04.09.2019

Изобретение микроскопа. Микроскопия XVII столетия. Первый микроскоп сконструировал История изобретения микроскопа кратко


Основной частью микроскопа являются оптические линзы. Искусство шлифовки оптических линз и первые попытки их применения уходят в глубокую древность.

В XVI-XVII вв. это искусство достигло значительного развития, особенно в Голландии и Италии. Потребность в очках вызвала и соответствующую промышленность. Очки практически могли появиться только тогда, когда научились шлифовать стекла с большим фокусным расстоянием (конец XIII века, предположительно 1285-1289 гг.). Вероятно, они были сконструированы под влиянием идей Роджера Бэкона (Roger Bacon, ок. 1214-1294) флорентийцем Сальвино дельи-Армати (Salvino d’Amarto degli Armati) или его соотечественником Александром делля Спина (Alessandro della Spina), хотя сведения об этом не считаются достаточно достоверными. Так или иначе, в первой половине XIV в. очки были уже распространены и широко употреблялись в Европе.

Но еще два столетия понадобилось для того, чтобы идея микроскопа, потенциально существовавшая, вероятно, со времени Бэкона, была реализована и оптические линзы начали применяться как прибор, дающий возможность видеть «невидимое». Лишь к концу XVI в. техника изготовления оптических линз и практика их использования дают условия для изготовления микроскопа, и лишь в XVII в. увеличительные стекла находят применение для исследования природы.

На рубеже XVI и XVII вв. почти одновременно были изобретены два прибора, оказавшие неоценимые услуги в науке: телескоп и микроскоп. История изобретения микроскопа выяснена до сих пор недостаточно и часто подменяется непроверенными сведениями.

До недавнего времени большинство историков считало изобретателями микроскопа голландских оптических мастеров Ганса и Захариаса Янсенов (Hans, Zacharias Janssen), занимавшихся в Миддельбурге изготовлением очков. Однако С. Л. Соболь (1941-1943, 1949) на основании критического анализа существующей исторической документации оспаривает это положение. По мнению С. Л. Соболя, изобретению микроскопа предшествовало изобретение телескопа. Первый прототип микроскопа, считает Соболь, был сконструирован Галилеем в 1609-1610 гг. путем удлинения подзорной трубы (изобретенной им несколько ранее) и увеличения расстояния между вогнутым окуляром и выпуклым объективом. Галилей, очевидно, заметил, что при этом зрительная труба увеличивает близко находящиеся мелкие объекты. Добиваясь в дальнейшем получения более короткофокусных линз, Галилей усовершенствовал первоначальную конструкцию микроскопа, уменьшив длину трубы.

Однако последующая конструкция микроскопа пошла по другому пути, на основе оптического инструмента, предложенного Кеплером, где были применены окуляр и объектив в виде одиночных выпуклых линз, что давало обратное (перевернутое) изображение. Идея такого инструмента была выдвинута Кеплером еще в 1611 г., а в 1613-1617 гг. впервые был сконструирован подобный телескоп.

Поэтому, считает С. Л. Соболь, изобретение микроскопа нужно отнести к 1617-1619 гг. Во всяком случае к 1619 г. относится один из первых микроскопов, о которых сохранились сведения, - микроскоп Дреббеля. Корнелиус Дреббель (Cornelius Drebbel, 1572-1634), крестьянин по происхождению, приобрел славу опытами, где незаурядное знание физики перемешивалось с магией, а наука - с шарлатанством. Прожив богатую приключениями жизнь, Дреббель стал астрологом при дворе английского короля Якова I. Дреббель занимался конструкцией ряда физических приборов, в том числе и микроскопов. Изготовленные Дреббелем микроскопы, изобретателем которых он себя выдавал, распространились в Европе, проникнув из Англии во Францию и Италию. Изображена реконструкция микроскопа Дреббеля, выполненная по указанию С. Л. Соболя на основании описания, относящегося к 1619 г. Труба этого микроскопа около полуметра длиной, при диаметре около 5 см; она была сделана из позолоченной меди и поддерживалась тремя медными дельфинами на круглой подставке из черного дерева. На подставку, пишет современник, «клались различные вещи, которые мы рассматривали сверху в увеличенном почти до невероятности виде».

Первые четыре десятилетия конструкция микроскопа прогрессировала медленно, однако вместо объективов типа очковых линз постепенно начинают применять более короткофокусные линзы. Кирхер (Atanasius Kircher, 1601-1680), немецкий естествоиспытатель, издал в Риме сочинение под названием «Великое искусство света и тени» (Ars magna lucis et umbrae), где дал перечень существовавших в то время микроскопов (С. Л. Соболь, 1949).

