабатывают иммунитет к устаревшим препаратам. С каждым годом они мутируют и совершенствуются, поэтому эффективное лечение значительно усложняется.

Антибиотики – великое изобретение, возможно, одно из лучших.

Они помогают людям выживать в борьбе с болезнями и инфекциями, которые в противном случае могли бы их убить. Антибиотики спасают жизни – что может быть полезней? Главное – использовать их с умом.

Всемирно известный изобретатель антибиотиков – шотландский ученый Александр Флеминг, которому приписывают открытие пенициллинов из плесневых грибов. Это был новый поворот в развитии медицины. За такое грандиозное открытие изобретатель пенициллина получил даже Нобелевскую премию. Ученый достиг истины исследовательским путем, спас от смерти ни одно поколение людей. Гениальное изобретение антибиотиков позволило истреблять патогенную флору организма без серьезных последствий для здоровья.

Что такое антибиотики

С момента появления первого антибиотика прошло уже много десятилетий, но об этом открытии хорошо знают медицинские работники во всем мире, простые обыватели. Сами по себе антибиотики – это отдельная фармакологическая группы с синтетическими компонентами, цель которых – нарушить целостность мембран патогенных возбудителей, прекратить их дальнейшую активность, незаметно вывести из организма, предотвратить общую интоксикацию. Первые антибиотики и антисептики появились в 40-х годах прошлого века, с того времени их ассортимент значительно пополнился.

Полезные свойства плесени

От повышенной активности болезнетворных бактерий хорошо помогают антибиотики, которые были выработаны из плесневых грибов. Лечебное действие антибактериальных препаратов в организме системное, все это благодаря полезным свойствам плесени. Первооткрывателю Флемингу лабораторным методом удалось выделить пенициллин, польза такого уникального состава представлена ниже:

  • зеленая плесень подавляет бактерии устойчивые к другим лекарственным средствам;
  • польза плесневого грибка очевидна при лечении брюшного тифа;
  • плесень истребляет такие болезненные бактерии, как стафилококки, стрептококки.

Медицина до изобретения пенициллина

В средние века человечество знало о колоссальной пользе плесневого хлеба и отдельного вида грибов. Такие лекарственные компоненты активно использовали для обеззараживания гнойных ран участников боевых действий, исключения заражения крови после оперативного вмешательства. До научного открытия антибиотиков было еще много времени, поэтому положительный аспект пенициллинов медики черпали из окружающей природы, определили путем многочисленных экспериментов. Проверяли эффективность новых средств на раненых бойцах, женщинах в состоянии родильной горячки.

Как лечили инфекционные заболевания

Не зная мир антибиотиков, люди жили по принципу: «Выживает только сильнейший», по принципу естественного отбора. Женщины умирали от сепсиса при родах, а бойцы – от заражения крови и нагноения открытых ран. Найти средство для эффективного очищения ран и исключения инфицирования в то время не могли, поэтому чаще знахари и врачеватели пользовались местными антисептиками. Позже, в 1867 году хирург из Великобритании определил инфекционные причины появления нагноения и пользу карболовой кислоты. Тогда это было основное лечение гнойных ран, без участия антибиотиков.

Кто изобрел пенициллин

На главный вопрос, кто открыл пенициллин, имеется несколько противоречивых ответов, однако официально считается, что создатель пенициллина – шотландский профессор Александр Флеминг. С детства будущий изобретатель мечтал найти уникально лекарство, поэтому поступил в медицинскую школу на базе госпиталя Святой Марии, которую окончил в 1901 году. Колоссальную роль при открытии пенициллина сыграл Алмрот Райт, изобретатель вакцины против брюшного тифа. С ним Флемингу посчастливилось посотрудничать в 1902 году.

Учился молодой микробиолог в академии Килмарнок, затем переехал в Лондон. Уже в статусе дипломированного ученого Флемминг открыл существование penicillium notatum. Научное открытие было запатентовано, ученый после окончания Второй Мировой войны в 1945 году даже получил Нобелевскую премию. До этого работа Флеминга была не раз отмечена премиями и ценными наградами. Принимать антибиотики в целях эксперимента человек начал в 1932 году, а до этого исследования проводились преимущественно на лабораторных мышах.

Разработки европейских ученых

Основателем бактериологии и иммунологии является французский микробиолог Луи Пастер, который в девятнадцатом веке подробно описал пагубное воздействие почвенных бактерий на возбудителей туберкулеза. Всемирно известный ученый лабораторными методами доказал, что одни микроорганизмы – бактерии могут быть истреблены другими – плесневыми грибами. Начало научных открытий было положено, перспективы открывались грандиозные.

Известный итальянец Бартоломео Гозио в 1896 году в своей лаборатории изобрел микофеноловую кислоту, которую стали называть одним из первых антибиотических средств. Тремя годами позднее немецкие врачи Эммерих и Лов открыли пиоценазу – синтетическое вещество, способное снижать патогенную активность возбудителей дифтерии, тифа и холеры, демонстрировать устойчивую химическую реакцию против жизнедеятельности микробов в питательной среде. Поэтому споры в науке на тему, кто изобрел антибиотики, не стихают и в настоящее время.

Кто изобрел пенициллин в России

Два российских профессора – Полотебнов и Манассеин спорили на тему происхождения плесни. Первый профессор утверждал, что от плесени пошли все микробы, а второй был категорически против. Манассеин стал исследовать зеленую плесень и обнаружил, что вблизи ее локализации полностью отсутствуют колонии патогенной флоры. Второй ученый занялся изучением антибактериальных свойств такого натурального состава. Такая нелепая случайность в перспективе станет истинным спасением для всего человечества.

Русский ученый Иван Мечников изучил действие ацидофильных бактерий с кисломолочными продуктами, которые благотворно воздействуют на системное пищеварение. Зинаида Ермольева вообще стояла у истоков микробиологии, стала основательницей известного антисептика лизоцима, а в истории известна, как «Госпожа пенициллин». Свои открытия Флеминг реализовал в Англии, параллельно над разработкой пенициллина трудились отечественные ученые. Американские ученые тоже не сидели зря.

Изобретатель пенициллина в США

Американский исследователь Зельман Ваксман параллельно занимался разработкой антибиотиков, но на территории США. В 1943 году ему удалось получить эффективный в отношении туберкулеза и чумы синтетический компонент широкого спектра действия под названием стрептомицин. в дальнейшем было налажено его промышленное производство, чтобы с практической позиции уничтожить вредную бактериальную флору.

Хронология открытий

Создание антибиотиков было постепенным, при этом использовался колоссальный опыт поколений, доказанные общенаучные факты. Чтобы антибактериальная терапия в современной медицине получилась настолько успешной, многие ученые «приложили к этому руку». Изобретателем антибиотиков официально считается Александр Флеминг, но помощь пациентам оказали и другие легендарные личности. Вот что необходимо знать:

  • 1896 г - Б. Гозио создал микофеноловую кислоту против сибирской язвы;
  • 1899 г - Р. Эммерих и О. Лоу открыли местный антисептик на основе пиоценазы;
  • 1928 г - А. Флеминг открыл антибиотик;
  • 1939 г - Д. Герхард получил Нобелевскую премию по физиологии и медицине за антибактериальное действие пронтозила;
  • 1939 г - Н. А. Красильников и А. И. Кореняко стали изобретателями антибиотика мицетин, Р. Дюбо открыл тиротрицин;
  • 1940 г - Э. Б. Чейн и Г. Флори доказали существование стабильного экстракта пенициллина;
  • 1942 г - З. Ваксман предложил создание медицинского термин «антибиотик».

История открытия антибиотиков

Стать медиком изобретатель решил по примеру своего старшего брата Томаса, который в Англии получил диплом и работал врачом-офтальмологом. В его жизни случилось много интересных и судьбоносных событий, которые позволили ему сделать это грандиозное открытие, предоставили возможность продуктивно уничтожать патогенную флору, обеспечить гибель целых колоний бактерий.