В начале XVII века к микроскопу относились преимущественно как к любопытной игрушке, с помощью которой, забавы ради, можно рассматривать мелких насекомых и вообще различные мелкие предметы, но который мало кто считал серьезным научным инструментом. «Микроскопы» того времени представляли собой трубку с двумя стеклами по концам; их называли «блошиными» или «комариными стеклами» (vitrium pulicarium), в чем отражалось характерное для этого периода легкомысленное отношение к инструменту, служившему обычно для изумления наблюдателей величиной изображения. Гевелиус (Jan Heveliusz, 1611--1687), выдающийся польский астроном, в своей «Селенографии», изданной в Гданьске, так описывает подобный «микроскоп»: «Микроскоп, который обычно называют комариным стеклом, показывает маленькие тельца и едва ли заметных зверьков в величину верблюда или слона, так что это вызывает большое удивление и забаву. Он состоит из двух стекол и трубки, около дюйма длиной, перед которой располагается объект. Одно стекло, расположенное около глаза, выпуклое, вышлифованное из сегмента небольшого шара, не более двух дюймов в диаметре; другое стекло, лежащее у основания, где располагаются рассматриваемые предметы, - простое плоское стекло, назначение которого пропускать свет». Таким образом, служившие для забавы «микроскопы» представляли собою чаще всего простые лупы, или, как их позже стали называть, «простые микроскопы». Но наряду с этим Гевелиус описывает и «сложный микроскоп» из двух выпуклых линз типа микроскопа Дреббеля, в отношении которого он замечает, что «при этом способе предстоящие мельчайшие объекты, которые ускользают от глаз, явятся более ясными и отчетливыми, чем в первом микроскопе» (т. е. в «блошином стекле»).

Применение микроскопа с научными целями впервые было начато по инициативе Федерико Чези (Federico Cesi, 1585-1630) в римской Academia dei Lincei (к ее составу принадлежал и Галилей). По-видимому, итальянский натуралист Стеллути (Francesco Stelluti, 1577-1646) одним из первых применил микроскоп для изучения биологического объекта - пчелы.

Первые микроскопы никаких осветительных приспособлений и приспособлений для изменения фокуса не имели. Объекты рассматривались в них при дневном освещении в падающем свете. Естественно, что эти микроскопы давали весьма плохое и искаженное изображение.

Первое усовершенствование микроскопа и пропаганда этого прибора в качестве научного инструмента связаны с именем выдающегося английского физика Роберта Гука (Robert Hooke, 1635-1703), впервые обнаружившего при помощи своего микроскопа «клетки» у растений. Таким образом, возникновение понятия о клетке почти совпадает с периодом появления микроскопа и зарождения микроскопии.

Гук был знаком с микроскопом, привезенным Дреббелем в 1619 г. в Англию. Будучи по складу ума изобретателем, Гук заинтересовался новым прибором и поставил перед собой цель реконструировать микроскоп Дреббеля. Гуку удалось создать инструмент, обладавший рядом преимуществ по сравнению с существовавшими микроскопами. В «Микрографии» (1665) Гук дал подробное описание и изображение своего микроскопа. Тубус имел около 8 см в диаметре и около 18 см длины и был снабжен приспособлениями для некоторого изменения расстояния объектива от объекта и изменения наклона трубы. Существенным изменением оптической части микроскопа было введение третьей двояковыпуклой линзы, помещенной между окуляром и объективом; уменьшая изображение, эта линза делала его более отчетливым и увеличивала поле зрения. Объект располагался на небольшом круглом диске или его нанизывали на штифт, расположенный на диске сбоку. К микроскопу был приспособлен осветительный аппарат, состоявший из источника света, наполненного водой стеклянного шара и двояковыпуклой линзы, концентрировавшей свет на объект. Таким образом, и в микроскопе Гука объект рассматривался в падающем свете. При помощи этого микроскопа Гук сделал поразительные по тонкости наблюдения, описание которых в его «Микрографии» сопровождается прекрасными иллюстрациями, показывающими тонкость наблюдений этого первого микроскописта.

Одновременно с Гуком над усовершенствованием микроскопа работал в Риме Эвстахий Дивини (Divini, 1667), внесший существенное улучшение введением окуляра, составленного из двух плосковыпуклых линз, выпуклые поверхности которых были направлены друг к другу. Это создавало плоское поле зрения и более равномерное увеличение различных частей рассматриваемого предмета. Линзы Дивини увеличивали от 41 до 143 раз. Конструкцией микроскопов занимались в Италии еще несколько мастеров, способствовавших распространению нового прибора.

В 1672 г. немецкий оптик Штурм (Sturm) ввел в микроскоп новое улучшение: вместо объектива с одной линзой, он изготовил объективы из двух линз: плосковыпуклой и двояковыпуклой или из двух двояковыпуклых линз с различной кривизной («дублеты»). Таким образом, в практику вводятся микроскопы с комбинацией нескольких линз в окуляре и в объективе. Венский инженер Гриндель фон Ах (Griendel von Ach) сконструировал в 1685 г. микроскоп с 6 линзами. Общий вид этого микроскопа очень схож с описанием микроскопа Дреббеля.

Новое изменение в конструкцию микроскопа ввел (около 1665 г.) итальянец Камяани (Giuseppe Campani), микроскоп которого имел в предметном столике отверстие и зажимы для стеклянных или слюдяных пластинок с объектами. Его микроскоп состоял из двух линз. Ту же конструкцию Тортона (Carl Anton Tortona) применил для своего трехлинзового микроскопа (около 1685 г.). Микроскоп Тортоны состоял из трубки, в верхний конец которой был вставлен окуляр, далее располагалась собирательная линза, а внизу был укреплен объектив. Все линзы представляли собой двояковыпуклые чечевицы. На трубку навинчивалось кольцо, соединенное с объектодержателем, состоящим из двух стекол, между которыми помещался предмет, рассматриваемый в проходящем свете.

Изображена модель микроскопа Бонануса (Bonannus) - одна из наиболее сложных моделей конца XVII в. За основу взят микроскоп Тортоны, дополненный рядом приспособлений. Микроскоп Бонануса сконструирован так, чтобы, прочно фиксировав положение инструмента, освободить руки наблюдателя (микроскопы Тортоны, как и первые микроскопы Бонануса, надо было держать в руках) и сконцентрировать на объекте максимум света. Микроскоп состоит из тубуса (АВ), несущего линзы. Винт Z зажимает вертикальную подачу тубуса, укрепленного в держателе У. Приспособление RTG, деталь которого изображена отдельно, позволяет передвигать тубус вперед и назад, т. е. менять фокусное расстояние. Это первая попытка механического приспособления для установки фокуса при неподвижной фиксации объекта. Объект помещается в особый держатель CD, зажатый между двумя стеклами, вделанными в деревянные пластинки I. Освещается объект лампой Q, свет которой концентрируется конденсором О; конденсор может двигаться по горизонтальной и вертикальной плоскости. В микроскопе Бонануса есть уже зачатки основных механических частей и приспособлений позднейшего микроскопа: механическая подача тубуса, осветитель и предметный столик. Объект рассматривался в проходящем свете; Бонанус снова ввел для этой цели искусственное освещение.

Оптические части его микроскопа состояли из трех или четырех линз, дававших увеличение в 200-300 раз.

Несмотря на все эти нововведения, микроскоп оставался очень несовершенным инструментом, так как при употреблении комбинированных систем линз резко ощущались сферическая и хроматическая аберрации, сильно искажавшие изображения при сколько-нибудь большом увеличении. В этом приходится искать причину того, что некоторые выдающиеся исследователи XVII и XVIII вв. не применяли сложного микроскопа.

Сваммердам - замечательный зоотом XVII в., прославившийся искусством препаровки мелких объектов, особенно насекомых, употреблял лишь простую лупу. Он сконструировал прибор, где можно было быстро сменять лупы разных увеличений, и при помощи этого прибора последовательно переходил от слабых линз к сильным, не прибегая к их комбинированию.

Лёвенгук, второй замечательный голландский микроскопист, также не пользовался настоящим сложным микроскопом. «Микроскопы» Лёвенгука были в действительности лупами. Изображен один из подобных инструментов Лёвенгука. Он представлял собой две серебряные пластинки, имеющие отверстие, в которое вделана линза; позади помещается держатель для объекта. Наблюдатель брал «микроскоп» за особую ручку и рассматривал объекты в проходящем свете. Для различных объектов Лёвенгуку приходилось делать разные держатели, и он делал с этой целью новые инструменты. По собственному заявлению, Лёвенгук обладал 200 «микроскопами», дававшими увеличение от 40 до 270 раз. Только исключительное мастерство в шлифовке стекол позволило Левенгуку изготовлять линзы с таким поразительным увеличением (ведь увеличение в 270 раз достигалось одной линзой), а зоркость наблюдателя позволила Лёвенгуку сделать поразительные открытия.