Исследования Александра Флеминга

Открытию европейских ученых предшествовала необычная история, произошедшая в 1922 году. Простудившись, изобретатель антибиотиков не надел при работе маску и случайно чихнул в чашку Петри. Через некоторое время неожиданно обнаружил, что в месте попадания слюны вредные микробы погибли. Это был существенный шаг в борьбе с болезнетворной инфекций, возможность вылечить опасную болезнь. Результату такого лабораторного исследования был посвящен научный труд.

Следующее судьбоносное совпадение в трудовой деятельности изобретателя произошло шестью годами позднее, когда в 1928 году ученый уехал на месяц отдыхать с семьей, предварительно сделав посевы стафилококка в питательной среде из агар-агара. По возвращению обнаружил, что плесень отгородилась от стафилококков прозрачной жидкостью, нежизнеспособной для бактерий.

Получение активного действующего вещества и клинические исследования

Учитывая опыт и достижения изобретателя антибиотиков, ученые микробиологии Говард Флори и Эрнст Чейн в Оксфорде решили пойти дальше и занялись получением пригодного к массовому использованию препарата. Лабораторные исследования проводились на протяжении 2 лет, в результате чего было определено чистое действующее вещество. Испытывал его в обществе ученых сам изобретатель антибиотиков.

При помощи такой инновации Флори и Чейн вылечили несколько осложненных случаев прогрессирующего сепсиса и пневмонии. В дальнейшем разработанные в лабораторных условиях пенициллины начали успешно лечить такие страшные диагнозы, как остеомиелит, газовая гангрена, родильная горячка, стафилококковая септицемия, сифилис, сифилис, другие инвазивные инфекции.

В каком году изобрели пенициллин

Официальная дата общенародного признания антибиотика – 1928 год. Однако такого рода синтетические вещества были выявлены и раньше – на внутреннем уровне. Изобретатель антибиотиков – Александр Флеминг, но за это почетное звание могли посоперничать европейские, отечественные ученые. Шотландцу удалось прославить свое имя в истории, благодаря этому научному открытию.

Запуск в массовое производство

Поскольку открытие было официально признано в период Второй Мировой войны, очень сложно было наладить производство. Однако все понимали, что с его участием можно спасти миллионы жизней. Поэтому в 1943 году в условиях боевых действий серийным выпуском антибиотических средств занялась ведущая американская компания. Таким способом удалось не только сократить показатели смертности, но и увеличить продолжительность жизни мирного населения.

Применение в годы второй мировой войны

Такое научное открытие было особенно уместно в период боевых действий, поскольку люди тысячами умирали от гнойных ран и масштабного заражения крови. Это были первые эксперименты на людях, которые давали устойчивый терапевтический эффект. После окончания войны производство таких антибиотиков не просто продолжилось, но и в разы повысилось по объемам.

Значение изобретения антибиотиков

Современное общество по сей день должно быть благодарно, что ученые своего времени сумели придумать эффективные против инфекций антибиотики и воплотили свои разработки в жизнь. Таким фармакологическим назначением могут смело воспользоваться взрослые и дети, вылечить ряд опасных заболеваний, избежать потенциальных осложнений, летального исхода. Изобретатель антибиотиков не забыт в нынешнее время.

Положительные моменты

Благодаря антибиотическим средствам, смерть от пневмонии и родовой горячки стала редкостью. Кроме того, наблюдается положительная динамика при таких опасных заболеваниях, как брюшной тиф, туберкулез. С помощью уже современных антибиотиков можно истребить патогенную флору организма, вылечить опасные диагнозы еще на ранней стадии инфицирования, исключить глобальное заражение крови. Заметно снизился и показатель детском смертности, женщины при родах умирают гораздо реже, чем в средние века.

Отрицательные аспекты

Изобретатель антибиотиков тогда не знал, что со временем патогенные микроорганизмы адаптируются в антибиотической среде и перестанут погибать под воздействием пенициллина. Кроме того, не существует лекарство от всех возбудителей, изобретатель такой разработки еще не появился, хотя современные ученые к этому стремятся годами, десятилетиями.

Генные мутации и проблема резистентности бактерий

Патогенные микроорганизмы по своей природе оказались так называемыми «изобретателями», поскольку под воздействием антибиотических препаратов широкого спектра действия способны постепенно мутировать, приобретая повышенную устойчивость к синтетическим веществам. Вопрос резистентности бактерий для современной фармакологии стоит особенно остро.

Видео

Внимание! Иформация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Введение

Тот факт, что одни микробы могут каким - либо образом задерживать рост других, был хорошо известен издавна. В 1928 - 1929 гг. А. Флеминг открыл штамм плесневого гриба пенициллина (Penicillium notatum), выделяющего химическое вещество, которое задерживает рост стафилококка. Вещество было названо «пенициллин», однако лишь в 1940 г. Х. Флори и Э. Чейн были удостоены Нобелевской премии. В нашей стране большой вклад в учение об антибиотиках внесли З.В. Ермольева и Г.Ф. Гаузе.

Сам термин «антибиотик» (от греч. anti, bios - против жизни) был предложен С. Ваксманом в 1842 г. Для обозначения природных веществ, продуцируемых микроорганизмами и в низких концентрациях антагонистичных к росту других бактерий.

Антибиотики - это химиотерапевтические препараты из химических соединений биологического происхождения (природные), а также их полусинтетические производные и синтетические аналоги, которые в низких концентрациях оказывают избирательное повреждающее или губительное действие на микроорганизмы и опухоли.

История открытия антибиотиков

В народной медицине для обработки ран и лечения туберкулеза издавна применяли экстракты лишайников. Позднее в состав мазей для обработки поверхностных ран стали включать экстракты бактерий Pseudomonas aeruginosa, хотя почему они помогают, никто не знал, и феномен антибиоза был неизвестен.

Однако некоторые из первых ученых-микробиологов сумели обнаружить и описать антибиоз (угнетение одними организмами роста других). Дело в том, что антагонистические отношения между разными микроорганизмами проявляются при их росте в смешанной культуре. До разработки методов чистого культивирования разные бактерии и плесени выращивались вместе, т.е. в оптимальных для проявления антибиоза условиях. Луи Пастер еще в 1877 описал антибиоз между бактериями почвы и патогенными бактериями - возбудителями сибирской язвы. Он даже предположил, что антибиоз может стать основой методов лечения.

Первые антибиотики были выделены еще до того, как стала известной их способность угнетать рост микроорганизмов. Так, в 1860 был получен в кристаллической форме синий пигмент пиоцианин, вырабатываемый небольшими подвижными палочковидными бактериями рода Pseudomonas, но его антибиотические свойства были обнаружены лишь через много лет. В 1896 из культуры плесени удалось кристаллизовать еще одно химическое вещество такого рода, получившее название микофеноловая кислота.

Постепенно выяснилось, что антибиоз имеет химическую природу и обусловлен выработкой специфических химических соединений.

Появление термина «антибиотики» было связано с получением и внедрением в лечебную практику нового химиотерапевтического препарата пенициллина, активность которого в отношении патогенных кокков и других бактерий значительно превосходило действие сульфаниламида.

Первооткрывателем пенициллина является английский микробиолог А. Флеминг, который, начиная с 1920 г., изучал антибактериальные свойства зелёной плесени - гриба рода Penicillium. А. Флеминг более 10 лет пытался получить и выделить пенициллин из культуральной жидкости в химически чистом виде, пригодном для клинического применения. Однако это удалось сделать лишь в 1940 году после начала второй мировой войны, когда потребовалось новые, более эффективные, чем сульфаниламиды, лекарственные средства для лечения гнойных осложнений ран и сепсиса. Английскому патологу Г. Флори и биохимику Э. Чейну удалось выделить нестойкую пенициллиновую кислоту и получить её соль, стабильно сохраняющую свою антибактериальную активность. В 1943 г. Производство пенициллина было развёрнуто в США. З. В. Ермольева явилась одним из организаторов производства пенициллина в нашей стране во время Великой Отечественной войны.