Таковы инструменты, с которыми работали и сделали выдающиеся открытия микроскописты XVII в. Достойно удивления, как с такими примитивными приборами можно было описывать те порой поразительные по точности детали, которые мы находим в их работах. Очевидно, настойчивость, перспектива открытия новых, никому не известных фактов, помогали преодолевать трудности, которые ставил перед наблюдателем микроскоп в ранний период своего возникновения.

К сказанному нужно добавить, что изучаемые объекты рассматривались без всякой обработки, прямо в воздухе, помещенными на стекло (иногда между двумя стеклами) или наколотыми на иголку. Резкая разница между показателями преломления воздуха и объекта создавала дополнительные трудности для изучения. Наконец, несмотря на исключительное мастерство в шлифовке линз, стекла того времени давали резкую хроматическую аберрацию, особенно чувствительную в сложных микроскопах, где недостатки одной системы стекол усиливались второй системой - окуляром.

Едва ли кто-либо из современных опытных микроскопистов, избалованных новейшими ахроматическими микроскопами, мог бы при помощи инструментов, которыми пользовались в XVII в., рассмотреть то, что видели выдающиеся микроскописты того времени. Простой современный школьный микроскоп представляет собой шедевр, с которым эти старинные микроскопы нельзя сравнивать. И тем не менее с их помощью открывали замечательные факты. Одним из них явилось открытие в XVII в. клеточного строения растений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Микроскоп – уникальный оптический прибор, позволяющий рассмотреть, изучить и измерить мельчайшие предметы и структуры, невидимые человеческим глазом. С помощью него было сделано множество открытий, изменивших судьбу человечества, появилась новая наука – микробиология. Известно, что , позволяющее увеличивать предметы в сотни и тысячи раз, совершенствовалось на протяжении многих лет. В данной статье рассмотрим, кто изобрел первый микроскоп и положил начало изучению недоступных глазу человека объектов Вселенной.

История создания первого микроскопа

О том, что изогнутые поверхности способны зрительно увеличивать предметы, было известно еще до нашей эры. В 1550 году эти необычные свойства нашли свое применение в устройстве, сооруженном голландским мастером по изготовлению очков. Звали его Ханс Янсен, с помощью своего сына он изготовил прибор, позволяющий добиться увеличения объектов в 30 раз. Это стало возможным благодаря использованию двух линз, помещенных в одну трубку. Первая из них увеличивала исследуемый объект, а вторая усиливала действие, делая полученное изображение больше. Однако сконструированный прибор не нашел широкого применения, поэтому история изобретения микроскопа продолжилась в трудах других исследователей:

  • Галилео Галилей – создал прибор, состоящий из двух видов линз. Выпуклые и вогнутые оптические элементы позволяли добиться лучшего изображения и большего увеличения объектов. Произошло это событие в 1609 году;
  • Корнелиус Дреббель – внес в составной микроскоп существенную доработку, применив для увеличения две выпуклые линзы;
  • Кристиан Гюйгенс – разработал регулируемую систему окуляров, что стало огромным прорывом в области изучения микромира.

Все вышеназванные исследователи внесли неоценимый вклад в создание важного оптического прибора. Однако история изобретения и распространения микроскопа начинается с устройств, созданных Левенгуком. Знаменитый голландец не был ученым, его открытия основаны только на любительском интересе. Микроскоп Левенгука имел всего одну, но очень сильную линзу, которая позволяла увеличить изображение в несколько сотен раз. Подобное устройство давало возможность рассмотреть объект исследования подробно и четко. С помощью него Левенгук обнаружил эритроциты в человеческой крови, рассмотрел волокна мышечной ткани, а также впервые увидел бактерии. Данный микроскоп был первым устройством подобного рода, ввезенным в Россию по приказу Петра I. Неоспоримым его преимуществом перед составным микроскопом было отсутствие дефектов изображения, порождаемых несколькими линзами.

Современные открытия и достижения

Современные микроскопы значительно изменились и усовершенствовались по сравнению с самыми первыми моделями. Появились электронные устройства, которые позволяют многократно увеличить изображение, используя вместо света поток электронов. Кто изобрел электронный микроскоп? В 30-е годы XX столетия немецкий инженер Р. Руденберг запатентовал просвечивающее устройство с фокусировкой электронов. Этот прибор был назван световым микроскопом и стал широко применяться во многих научных исследованиях.

Еще более совершенной моделью является наноскоп. Это самый современный вид оптического микроскопа, позволяющий наблюдать за фантастически малыми объектами. С помощью этого прибора стало возможным изучать элементы микромира, имеющие размеры менее 10 нанометров. Кроме этого, устройство позволяет получить качественные трехмерные изображения . Какой ученый впервые изобрел микроскоп, имеющий такие возможности? Над открытием наноскопа трудилась целая группа ученых, руководил которой немецкий исследователь Штефан Хелль. Известный изобретатель и доктор физических наук, он получил Нобелевскую премию за неоценимый вклад в развитие оптической техники.

С помощью современных приборов стало возможным наблюдать уникальные явления и делать сенсационные открытия. Ученые смогли проследить движение отдельных молекул внутри клетки, получить четкое изображение атома, а также зафиксировать молекулярные изменения в ходе химической реакции. Безусловно, тот, кто изобрел первый микроскоп, внес неоценимый вклад в развитие всего человечества.


Открытие Галлилео Галлилея

Однажды Галилей соорудил очень длинную подзорную трубу. Дело происходило днем. Закончив работу, он навел трубу на окно, чтобы на свету проверить чистоту линз. Прильнув к окуляру, Галилей оторопел: все поле зрения занимала какая-то серая искрящаяся масса. Труба немного покачнулась, и ученый увидел огромную голову с выпуклыми черными глазами по бокам. У чудовища было черное, с зеленым отливом туловище, шесть коленчатых ног… Да ведь это … муха! Отняв трубу от глаза, Галилей убедился: на подоконнике действительно сидела муха.

Так появился на свет микроскоп - состоящий из двух линз прибор для увеличения изображения маленьких предметов. Свое название - «микроскопиум» - он получил от члена «Академиа деи линчеи» («академии рысьеглазых»)

И. Фабера в 1625 г. Это было научное общество, которое, кроме прочего, одобряло и поддерживало применение оптических приборов в науке.

А сам Галилей в 1624 г. вставил в микроскоп более короткофокусные (более выпуклые) линзы, благодаря чему труба стала короче.


Роберт Гук

Следующая страница в истории микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе - изогнувшись дугой.


Роберт Гук

Прежде всего Гук сделал трубу - тубус - наклонной. Чтобы не зависеть от солнечных дней, которых в Англии бывает немного, он установил перед прибором масляную лампу оригинальной конструкции. Однако солнце светило все же гораздо ярче. Поэтому пришла мысль лучи света от лампы усилить, сконцентрировать. Так появилось очередное изобретение Гука - большой стеклянный шар, наполненный водой, а за ним специальная линза. Такая оптическая система в сотни раз усиливала яркость освещения.


Роберт Гук

Когда микроскоп был готов, Гук принялся за наблюдения. Их результаты он описал в своей книге «Микрография», изданной в 1665 г. За 300 лет она переиздавалась десятки раз. Помимо описаний, она содержала замечательные иллюстрации - гравюры самого Гука.


Открытие клетки Р.Гуком

Особый интерес в ней представляет наблюдение № 17 - «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда. Это было открытие громадной важности.


Антони ван Левенгук

Вскоре после Гука начал вести свои наблюдения голландец Антони ван Лсвенгук. Это была

интересная личность - он торговал тканями и зонтиками, но не получил никакого научного образования. Зато у него был пытливый ум, наблюдательность, настойчивость и добросовестность. Линзы, которые он сам шлифовал, увеличивали предмет в 200-300 раз, то есть в 60 раз лучше применявшихся тогда приборов. Все свои наблюдения он излагал в письмах, которые аккуратно посылал в Лондонское королевское общество. В одном из своих писем он сообщил об открытии мельчайших живых существ - анималькул, как Левенгук их назвал. Оказалось, что они присутствуют повсюду-в земле, растениях, теле животных. Это событие произвело революцию в науке - были открыты микроорганизмы.


Антони ван Левенгук

В 1698 г. Антони ван Левенгук встретился с российским императором Петром I и продемонстрировал ему свой микроскоп и анималькул. Император был так заинтересован всем, что он увидел и что объяснил ему голландский ученый, что закупил для России микроскопы голландских мастеров. Их можно увидеть в Кунсткамере в Петербурге.


Оптическая микроскопия

Теория получения изображения с помощью линз может быть представлена с точки зрения либо геометрической, либо физической оптики. Геометрическая оптика хорошо объясняет фокусирование и аберрацию, однако для понимания, почему изображение не совсем четкое и как получается контрастность, необходимо привлечь физическую оптику. В геометрической оптике существует два правила, которые следует постоянно помнить: 1) свет распространяется по прямой и 2) луч отклоняется от прямой (преломляется) на границе раздела между двумя прозрачными средами.