Успех клинического применения пенициллина послужил сигналом к проведению широких исследований в разных странах мира, направленных на поиск новых антибиотиков. С этой целью бала изучена способность многочисленных штаммов грибов, актиномицетов и бактерий, хранящихся в микробных музеях разных институтов и вновь выделенных из окружающей среды, главным образом почвы, продуцировать антибиотические вещества. В результате этих исследований, З. Ваксманом и др. в 1943 г. Был открыт стрептомицин, а затем и многие другие антибиотики.

Введение ………………………….………………………………………….3

    1. История антибиотиков……………………………………………… …....4
    2. Общая характеристика антибиотиков……………………………………13

Заключение………………………………………………… …………………23

Список литературы

Введение

Антибиотики – это все лекарственные препараты, подавляющие жизнедеятельность возбудителей инфекционных заболеваний, таких как грибки, бактерии и простейшие.

Когда впервые были созданы антибиотики, их считали " волшебными пулями", которые должны были радикально изменить лечение инфекционных заболеваний. Однако сейчас эксперты с беспокойством отмечают, что золотой век антибиотиков закончился.

Антибиотики занимают особое место в современной медицине. Они являются объектом изучения различных биологических и химических дисциплин. Наука об антибиотиках развивается бурно. Если это развитие началось с микробиологии, то теперь проблему изучают не только микробиологи, но и фармакологи, биохимики, химики, радиобиологи, врачи всех специальностей.

За последние 35 лет открыто около ста антибиотиков с различным спектром действия, однако, в клинике применяется ограниченное число препаратов. Это объясняется главным образом тем, что большинство антибиотиков не удовлетворяют требованиям практической медицины.

Изучение строения антибиотиков позволило подойти к раскрытию механизма их действия, особенно благодаря огромным успехам в области молекулярной биологии.

Цель работы: изучить историю антибиотиков.

Задачи: 1) ознакомиться с историей появления антибиотиков.

2) рассмотреть общую характеристику антибиотиков.