Объектив

Объективы микроскопов, как правило, тщательно стандартизируются по увеличению NA. Обычно NA увеличивается с уменьшением фокусного расстояния, поскольку увеличение растет с уменьшением диаметра линз


Окуляр

Окуляры Основная функция окуляра состоит в передаче изображения от объектива глазу. Существуют разнообразные системы окуляров: Рамсдена, Гюйгенса, Кельнера и компенсирующие. Три первых типа взаимозаменяемы и отличаются только способом нанесения сеток, указателей и других точек отсчета. Компенсирующий окуляр разработан для коррекции хроматической аберрации.

Регулировка микроскопа

Для подготовки микроскопа к работе необходимо провести следующую регулировку: 1) источник света и все его компоненты должны быть отцентрированы по оптической оси прибора; 2) объектив необходимо сфокусировать и 3) требуется отрегулировать освещение. В большинстве обычных (стандартных) микроскопов конденсор, объектив и окуляр коаксиальны, поэтому центрировать требуется только источник света. Это достигается путем фокусировки на микроскопном стекле, удаления окуляра и перемещения источника света с помощью регулировочного винта до тех пор, пока свет (при наблюдении в тубус) не будет находиться в центре объектива. Если регулируется и установка по центру конденсора, то конденсор вначале вынимают, источник света центрируют, как описано выше, затем конденсор ставят на место и с помощью регулировочного винта центрируют по источнику света. Затем конденсор фокусируют на объекте для критического освещения Для того чтобы избежать влияния рассеянного и отраженного света, полевую диафрагму следует уменьшить так, чтобы освещен был только объект. Если интенсивность освещения мешает удобному наблюдению, то ее можно уменьшить. Для уменьшения интенсивности ни в коем случае нельзя изменять апертуры, для этого либо вводят перед источником света нейтральные плотные фильтры, либо уменьшают напряжение, подаваемое на источник.


Контраст

Чтобы объект был видимым, его изображение должно отличаться по интенсивности от окружающего фона. Различие в интенсивно-стях объекта и фона называется контрастом. К сожалению, большинство биологических образцов (клетки и их компоненты) прозрачны, т. е. их контраст близок к нулю. В прошлом для решения этой проблемы образцы окрашивали, прибавляя окрашенные вещества, которые реагировали с определенными компонентами клеток.

Изготовление микропрепаратов

Изготовление срезов препаратов Как правило, толщина кусочков материала слишком велика, чтобы сквозь них могло пройти достаточное для исследования под микроскопом количество света. Обычно приходится срезать очень тонкий слой исследуемого материала, т. е. готовить срезы. Срезы можно делать бритвой или на микротоме. Вручную срезы готовятся с помощью остро отточенной бритвы. Для работы на обычном микроскопе срезы должны быть толщиной 8-12 мкм. Ткань закрепляют между двумя кусочками сердцевины бузины. Бритву смачивают жидкостью, в которой хранилась ткань; срез делают через бузину и ткань, причем бритву держат горизонтально и двигают ее к себе медленным скользящим движением, направленным чуть вкось. Быстро сделав несколько срезов, следует выбрать из них самый тонкий, содержащий характерные участки ткани. Срез с ткани, залитой в ту или иную среду, можно сделать на микротоме. Для светового микроскопа срезы толщиной в несколько микрометров можно сделать с залитой в парафин ткани с помощью специального стального ножа. На ультратоме изготавливают чрезвычайно тонкие срезы (20-100 нм) для электронного микроскопа. В этом случае необходим алмазный или стеклянный нож. Срезы для светового микроскопа можно приготовить, не заливая материал в среду; для этого используют замораживающий микротом. В процессе приготовления замороженного среза образец сохраняется в замороженном твердом состоянии.


Простейшие под микроскопом

Многих простейших вы можете увидеть своими глазами в поле зрения под микроскопом в любое время года. Чтобы иметь для наблюдения живых простейших, необходимо заранее заготовить питательную среду, в которой они могли бы развиваться продолжительное время. Для этого в 2-3 стеклянные банки накладывают слой (толщиной 2 см) нарезанных листьев или сенной трухи, а сверху наливают (13 банки) дождевую или водопроводную воду. Банки покрывают стеклом и ставят на окно, затеняя от прямых солнечных лучей. Через 3-4 суток заливают водой, взятой из стоячего водоема (пруда, канавы), на дне которого находится гниющая растительность (трава, листья, ветки). С водой следует захватить и немного ила со дна. Через несколько дней в сосудах появится пленка, отливающая металлическим блеском. Просматривая под микроскопом капли воды, можно убедиться, какими видами простейших богата вода из банок. При таком разведении простейших сначала появляются разные виды мелких инфузорий, затем амебы и, наконец (через 15 суток), инфузории-туфельки.