    I) История появления антибиотиков

Идея использования микробов против микробов и наблюдения о микробном антагонизме относятся к временам Луи Пастера и И.И. Мечникова. В частности, Мечников писал, что «в процессе борьбы друг с другом микробы вырабатывают специфические вещества как орудия защиты и нападения». А чем иным, как не орудием нападения одних микробов на другие, оказались антибиотики? Современные антибиотики – пенициллин, стрептомицин и др. – получены как продукт жизнедеятельности различных – бактерий, плесеней и актиномицетов. Именно эти вещества действуют губительно, либо задерживают рост и размножение болезнетворных микробов.
Еще в конце XIX в. профессор В.А. Манассеин описал противомикробное действие зеленой плесени пенициллиум, а А.Г. Полотебнов с успехом применял зеленую плесень для лечения гнойных ран и сифилитических язв. Кстати, известно, что индейцы майя использовали зеленую плесень для лечения ран. При гнойных заболеваниях рекомендовал плесень и выдающийся арабский врач Абу Али Ибн Сина (Авиценна).
Эра антибиотиков в современном значении этого слова началась с замечательного открытия – пенициллина Александром Флемингом. В 1929 г. английский ученый Александр Флеминг опубликовал статью, принесшую ему всемирную известность: он сообщил о новом, выделенном из колоний плесени, веществе, которое он назвал пенициллином. С этого момента и начинается «биография» антибиотиков, которые по праву считаются «лекарством века». В статье указывалось на высокую чувствительность к пенициллину стафилококков, стрептококков, пневмококков. В меньшей степени к пенициллину были чувствительны возбудитель сибиреязвенной болезни и бацилла дифтерии, а совсем не восприимчивы – бацилла брюшного тифа, холерный вибрион и другие. Однако А. Флеминг не сообщил о виде плесени, из которой он выделил пенициллин. Уточнение сделал известный миколог Шарль Вестлинг.
Но этот пенициллин, открытый Флемингом, имел ряд недостатков. В жидком состоянии он быстро терял свою активность. Из– за слабой концентрации его приходилось вводить в больших количествах, что было очень болезненно. Пенициллин Флеминга содержал в себе также много побочных и далеко не безразличных белковых веществ, попавших из бульона, на котором выращивалась плесень пенициллиум. В результате всего этого использование пенициллина для лечения больных затормозилось на несколько лет. Только в 1939 г. врачи медицинской школы Оксфордского университета приступили к изучению возможности лечения пенициллином инфекционных заболеваний. Г. Флори, Б. Хаийн, Б. Чейн и другие специалисты составили план подробного клинического испытания пенициллина. Вспоминая этот период работы, профессор Флори писал: «Все мы работали над пенициллином с утра до вечера. Засыпали с мыслью о пенициллине, и единственным нашим желанием было разгадать его тайну». Эта напряженная работа принесла свои результаты. Летом 1940 года первые белые мыши, экспериментально зараженные стрептококками в лабораториях Оксфордского университета, были спасены от смерти благодаря пенициллину. Полученные результаты помогли клиницистам проверить пенициллин на людях. 12 февраля 1941 года Э. Абразам ввел новый препарат безнадежным больным, погибающим от заражения крови. К сожалению, после нескольких дней улучшения больные все же скончались. Однако трагическая развязка наступила не в результате применения пенициллина, а из–за его отсутствия в нужном количестве. С конца 30–х. гг. XX века работами Н.А. Красильникова, изучавшего распространение в природе актиномицетов, и последующими работами З.В. Ермольевой, Г.Ф. Гаузе и других ученых, исследовавших антибактериальные свойства почвенных микроорганизмов, было положено начало развитию производства антибиотиков. Отечественный препарат пенициллин был получен в 1942 году в лаборатории З.В. Ермольевой. В годы Великой Отечественной войны тысячи раненых и больных были спасены.
Победное шествие пенициллина и его признание во всем мире открыло новую эру в медицине – эру антибиотиков. Открытие пенициллина стимулировало поиски и выделение новых активных антибиотиков. Так, в 1942 году был открыт грамицидин (Г.Ф. Гаузе и др.). В конце 1944 года С. Ваксман со своим коллективом проводит экспериментальную проверку стрептомицина, который вскоре стал соперничать с пенициллином. Стрептомицин оказался высокоэффективным препаратом для лечения туберкулеза. Этим объясняется мощное развитие промышленности, выпускающий данный антибиотик. С. Ваксман впервые ввел термин «антибиотик», подразумевая под этим химическое вещество, образуемое микроорганизмами, обладающее способностью подавлять рост или даже разрушать бактерии и другие микроорганизмы. В дальнейшем это определение расширялось. В 1947 году был открыт и выдержал экзамен на эффективность еще один антибиотик пенициллинового ряда – хлоромицетин. Его успешно применяли в борьбе с брюшным тифом, пневмонией, лихорадкой Ку. В 1948–1950 гг. были введены ауромицин и терамицин, клиническое использование которых началось в 1952 году. Они оказались активны при многих инфекциях, включая бруцеллез, туляремию. В 1949 году был открыт неомицин – антибиотик с широким аспектом действия. В 1952 году был открыт эритомицин. Таким образом, ежегодно арсенал антибиотиков увеличивался. Появились стрептомицин, биомицин, альбомицин, левомицетин, синтомицин, тетрациклин, террамицин, эритромицин, колимицин, мицерин, иманин, экмолин и ряд других. Одни из них обладают направленным действием на определенные микробы или их группы, другие обладают более широким спектром антимикробного действия на различные микроорганизмы.
Выделяются сотни тысяч культур микроорганизмов, получаются десятки тысяч препаратов. Однако все они требуют тщательного изучения.
В истории создания антибиотиков много непредвиденных и даже трагических случаев. Даже открытие пенициллина сопровождалось, помимо успехов, и некоторыми разочарованиями. Так, вскоре была обнаружена пенициллиназа – вещество, способное нейтрализовать пенициллин. Это объясняло, почему многие бактерии невосприимчивы к пенициллину (колибацилла и микроб брюшного тифа, например, содержат в своей структуре пенициллиназу). Вслед за этим последовали и другие наблюдения, поколебавшие веру во всепобеждающую силу пенициллина. Было установлено, что определенные микробы приобретают со временем невосприимчивость к пенициллину. Накопленные факты подтвердили мнение о существовании двух видов невосприимчивости к антибиотикам: естественной (структурной) и приобретенной. Стало известно также, что ряд микробов обладает способностью вырабатывать такого же характера защитные вещества и против стрептомицина – фермент стрептомициназу. За этим, казалось бы, должен был последовать вывод о том, что пенициллин и стрептомицин становятся малоэффективными лечебными средствами и что их применять не следует. Как ни важны оказались выявленные факты, как ни грозны они были для антибиотиков, но ученые таких поспешных выводов не сделали. Наоборот, были сделаны два важных вывода: первый – искать пути и методы подавления этих защитных свойств микробов, а второй – еще глубже изучать это свойство самозащиты. Помимо ферментов, некоторые микробы защищаются витаминами и аминокислотами.
Большим недостатком длительного лечения пенициллином и другими антибиотиками было нарушение физиологического равновесия между микро– и макроорганизмом. Антибиотик не выбирает, не делает разницы, но подавляет или убивает любой организм, попадающий в сферу его деятельности. В результате уничтожаются, например, микробы, содействующие пищеварению, защищающие слизистые оболочки; в результате человек начинает страдать от микроскопических грибков. При использовании антибиотиков нужна большая осторожность. Необходимо соблюдать точные дозировки. После испытания каждого антибиотика его направляют в Комитет по антибиотикам, который решает вопрос о возможности применения его на практике.
Продолжают создаваться и совершенствоваться антибиотики, обладающие продленным действием в организме. Другим направлением в совершенствовании антибиотиков является создание таких форм антибиотиков, чтобы вводить их не шприцем, а принимать парентерально. Были созданы таблетки феноксиметилпенициллина, которые и предназначены для приема внутрь. Новый препарат успешно прошел экспериментальные и клинические испытания. Он обладает рядом очень ценных качеств, из которых наиболее важным является то, что он не боится соляной кислоты желудочного сока. Именно это обеспечивает успех его изготовления и применения. Растворяясь и всасываясь в кровь, он оказывает свое лечебное действие. Успех с таблетками феноксиметилпенициллина оправдал надежды ученых. Арсенал антибиотиков в таблетках пополнился рядом других, обладающих широким спектром действия на различных микробов. Большой известностью в настоящее время пользуются тетрациклин, террамицин, биомицин. Внутрь вводятся левомицетин, синтомицин и другие антибиотики. Так был получен полусинтетический препарат ампициллин, задерживающий рост не только стафилококков, но и микробов, вызывающих брюшной тиф, паратиф, дизентерию. Все это оказалось новым и большим событием в учении об антибиотиках. Обычные пенициллины на тифозно–паратифозно– дизентерийную группу не действуют. Теперь открываются новые перспективы для более широкого применения пенициллина на практике.
Большим и важным событием в науке явилось также получение новых препаратов стрептомицина – пасомицина и стрептосалюзида для лечения туберкулеза. Оказывается, этот антибиотик может потерять свою силу в отношении туберкулезных палочек, которые приобрели устойчивость к нему. Несомненным достижением явилось создание во Всесоюзном научно–исследовательском институте антибиотиков дибиомицина. Он оказался эффективным для лечения трахомы. Большую роль в этом открытии играли исследования З.В. Ермольевой. Наука движется вперед, и поиски антибиотиков против вирусных болезней остаются одной из актуальнейших задач науки. В 1957 г. английский ученый Айзеке сообщил о получении им вещества, которое он назвал интерфероном. Это вещество образуется в клетках организма в результате проникновения в них вирусов. Проведено изучение лечебных свойств интерферона. Опыты показали, что наиболее чувствительны к его действию вирусы гриппа, энцефалита, полиомиелита, оспо–вакцины. При этом он абсолютно безвреден для организма. Были созданы жидкие антибиотики в виде суспензий. Эта жидкая форма антибиотиков благодаря своим высокоактивным лечебным свойствам, а также приятному запаху и сладкому вкусу нашла широкое применение в педиатрии при лечении различных болезней. Они настолько удобны для применения, что в виде капель их дают даже новорожденным детям. В эпоху антибиотиков онкологи не могли не задуматься над возможностью использовать их при лечении рака. Не найдутся ли среди микробов продуценты противораковых антибиотиков? Эта задача гораздо более сложная и трудная, чем изыскание противомикробных антибиотиков, но она увлекает и волнует ученых. Большой интерес онкологов вызвали антибиотики, которые вырабатываются лучистыми грибами – актиномицетами. Можно назвать ряд антибиотиков, которые тщательно изучаются в эксперименте на животных, а отдельные – для лечения раковой болезни у людей. Актиномицин, актиноксантин, плюрамицин, саркомицин, ауратин – с этими антибиотиками связана важная полоса в поисках активных, но безвредных препаратов. К сожалению, многие из полученных противораковых антибиотиков этому требованию не отвечают.
Впереди – надежды на успех. Ярко и образно об этих надеждах сказала Зинаида Виссарионовна Ермольева: «Мы мечтаем победить и рак. Когда–то несбыточной казалась мечта о покорении космического пространства, но она сбылась. Сбудутся и эти мечты!» Итак, наиболее эффективными антибиотиками оказались те из них, которые являются продуктами жизнедеятельности актиномицетов, плесеней, бактерий и других микроорганизмов. Поиски новых микробов – продуцентов антибиотиков – продолжаются широким фронтом во всем мире. Еще в 1909 г. профессор Павел Николаевич Лащенков открыл замечательное свойство свежего белка куриных яиц убивать многих микробов. В процессе гибели происходило растворение (лизис) их. В 1922 г. это интересное биологическое явление глубоко изучил английский ученый Александр Флеминг и назвал вещество, растворяющее микробов, лизоцим. У нас в стране лизоцим был широко изучен З.В. Ермольевой с сотрудниками. Открытие лизоцима вызвало большой интерес у биологов, микробиологов, фармакологов и врачей–лечебников разных специальностей. Экспериментаторов интересовали природа, химический состав, особенности действия лизоцима на микробов. Особенно важным был вопрос о том, на какие болезнетворные микробы лизоцим действует и при каких инфекционных болезнях можно его применять с лечебной целью. Лизоцим в разной концентрации обнаружен в слезах, слюне, мокроте, селезенке, почках, печени, коже, слизистых оболочках кишок и других органах человека и животных. Кроме того, лизоцим обнаружен в различных овощах и фруктах (хрен, репа, редька, капуста) и даже в цветах (примула). Лизоцим обнаружен также и у различных микробов.
Лизоцим применяется для лечения при некоторых инфекционных заболеваниях глаз, носа, полости рта и др. Широкая популярность антибиотиков привела к тому, что они нередко стали чем–то вроде средства «домашнего лечения» и применяются без назначения врача. Конечно, такое применение нередко опасно и приводит к нежелательным реакциям и осложнениям. Неосторожное применение больших доз антибиотиков может вызвать более сильные реакции и осложнения. Не надо забывать, что антибиотики могут повреждать микробные клетки, в результате чего в организм поступают ядовитые продукты распада микробов, вызывающие отравление. Часто страдают при этом сердечно–сосудистая и нервная системы, нарушается нормальная деятельность почек, печени. Антибиотики обладают мощным действием на многие микробы, но, конечно, не на все. Антибиотиков универсального действия пока нет. Ученые стремятся к получению антибиотиков так называемого широкого спектра действия. Это значит, что такие антибиотики должны действовать на большое количество различных микробов, и такие антибиотики созданы. К их числу относятся стрептомицин, тетрациклин, хлорамфеникол и др. Но именно потому, что они вызывают гибель массы разнообразных микробов (но не всех), оставшиеся становятся агрессивными и могут причинить вред. В то же время за ними большое будущее. В настоящее время антибиотики стали применяться и для лечения животных и птиц. Так многие инфекционные заболевания птиц благодаря антибиотикам перестали быть бичом в птицеводстве. В животноводстве и птицеводстве антибиотики стали применяться как стимуляторы роста. В сочетании с некоторыми витаминами, прибавленными к корму цыплят, индюшат, поросят и других животных, антибиотики способствуют усилению роста и увеличению их веса. Ученые с полным основанием могут утверждать, что, помимо стимуляции роста, антибиотики окажут и профилактическое действие в отношении заболеваний птиц. Известны работы З.В. Ермольевой и ее сотрудников, отражающие тот факт, что среди птиц, телят и поросят заболеваемость и смертность, например от кишечных инфекций (поносов), резко были снижены при применении антибиотиков.
Будем надеяться, что за антибиотиками будет победа и над другими заболеваниями.

    II. Общая характеристика антибиотиков

Антибиотики (от анти... и греч. bĺоs - жизнь), вещества биологического происхождения, синтезируемые микроорганизмами и подавляющие рост бактерий и других микробов, а также вирусов и клеток. Многие антибиотики способны убивать микробов. Иногда к антибиотикам относят также антибактериальные вещества, извлекаемые из растительных и животных тканей. Каждый антибиотик характеризуется специфическим избирательным действием только на определённые виды микробов. В связи с этим различают антибиотики с широким и узким спектром действия. Первые подавляют разнообразных микробов [например, тетрациклин действует как на окрашивающихся по методу Грама (грамположительных), так и на неокрашивающихся (грамотрицательных) бактерий, а также на риккетсий]; вторые - лишь микробов какой-либо одной группы (например, эритромицин и олеандомицин подавляют лишь грамположительные бактерии). В связи с избирательным характером действия некоторые антибиотики способны подавлять жизнедеятельность болезнетворных микроорганизмов в концентрациях, не повреждающих клеток организма хозяина, и поэтому их применяют для лечения различных инфекционных заболеваний человека, животных и растений. Микроорганизмы, образующие антибиотики, являются антагонистами окружающих их микробов-конкурентов, принадлежащих к другим видам, и при помощи антибиотика подавляют их рост. Мысль об использовании явления антагонизма микробов для подавления болезнетворных бактерий принадлежит И. И. Мечникову , который предложил употреблять молочнокислые бактерии, обитающие в простокваше, для подавления вредных гнилостных бактерий, находящихся в кишечнике человека. Описано около 2000 различных антибиотиков из культур микроорганизмов, но лишь немногие из них (около 40) могут служить лечебными препаратами, остальные по тем или иным причинам не обладают химиотерапевтическим действием.

Антибиотики можно классифицировать по их происхождению (из грибов, бактерий, актиномицетов и др.), химической природе или по механизму действия.

Антибиотики из грибов. Важнейшее значение имеют антибиотики группы пенициллина , образуемые многими расами Penicillium notatum, P. chrysogenum и другими видами плесневых грибов. Пенициллин подавляет рост стафилококков в разведении 1 на 80 млн. и малотоксичен для человека и животных. Он разрушается энзимом пенициллиназой, образуемой некоторыми бактериями. Из молекулы пенициллина было получено её "ядро" (6-аминопенициллановая кислота), к которому затем химически присоединили различные радикалы. Так, были созданы новые "полусинтетические" пенициллины (метициллин, ампициллин и др.), не разрушаемые ценициллиназой и подавляющие некоторые штаммы бактерий, устойчивые к природному пенициллину. Другой антибиотик - цефалоспорин С - образуется грибом Cephalosporium. Он обладает близким к пенициллину химическим строением, но имеет несколько более широкий спектр действия и подавляет жизнедеятельность не только грамположительных, но и некоторых грамотрицательных бактерий. Из "ядра" молекулы цефалоспорина (7-аминоцефалоспорановая кислота) были получены его полусинтетические производные (например, цефалоридин), которые нашли применение в медицинской практике. Антибиотик гризеофульвин был выделен из культур Penicillium griseofulvum и других плесеней. Он подавляет рост патогенных грибков и широко используется в медицине.

Антибиотик из актиномицетов весьма разнообразны по химической природе, механизму действия и лечебным свойствам. Ещё в 1939 советские микробиологи Н. А. Красильников и А. И. Кореняко описали антибиотик мицетин, образуемый одним из актиномицетов. Первым антибиотиком из актиномицетов, получившим применение в медицине, был стрептомицин , подавляющий наряду с грамположительными бактериями и грамотрицательными палочки туляремии, чумы, дизентерии, брюшного тифа, а также туберкулёзную палочку. Молекула стрептомицина состоит из стрептидина (дигуанидиновое производное мезоинозита), соединённого глюкозидной связью со стрептобиозамином (дисахаридом, содержащим стрентозу и метилглюкозамин). Стрептомицин относится к антибиотикам группы водорастворимых органических оснований, к которой принадлежат также антибиотики аминоглюкозиды (неомицин , мономицин, канамицин и гентамицин), обладающие широким спектром действия. Часто используют в медицинской практике антибиотики группы тетрациклина , например хлортетрациклин (синонимы: ауреомицин, биомицин) и окситетрациклин (синоним: террамицин). Они обладают широким спектром действия и наряду с бактериями подавляют риккетсий (например, возбудителя сыпного тифа). Воздействуя на культуры актиномицетов, продуцентов этих антибиотиков, ионизирующей радиацией или многими химическими агентами, удалось получить мутанты , синтезирующие антибиотики с измененным строением молекулы (например, деметилхлортетрациклин). Антибиотик хлорамфеникол (синоним: левомицетин), обладающий широким спектром действия, в отличие от большинства других антибиотиков, производят в последние годы путём химического синтеза, а не биосинтеза. Другим таким исключением является противотуберкулёзный антибиотик циклосерин, который также можно получать промышленным синтезом. Остальные антибиотики производят биосинтезом. Некоторые из них (например, тетрациклин, пенициллин) могут быть получены в лаборатории химическим синтезом; однако этот путь настолько труден и нерентабелен, что не выдерживает конкуренции с биосинтезом. Значительный интерес представляют антибиотики макролиды (эритромицин, олеандомицин), подавляющие грамположительные бактерии, а также антибиотики полиены (нистатин , амфотерицин, леворин), обладающие противогрибковым действием. Антибиотик из бактерий в химическом отношении более однородны и в подавляющем большинстве случаев относятся к полипептидам . В медицине используют тиротрицин и грамицидин С из Bacillus brevis, бацитрацин из Bac. subtilis и полимиксин из Bacillus polymyxa. Низин, образуемый стрептококками, не применяют в медицине, но употребляют в пищевой промышленности в качестве антисептика, например при изготовлении консервов.

Антибиотические вещества из животных тканей. Наиболее известны среди них: лизоцим, открытый английским учёным Антибиотик Флемингом (1922); это энзим - полипептид сложного строения, который содержится в слезах, слюне, слизи носа, селезёнке, лёгких, яичном белке и др., подавляет рост сапрофитных бактерий, но слабо действует на болезнетворных микробов; интерферон - также полипептид, играющий важную роль в защите организма от вирусных инфекций; образование его в организме можно повысить с помощью специальных веществ, называемых интерфероногенами.

Антибиотики могут быть классифицированы не только по происхождению, но и разделены на ряд групп на основе химического строения их молекул. Такая классификация была предложена советскими учёными М. М. Шемякиным и А. С. Хохловым: антибиотики ациклического строения (полиены нистатин и леворин); алициклического строения; антибиотики ароматического строения; антибиотики - хиноны; антибиотики - кислородсодержащие гетероциклические соединения (гризеофульвин); антибиотики - макролиды (эритромицин, олеандомицин); антибиотики - азотсодержащие гетероциклические соединения (пенициллин); антибиотики - полипептиды или белки; антибиотики - депсипептиды.