Анализ крови

Микроскоп давно стал незаменимым помощником человека во многих сферах. В объектив прибора можно увидеть то, что не видно невооруженным глазом. Интереснейший объект для исследований представляет собой кровь. Под микроскопом можно рассмотреть основные элементы состава крови человека: плазму и форменные элементы.

Впервые состав крови человека исследовал врач - итальянец Марчелло Мальпиги. Он принял плавающие в плазме форменные элементы за жировые шарики. Клетки крови еще не раз называли то воздушными шариками, то животными, принимая их за разумных существ. Термин «кровяные клетки» или «кровяные шарики» ввел в научный обиход Антоний Левенгук. Кровь под микроскопом – это своеобразное зеркало состояния человеческого организма.


Микроскопы представляют собой оптические приборы, используемые для многократного увеличения рассматриваемых объектов. С помощью этих приборов определяются размеры, форма и строение мельчайших частиц, которые невозможно увидеть невооруженным глазом.

Микроскопы – незаменимое оптическое оборудование для таких сфер деятельности, как медицина, биология, ботаника, электроника и геология, так как на результатах исследований основываются научные открытия, ставится правильный диагноз и разрабатываются новые препараты.

Создатель телескопа Галилей в 1610 году обнаружил, что в сильно раздвинутом состоянии его зрительная труба позволяет сильно увеличить мелкие предметы.

Рисунок 118. Первые микроскопы:Янсена,А. Левенгука, Роберта Гука

Его можно считать изобретателем микроскопа, состоящего из положительной и отрицательной линз. Более совершенным инструментом для наблюдения микроскопических предметов является простой микроскоп. Когда появились эти приборы, в точности неизвестно. В самом начале XVII века несколько таких микроскопов изготовил очковый мастер Захария Янсен из Миддельбурга.

Первые выдающиеся открытия были сделаны как раз с помощью простого микроскопа. В середине XVII века блестящих успехов добился голландский естествоиспытатель Антони Ван Левенгук. В течение многих лет Левенгук совершенствовался в изготовлении крохотных (иногда меньше 1 мм в диаметре) двояковыпуклых линзочек, которые он изготавливал из маленького стеклянного шарика, в свою очередь получавшегося в результате расплавления стеклянной палочки в пламени. Затем этот стеклянный шарик подвергался шлифовке на примитивном шлифовальном станке. На протяжении своей жизни Левенгук изготовил не менее 400 подобных микроскопов. Один из них, хранящийся в университетском музее в Утрехте, дает более чем 300-кратное увеличение, что для XVII века было огромным успехом.

В начале XVII века появились сложные микроскопы, составленные из двух линз. Изобретатель такого сложного микроскопа точно не известен, но многие факты говорят о том, что им был голландец Корнелий Дребель, живший в Лондоне и находившийся на службе у английского короля Иакова I. В сложном микроскопе было два стекла: одно - объектив - обращенное к предмету, другое - окуляр - обращенное к глазу наблюдателя. В первых микроскопах объективом служило двояковыпуклое стекло, дававшее действительное, увеличенное, но обратное изображение. Это изображение и рассматривалось при помощи окуляра, который играл, таким образом, роль лупы, но только лупа эта служила для увеличения не самого предмета, а его изображения. В1663 году микроскоп Дребеля был усовершенствован английским физиком Робертом Гуком, который ввел в него третью линзу, получившую название коллектива. Этот тип микроскопа приобрел большую популярность, и большинство микроскопов конца XVII - первой половины VIII века строились по его схеме.

До изобретения микроскопа самое маленькое, что люди могли видеть, было примерно такой же величины, как и человеческий волос. После изобретения микроскопа примерно в 1590 году мы внезапно узнали, что существует ещё удивительный микромир живых существ везде вокруг нас.

Правда до конца непонятно, кому стоит отдать лавры создания микроскопа. Некоторые учёные-историки утверждают, что это был Ханс Липперсгей, который известен за подачу первого патента на телескоп. Другие свидетельства указывают на Ханса и Захария Янссенов, отца и сына, настоящей команды изобретателей-энтузиастов, живших в том же городе, что и Липперсгей.

Липперсгей или Янссены?