Третья возможная классификация основана на различиях в молекулярных механизмах действия антибиотиков. Например, пенициллин и цефалоспорин избирательно подавляют образование клеточной стенки у бактерий. Ряд антибиотиков избирательно поражает на разных этапах биосинтез белка в бактериальной клетке; тетрациклины нарушают прикрепление транспортной рибонуклеиновой кислоты (РНК) к рибосомам бактерий; макролид эритромицин, как и линкомицин, выключает передвижение рибосомы по нити информационной РНК; хлорамфеникол повреждает функцию рибосомы на уровне фермента пептидилтранслоказы; стрептомицин и аминоглюкозидные антибиотики (неомицин, канамицин, мономицин и гентамицин) искажают "считывание" генетического кода на рибосомах бактерий. Другая группа антибиотиков избирательно поражает биосинтез нуклеиновых кислот в клетках также на различных этапах: актиномицин и оливомицин, вступая в связь с матрицей дезоксирибонуклеиновой кислоты (ДНК), выключают синтез информационной РНК; брунеомицин и митомицин реагируют с ДНК по типу алкилирующих соединений, а рубомицин - путём интеркаляции. Наконец, некоторые антибиотики избирательно поражают биоэнергетические процессы: грамицидин С, например, выключает окислительное фосфорилирование.

Основные группы антибиотиков

Пенициллины включает следующие лекарства: амоксициллин, ампициллин, ампициллин с сульбактамом, бензилпенициллин, клоксациллин, коамоксиклав (амоксициллин с клавулановой кислотой), флуклоксациллин, метициллин, оксациллин, феноксиметилпенициллин.

Цефалоспорины: цефаклор, цефадроксил, цефиксим, цефоперазон, цефотаксим, цефокситин, цефпиром, цефсулодин, цефтазидим, цефтизоксим, цефтриаксон, цефуроксим, цефалексин, цефалотин, цефамандол, цефазолин, цефрадин.

Пенициллины и цефалоспорины - вместе с антибиотиками монобактамом и карбапенемом - вместе известны как антибиотики бета-лактамы. Другие антибиотики бета-лактамы включают: азтреонам, имипенем (который обычно применяют в комбинации с циластатином).

Аминогликозиды: амикацин, гентамицин, канамицин, неомицин, нетилмицин, стрептомицин, тобрамицин.

Макролиды: азитромицин, кларитромицин, эритромицин, йозамицин, рокситромицин.

Линкозамиды: клиндамицин, линкомицин.

Тетрациклины: доксициклин, миноциклин, окситетрациклин, тетрациклин.

Хинолоны: налидиксовая кислота, ципрофлоксацин, эноксацин, флероксацин, норфлоксацин, офлоксацин, пефлоксацин, темафлоксацин (изъят в 1992г.).

Другие: хлорамфеникол, котримоксазол (триметоприм и сульфаметоксазол), мупироцин, тейкопланин, ванкомицин.

Существует несколько лекарственных форм антибиотиков: таблетки, сироп, растворы, свечи, капли, аэрозоли, мази и линименты. Каждая лекарственная форма имеет достоинства и недостатки.

Таблетки Недостатки

Достоинства

1. Безболезненно. Не требуется усилий (не сложно)

Сиропы Недостатки

1. Зависимость от моторики желудочно- кишечного тракта

2. Проблема точности дозировки

Достоинства

1. Удобны в применении в детской практике

Растворы Недостатки

1. Болезненно

2. Техническая сложность

Достоинства

1. Можно создать депо аппарата (под кожу)

2. 100% биодоступность (вводится внутривенно)

3. Быстрое создание максимальной концентрации в крови.

Свечи и капли Недостатки

Достоинства

Аэрозоли Недостатки

1. Не все антибиотики можно превратить в аэрозоль

Достоинства

1. Быстрое всасывание

Мази, линименты Недостатки

1. Применяются для местного лечения

Достоинства

1. Можно избежать системного воздействия на организм

Гуго Глязер писал: «в древности врача сравнивали с человеком, желающим в темной комнате прочитать книгу. Но с того времени комната становиться все светлей и светлей». Вот таким лучом света стало открытие антибиотиков.

Термин «антибиоз» впервые употребил в 1889 г. ученый Вюильмен , который писал: «когда два живых тела тесно соединены и одно из них оказывает разрушительное действие на большую или меньшую часть другого, можно сказать, что происходит антибиоз».

Явление войны между микробами наблюдали многие ученые. Луи Пастер не раз наблюдал, как «жизнь мешает жизни». И все-таки таких наблюдений было мало, чтобы найти это вещество, отобрать его у микробов и использовать это вещество против своих же собратьев. Это мог сделать только подготовленный, проницательный ум.

Таким ученым оказался Александр Флеминг , который открыл пенициллин – первый антибиотик, препарат, снискавший мировую славу короля антибиотиков.

АлександерФлеминг (6.08.1881 г. – 11.03.1955 г.) – английский микробиолог, член Лондонского королевского общества, член Парижской АН. Окончил медицинскую школу Сент-Мэри при Лондонском университете. Работал в Бактериологическом институте в Лондоне. В 1948–55 г.г. профессор бактериологии Лондонского университета. В 1951–54 г.г. ректор Эдинбургского университета. Первый президент общества общей микробиологии. Основные работы по иммунологии, общей бактериологии, химиотерапии, антисептикам, антибиотическим веществам. Открыл антибиотические вещества лизоцим (1922 г.) и пенициллин (1929 г.). В 1945 году присуждена Нобелевская премия.

Об истории открытия Флемингом пенициллина написано много книг. Занимаясь изучением стафилококков – микробов, вызывающих нагноительные процессы, Флеминг просматривал чашки с культурами выросших микробов. На одну из чашек попала зеленая плесень из воздуха, около которой стафилококки не росли, микробы старались держаться от нее подальше. Он решил, что зеленая плесень содержит и выделяет что-то мешающее росту стафилококков. Это что-то и оказалось тем веществом – пенициллином, которая выделяла плесень во внешнюю среду. Флеминг работал с неочищенным фильтратом, фильтрат задерживал рост различных микробов, даже будучи разведенным, в несколько сотен раз и не был ядовит для животных. Эти первые сведения о пенициллине были опубликованы в 1929 году. Но понадобилось еще 12 лет, чтобы пенициллин был выделен в кристаллическом виде и его можно было вводить больным.

Сделали это другие ученые: Говард Флори и Эрнст Чейн . Это была трудная и кропотливая работа. Но этот труд был завершен и оправдал себя. Был получен кристаллический пенициллин. Миллионы человеческих жизней, обреченных на гибель, были спасены. Препарат бил микробов, не задевая клеток и тканей организма. Защитное действие пенициллина превосходило антимикробный эффект известных и широко применявшихся сульфаниламидов. Например: сульфидин подавлял рост стафилококков в разведении 1:100, то пенициллин обладал таким действием 1:80.000.000. Многие болезни, такие, как гонорея, воспаление легких, менингит, сифилис, ангина, фурункулез и ряд других, излечивались при введении пенициллина. Успех препарата был потрясающим. За открытие и получение пенициллина его авторы Флеминг, Флори, Чейн в 1946 г. были удостоены Нобелевской премии.


В нашей стране пенициллин был получен независимо от английских исследователей в это же время. Эта работа проводилась в лаборатории Всесоюзного института экспериментальной медицины. Наши ученые начали работу с нуля, т.к. они не располагали плесенью Флеминга и не были знакомы с методами получения очищенного препарата. Эти исследования были ускорены Великой Отечественной Войной. Плесень собирали, расставляя чашки с питательной средой в углах московских бомбоубежищ. И собрали богатый урожай плесени. Из 93 штаммов, тщательно изученных учеными, была отобрана наиболее эффективная плесень, которая выделяла во внешнюю среду пенициллин.

Много трудностей было при извлечении чистого препарата пенициллина, но все было преодолено в удивительно короткий срок коллективом исследователей под руководством Зинаиды Виссарионовны Ермольевой . Советский пенициллин был высокоактивен, время для клинических испытаний было минимальным, т.к. фронт военных действий двигался. Под руководством академика Бурденко Н.Н . на фронт была отправлена большая бригада советских ученых, которые должны были изучить целебные действия советского пенициллина непосредственно на фронте.

Вот что пишет об этом сама З.В.Ермольева: «Препарат излечивал больных, погибавших от заражения крови, больных рожистым воспалением и воспалением легких. Он давал хороший эффект при лечении газовой гангрены, предупреждал развитие нагноения в ране после хирургической обработки, способствовал ликвидации гнойных процессов при тяжелых ранениях черепа, препарат исключительно эффективно излечивал карбункулез, нагноительные процессы в органах брюшной полости. Пенициллин, примененный с профилактической целью при тяжелых ранениях бедра, предупреждал развитие сепсиса и газовой гангрены».

Такова история создания советского пенициллина. Открытие пенициллина явилось путеводной звездой, которая подсказывала ученым, как отыскать другие антибиотики, которых с того времени появилось много. Единственное, что хочется добавить, это открытие в 50-е годы фитонцидов советским ученым Токиным (фитонциды – микробные яды, выделяемые растительными клетками в процессе жизни) и открытие английскими учеными в 1957 г. нового антибиотика, вырабатываемого организмом человека и животного – интерферона.

Тема 11. Развитие медицины и фармации в Древнерусском государстве, в Московском государстве

Первобытнообщинный строй. Древнейшие следы пребывания человека на территории современной России относятся к шелльской культуре (около 600-400 тыс. лет назад) раннего палеолита. Ашельская культура (400-100 тыс. лет назад) представлена памятниками, открытыми на Кавказе и на Украине (отдельные орудия найдены и в Средней Азии). Стоянки мустьерской культуры (100-35 тыс. лет назад) распространены и дальше на север, до среднего течения рек Волги и Десны. Это была эпоха «первобытного человеческого стада», период начала становления общества и человека как биологического вида. Основными источниками существования небольших человеческих групп были охота и собирательство. Важнейшие достижения этого времени - совершенствование техники изготовления и форм каменных орудий, начало производства костяных орудий, освоение способов добывания огня, строительство жилищ. Появились захоронения (Тешик-Таш, Киик-Коба), что, возможно, свидетельствует о возникновении религиозного культа.

В позднем палеолите (35-10 тыс. лет назад) люди проникли в Приуралье и на Печору, в Западно-Сибирскую низменность, Забайкалье и долину средней Лены. Возникла новая техника обработки камня, появились составные орудия, большие общинные жилища - наземные и землянки, одежда, сшитая из шкур зверей. Главными источниками существования оставались охота, рыболовство, собирательство. «Первобытное человеческое стадо» сменилось материнской родовой общиной. Зародилось искусство: скульптурные изображения людей, животных, пещерная живопись.

В эпоху мезолита (10-6 тыс. лет назад) с изобретением лука и стрел сложился новый вид охоты, приведший к большей подвижности первобытных общин. Полуоседлый образ жизни сохранялся до следующей исторической эпохи - неолита(6-2-е тыс. до н.э.), когда произошёл переход к производящим типам хозяйства - земледелию и скотоводству. Наиболее важными нововведениями были изобретение гончарного производства, прядения и ткачества, новых средств передвижения - челнов, лыж, саней. К концу неолита появились первые изделия из металла - меди. В результате роста и объединения отдельных родов возникли более крупные группировки - племена. Неолит - время развитого родового строя. Усложнилась религия - наряду с тотемизмом и анимизмом дальнейшее развитие получил материнско-родовой культ хозяек и охранительниц домашнего очага.

В бронзовом веке (3-2-е тыс. до н.э.) возникли экономические предпосылки для появления эксплуатации.

Территорию Верхнего Поволжья, берега Оки и Валдайскую возвышенность занимала большая группа племён дьяковской культуры . В низовьях Западной Двины, на правобережье среднего Немана жили племена штрихованной керамики культуры. Бассейн средней Волги населяли племена городецкой культуры , бассейны рек Камы, Вятки и Белой - племена ананьинской культуры (8-3 вв. до н.э.), а потом пьяноборской культуры (конец 1-го тыс. до н.э. - начало 1-го тыс. н.э.). Несколько позже - в середине 1-го тыс. до н.э. - наступил железный век в Сибири и на Алтае. Своеобразную культуру позднего бронзового и железного веков создали племена Дальнего Востока.

Рабовладельческий строй. Переход от первобытнообщинного строя к классовому обществу происходил в разных районах в разное время и в неодинаковых условиях. На большей части территории России этот процесс совершился в 1-м и начале 2-го тыс. н.э. и привёл к образованию раннефеодальных государств. Но на юге страны, в областях, которые были связаны с древними рабовладельческими цивилизациями, он начался ещё в 1-м тыс. до н.э.; там возникли рабовладельческие государства.

Скифы, частью кочевники-скотоводы, частью оседлые земледельцы, находились на пороге образования классового общества; их связи с античными городами стимулировали возникновение у них в 4 в. до н.э. собственного государства, охватившего территории от Дуная до Дона.

Феодальный строй. В 1-й половине 1-го тыс. н.э. у народов Северного Причерноморья, Кавказа и Средней Азии рабовладельческий строй находился в состоянии упадка. На смену ему шла новая общественно-экономическая формация - феодализм. Феодальные отношения, основанные на эксплуатации более высокопроизводительного (по сравнению с рабским) труда зависимых крестьян, имевших своё хозяйство, были исторически прогрессивными. Хотя рабский труд ещё долго сохранялся в хозяйстве, феодальные отношения приобретали господствующий характер.

Феодальные отношения у народов формировались и развивались на протяжении длительного времени. Формирование раннефеодальных отношений завершилось в Закавказье и Средней Азии в 9-10 веках, у восточных славян в 11 веке. Рост земельной собственности при господстве натурального хозяйства неизбежно вёл к возникновению обособленных владений и феодальной раздробленности, порождал междоусобную борьбу феодалов за землю и рабочие руки - крестьян. Это был закономерный этап развития феодализма, который характеризовался подъёмом производительных сил, широким освоением земель, основанием новых городов.

Развитие феодальных отношений на Руси было заторможено монгольскими завоеваниями в 13 веке. В связи с этим направление и темпы развития феодализма в разных регионах стали значительно отличаться друг от друга. В то время как политическая борьба в Северо-Восточной Руси за освобождение от монголо-татарского ига сопровождалась оживлением хозяйства и укреплением государственности, в Средней Азии и Закавказье в связи с разрушением хозяйственной основы, продолжавшимися иноземными нашествиями и внутренними междоусобицами прочные централизованные государства не образовались.

В процессе складывания и расширения Российского государства в него включались народы, находившиеся на различных уровнях социально-экономического развития: от первобытнообщинного строя, стадии перехода к раннефеодальным отношениям до развитых форм феодализма.

С середины 1-го тыс. н.э. происходил процесс разложения первобытнообщинного строя у многих земледельческих и скотоводческих племён, живших на территории Европейской части страны, Сибири и Казахстана.

На рубеже 9-10 вв. происходил процесс государственного образования у народов Северного Кавказа. В 8-9 вв. от Аральского моря, в нижнем и среднем течении Сырдарьи, кочевал племенной союз кангар, из которого выделились печенеги. В конце 9 в. они вторглись из Заволжья в причерноморские степи. Печенеги совершали набеги на Хазарский каганат, Византию, Русь.