Ханс Липперсгей родился в Везеле в Германии в 1570 году, но позже переехал в Голландию, которая затем стала местом инноваций в области искусства и науки, а эта эпоха была названа «Золотой век Голландии». Липперсгей поселился в Миддельбурге, где он изобрёл очки, бинокль и некоторые из самых ранних микроскопов и телескопов.

В Миддельбурге жили Ганс и Захарий Янссены. Часть историков приписывает изобретение микроскопа именно Янссенам, благодаря письмам голландского дипломата Уильяма Бореэля.

В 1650-х годах Бореэль написал письмо врачу французского короля, в котором он описал микроскоп. В своем письме Бореэль сказал, что Захарий Янссен начал писать ему о микроскопе в начале 1590-х годов, хотя Бореэль сам увидел микроскоп спустя годы. Некоторые историки утверждают, что Ханс Янссен помог построить микроскоп, поскольку Захария был подростком в 1590-х годах.

Ранние микроскопы

Ранние микроскопы Янссена были составными микроскопами, в которых использовались по меньшей мере две линзы. Линза объектива расположена близко к объекту и создает изображение, которое подбирается и увеличивается еще дальше второй линзой, называемой окуляром.

Музей Мидделбурга имеет один из первых микроскопов Янссена, датированный 1595 годом. Он имел три скользящих трубки для разных объективов без штатива и был способен увеличивать в три-девять раз истинные размеры объекта. Новости о микроскопах быстро распространились по всей Европе.

Галилео Галилей вскоре улучшил конструкцию сложного микроскопа в 1609 году. Галилей назвал свое устройство occhiolino или «маленький глаз».

Английский ученый Роберт Гук также улучшил микроскоп и исследовал структуру снежинок, блох, вшей и растений. Гук исследовал структуру пробкового дерева и придумал термин «клетка» из латинского cella, что означает «небольшая комната», потому что он сравнивал клетки, которые он видел у пробкового дерева, с небольшими комнатами, в которых жили монахи. В 1665 году он подробно описал свои наблюдения в книге «Микрография».

Микроскоп Гука около 1670-го года

Ранние составные микроскопы обеспечивали куда большее увеличение, чем микроскопы с одной линзой. Однако при этом они сильнее искажали изображение объекта. Голландский ученый Антуан ван Левенгук разработал мощные однообъективные микроскопы в 1670-х годах. Используя своё изобретение, он первым описал сперматозоиды собак и людей. Он также изучал дрожжи, эритроциты, бактерии из рта и простейших. Микроскопы Левенгука с одним объективом могут увеличивать в 270 раз фактические размеры рассматриваемого объекта. После ряда улучшений в 1830-х годах данный тип микроскопов стал очень популярным.

Ученые также разрабатывали новые способы подготовки и окраски образцов. В 1882 году немецкий врач Роберт Кох представил свое открытие микробактерии туберкулёза, бацилл, ответственных за туберкулез. Кох продолжил использовать свою методику окраски, чтобы изолировать бактерии, ответственные за холеру.

Самые лучшие микроскопы приближались к пределу увеличительной способности к началу 20-го века. Традиционный оптический (световой) микроскоп не способен увеличивать объекты, размер которых меньше длины волны видимого света. Но в 1931 году был преодолён этот теоретический барьер с помощью создания электронного микроскопа двумя учеными из Германии Эрнстом Руска и Максом Кноллом

Микроскопы развиваются

Эрнст Руска родился последним из пяти детей в Рождество 1906 года в Гейдельберге, Германия. Он изучал электронику в Техническом колледже в Мюнхене и продолжил изучать высоковольтные и вакуумные технологии в Техническом колледже в Берлине. Именно там Руска и его советник, доктор Макс Кнолл, сначала изобрели «линзу» магнитного поля и электрического тока. В 1933 году учёные смогли построить электронный микроскоп, который сумел превзойти предел увеличения светового микроскопа.

В 1986 году Эрнст был награждён Нобелевской премией по физике за своё изобретение. Увеличение разрешения электронного микроскопа достигалось за счёт того, что длина волны электрона была ещё меньше, чем длина волны видимого света, особенно при ускорении электронов в вакууме.

В XX веке развитие электронных и световых микроскопов не останавливалось. Сегодня лаборатории используют различные флуоресцентные метки, а также поляризованные фильтры для изучения образцов или использовать компьютеры для обработки изображений, которые не видны человеческому глазу. Имеются отражающие микроскопы, фазово-контрастные микроскопы, конфокальные микроскопы, а также ультрафиолетовые микроскопы. Современные микроскопы могут даже изображать один атом.




© 2024
womanizers.ru - Журнал современной женщины