В первые века н.э. на территории современной Калининградской области жили курши, земгалы, латгалы, селы, образовавшие позже латышскую народность, племена пруссов, а также финно-угорские племена ливов и эстонцев.

Древнерусское государство. Восточные славяне. Расселение восточных славян на территории нынешней России происходило в 1-м тыс. н.э. Восточные славяне переходили к феодализму непосредственно от первобытнообщинного строя. В 3-й четверти 1-го тыс. на стадии военной демократии образовался ряд восточно-славянских племенных союзов.

Киевская Русь в 9 - начале 12 вв. В результате постепенного разложения первобытнообщинных отношений и обогащения родовой знати произошло обособление родоплеменной верхушки во главе с военными предводителями - князьями. Вначале главной формой феодальной эксплуатации было обложение данью подвластных племён (9-10 вв.), но постепенно князья, узурпируя власть в общине-верви, переходили к захвату общинных земель, передавая их дружине в качестве платы за службу, во временное пользование (натур, сборы, судебные пошлины).

Внешнеполитические позиции Киевской Руси упрочились в 3-й четверти 10 века. В 988-989 г.г. князь Владимир Святославич (правил в 980-1015 г.г.) ввёл христианство в его православной форме в качестве государственной религии. Христианство способствовало не только объединению частей Киевского государства, экономически слабо связанных между собой, но и укреплению новых общественных отношений. Возникшая на Руси церковная организация стала впоследствии крупным феодальным землевладельцем, церкви и монастыри - центрами развития письменности, зодчества, живописи.

В 1-й половине 11 века раннефеодальное Киевское государство достигло наивысшего расцвета. Киевская Русь стала крупнейшим государством средневековой Европы. Она занимала огромную территорию.

В эпоху Киевской Руси сложилась древнерусская народность, ставшая основой последующего формирования 3 братских народностей - русской, украинской и белорусской. Киевская Русь положила начало государственности у восточных славян.

Активная тенденция к феодальной разобщённости проявилась на Руси уже во 2-й половине 11 века.

В Центральной Азии в начале 13 в. возникло раннефеодальное государство кочевых племён монголов во главе с Темучином, принявшим имя Чингисхана. В 1223 году они нанесли тяжёлое поражение русским князьям на р. Калке в причерноморских степях. В результате походов Чингисхана была создана огромная Монгольская феодальная империя.

В 1241 г. монголо-татары потерпели поражение от чешских, немецких и польских войск. Пройдя через Венгрию и достигнув побережья Адриатического моря, монголо-татары прекратили продвижение на запад и повернули обратно. Героическая борьба Руси спасла Европу от монголо-татарского ига. Монголо-татары уничтожили и угнали в плен большое количество людей, нанесли огромный ущерб науке покорённых народов, надолго затормозили их развитие. Разрушение большого числа городов привело к консервации феодальных отношений. Поддерживая междоусобную борьбу русских князей, монголо-татары приостановили политическую консолидацию Руси.

Объединение русских земель. Начавшийся на рубеже 13-14 вв. подъём экономики и перемещение масс населения на территории Северо-Восточной Руси, защищенной лесами от набегов монголо-татар, способствовали объединению русских княжеств в одно государство.

В 60-70-е гг. 14 века происходила феодальная война между великим князем московским Дмитрием Донским и тверским князем Михаилом Александровичем, опиравшимся на помощь Литвы. Построив каменный Кремль Московский, отразив нападения союзника Твери - литовского князя Ольгерда, Дмитрий Донской нанёс ряд поражений тверскому, нижегородскому и рязанскому князьям.

В 14 веке Москва выступила организатором борьбы за свержение монголо-татарского ига. Битва на Куликовом поле 8 сентября 1380 г., в которой возглавленные Дмитрием Донским русские воины разгромили войско Мамая, утвердила руководящее положение Москвы.

Развитие феодальных отношений, возникновение обособленных феодальных владений, усиление освободительной борьбы русского и других народов привели к распаду Золотой Орды. В конце 14 - начале 15 вв. из бывших владений Золотой Орды выделились Тюменское ханство, образовалось Сибирское ханство, в 1438 г. - Казанское ханство, в 1443 г. - Крымское ханство, в середине 15 в. - Астраханское ханство и др.

В 14-15 вв. на основе древнерусской народности происходило складывание русской (великорусской) народности.

Российское государство в конце 15 - начале 17 вв. Во время правления великого князя московского Ивана III Васильевича было свергнуто монголо-татарское иго. К Московскому княжеству был присоединён Ярославль, Ростов, Новгород, Тверь и Вятка. В правление Василия III Ивановича под власть Москвы перешли Псков, В состав Российского государства вошли многие нерусские народы. Во 15-16 вв. произошло объединение большинства русских земель в Российское государство. Его образование и укрепление было явлением исторически прогрессивным; оно прекращало междоусобные войны и обеспечивало внешнюю безопасность страны.

В середине 16 в. в государстве было уже до 160 городов, большинство из которых представляло собой военно-административные центры-крепости, особенно на окраинах. В Москве насчитывалось около 100 тыс. жителей.

Разорение Российского государства в 1-й четверти 17 в. достигло угрожающих масштабов. Мероприятия правительства были направлены как на ликвидацию хозяйственной разрухи, так и на дальнейшее усиление крепостничества.

Став единоличным правителем, Петр I проявил глубокое понимание задач, возникших в то время перед Россией. Его преобразования, направленные на преодоление отставания России от передовых стран Западной Европы, коснулись всех сторон государственной и общественной жизни.

К середине 18 века в недрах феодально-крепостнического строя России складывается капиталистический уклад. Абсолютистское государство, заинтересованное в сохранении экономических и политических позиций дворянства, пыталось приспособить крепостническое помещичье хозяйство к товарно-денежным отношениям.

Капиталистический строй. Падение крепостного права, оформленное правительственными актами 19 февраля 1861 г. - рубеж смены в России феодально-крепостнической формации капиталистической.

Развитие капитализма и технический прогресс, формирование классов капиталистического общества, увеличение подвижности населения и изменения во всём его духовном облике, рост демократического и начало пролетарского освободительного движения - таковы общие условия и основные факторы, под воздействием которых происходило развитие культуры России 2-й половины 19 в. и обострение борьбы двух культур в национальной культуре страны. Ко времени падения крепостного права число грамотных во всей массе жителей приближалось к 7%.

Капиталистическая Россия становилась страной всё более грамотной. 2-я половина 19 века важный этап в формировании российской разночинной интеллигенции. Кроме прежде существовавших университетов в Москве, Петербурге, Харькове, Казани, Киеве, Юрьеве были основаны университеты в Одессе и Томске.

Передовая русская наука и культура способствовали развитию культуры других народов Российской империи.

Эпоха социализма. Февральская буржуазно-демократическая революция послужила прологом Октябрьской революции. Только социалистическая революция могла решить назревшие вопросы социального прогресса, вывести страну из разрухи. Изменилось социально-экономическое лицо деревни.

Развитие науки и в частности медицины происходит с перерывами на военные действия и потому серьезно отстают от западной науки.

Уже позже наука и культура достигает значительных успехов.

Развитие фармации в России необходимо рассматривать в неразрывной связи с развитием общей истории и историей отечественной медицины. Эта связь является органической, т.к. все сдвиги в фармацевтической области отражают соответствующие изменения в медицинской науке.

В развитии медицины и лекарствоведения, как составной части медицины, на Руси можно выделить несколько этапов:

I. Народная медицина – медицина скифов (с языческого периода до второй половины IХ века);

II. Медицина в Древнерусском государстве (вторая половина IХ века – середина XIII века);

III. Медицина в период татаро-монгольского ига (середина ХIII века – XV век);

IV. Медицина в период образования и развития Русского государства (XV-XVII века);

V. Фармация в Петровскую эпоху (XVIII век – первая половина XIX века)

VI. Фармация XIX века – начала XX века.




© 2024
womanizers.ru - Журнал современной женщины