20.07.2019

Механизм формирования боли. Виды и механизмы развития боли Боль определение виды механизмы


Боль – сложное психоэмоциональное неприятное ощущение, формирующееся под действием патогенного раздражителя и в результате возникновения органических или функциональных нарушений в организме, реализующееся специальной системой болевой чувствительности и высшими отделами мозга, относящимися к психоэмоциональной сфере. Боль – не только особый психофизиологический феномен, но и важнейший симптом многих разных по природе заболеваний и патологических процессов, имеющий сигнальное и патогенное значение. Болевой сигнал обеспечивает мобилизацию организма для защиты от патогенного агента и охранительное ограничение функции поврежденного органа. Боль постоянный спутник и важнейшее составляющее жизни человека. Боль ценнейшее приобретение эволюции животного мира. Она формирует и активирует различные защитно-приспособительные реакции, обеспечивает восстановление нарушенного гомеостаза и его сохранение. Недаром есть крылатое выражение «Боль – сторожевой пес организма, здоровья». Однако часто боль является компонентом патогенеза различных патологических процессов, участвует в формировании «порочных кругов», способствует утяжелению течения болезни, может сама быть причиной расстройств функций ЦНС, структурно-функциональных изменений и повреждения внутренних органов. Различают механизмы формирования боли (ноцицептивная система) и механизмы контроля чувства боли (антиноцицептивная система). Согласно современных взглядов, боль возникает вследствие превалирования активности ноцицептивной (алгогенной) системы над активностью постоянно функционирующей в здоровом организме антиноцицептивной (антиалгогенной) системы. Чувство боли формируется на разных уровнях ноцицептивной системы: от воспринимающих болевые ощущения чувствительных нервных окончаний до проводящих путей и центральных нервных структур. Предполагается наличие особых рецепторов боли, ноцицепторов, активизирующихся под воздействием специфических раздражителей, алгогенов (кинины, гистамин, ионы водорода, АХ, субстанция Р, КА и ПГ в высоких концентрациях).

Ноцицептивные раздражители воспринимаются:

Свободными нервными окончаниями, способными регистрировать воздействия разных агентов как болевые;

Специализированными ноцицепторами – свободными нервными окончаниями, активизирующимися только при действии специфических ноцицептивных агентов и алгогенов;

Чувствительными нервными окончаниями различных модальностей: механо-, хемо-, терморецепторами и др., подвергающимися сверхсильным, зачастую разрушающим воздействиям.

Сверхсильное воздействие на чувствительные нервные окончания других модальностей также может вызывать болевые ощущения.

Проводниковый аппарат ноцицептивной системы представлен различными афферентными нервными путями, передающими импульсы с участием синапсов нейронов спинного и головного мозга. Передача болевой афферентной импульсации осуществляется с участием таких нервных трактов, как спиноталамических, лемнисковых, спиноретикулярных, спиномезэнцефальных, проприоретикулярных и др.

Центральный аппарат формирования чувства боли включает кору больших полушарий переднего мозга (первую и вторую соматосенсорные зоны), а также моторную область коры больших полушарий, структуры таламуса и гипоталамуса.

Чувство боли контролируют нейрогенные и гуморальные механизмы, входящие в состав антиноцицептивной системы. Нейрогенные механизмы антиноцицептивной системы обеспечиваются импульсацией от нейронов серого вещества гипокампа, покрышки мозга, миндалевидного тела, ретикулярной формации, отдельных ядер мозжечка, которая тормозит поток восходящей болевой информации на уровне синапсов в задних рогах спинного мозга и ядер среднего шва продолговатого мозга (nucleus raphe magnus). Гуморальные механизмы представлены опиоидергической, серотонинергической, норадренергической и ГАМКергической системами мозга. Нейрогенные и гуморальные механизмы антиноцицептивной системы тесно взаимодействуют друг с другом. Они способны блокировать болевую импульсацию на всех уровнях ноцицептивной системы: от рецепторов до ее центральных структур.

Различают эпикритическую и протопатическую боль.

Эпикритическая («быстрая», «первая») боль возникает в результате воздействия раздражителей малой и средней силы на рецепторные образования кожи и слизистых оболочек. Эта боль острая, непродолжительная, к ней быстро развивается адаптация.

Протопатическая («медленная», «тягостная», «длительная») боль возникает под действием сильных, «разрушительных», «масштабных» раздражителей. Ее источником обычно бывают патологические процессы во внутренних органах и тканях. Эта боль тупая, ноющая, долго сохраняется, имеет более "разлитой" характер по сравнению с эпикритической. К ней медленно развивается или вовсе не развивается адаптация.

Эпикритическая боль является результатом восхождения болевой импульсации по таламокортикальному пути к нейронам соматосенсорной и моторной областей коры больших полушарий мозга и возбуждения их, формирующих субъективные ощущения боли. Протопатическая боль развивается в результате активации главным образом нейронов таламуса и гипоталамических структур, что и обуславливает системный ответ организма на болевой стимул, включающий вегетативный, двигательный, эмоциональный и поведенческий компоненты. Только сочетанная, протопатическая и эпикритическая боль даёт возможность оценить локализацию патологического процесса, его характер, выраженность, масштаб.

По биологической значимости выделяют физиологическую и патологическую боль.

Физиологическая боль характеризуется адекватной реакцией нервной системы, во-первых, на раздражающие или разруша­ющие ткани стимулы, во-вторых, на воздействия, являющиеся потенциально опасными, а значит, предупреждающие об опасности дальнейших повреждений.

Патологическая боль характеризуется неадекватной реакцией организма на действие алгогенного раздражителя, возникаю­щей при патологии центрального и периферического отделов нервной системы. Такая реакция формируется при болевой афферентации при отсутствии части тела или возникающей в ответ на действие психогенных факторов.

Основные причины формирования патологической боли периферического происхождения:

Хронические воспалительные процессы;

Действие продуктов распада ткани (при злокачественных новообразованиях);

Хронические повреждения (сдавливание рубцами) и регенерация чувствительных нервов, демиелинизация и дегенеративные изменения нервных волокон, что делает их высокочувствительным к гуморальным воздействиям (адреналина, К + и др.), на которые они не реагировали в нормальных условиях;

Формирование неврином – образований из хаотически разросшихся нервных волокон, окончания которых чрезмерно чувствительны к различным экзогенным и эндогенным воздействиям.

Уровни и факторы повреждения приводящие к формированию патологической боли периферического происхождения: чрезмерное раздражение ноцицепторов; повреждение ноцицептивных волокон; повреждение спинномозговых ганглиев (гиперактивация нейронов); повреждение задних корешков.

Особенностью патогенеза патологической боли периферического происхождения является то, что ноцицептивная стимуляция с периферии может вызвать приступ боли в том случае, если она преодолевает «воротный контроль» в задних рогах спинного мозга, состоящий из аппарата тормозных нейронов роландовой (желатинозной) субстанции, который регулирует потоки входящей в задние рога и восходящей ноцицептивной стимуляции. Такой эффект имеет место при интенсивной ноцицептивной стимуляции либо при недостаточности тормозных механизмов «воротного контроля».

Патологическая боль центрального происхождения возникает при гиперактивации ноцицептивных нейронов на спинальном и супраспинальном уровнях (дорзальные рога спинного мозга, каудальное ядро тройничного нерва, ретикулярная формация ствола мозга, таламус, кора головного мозга.

Гиперактивированные нейроны образуют генераторы патологически усиленного возбуждения. При формировании генератора патологически усиленного возбуждения в задних рогах спинного мозга возникает центральный болевой синдром спинального происхождения, в ядрах тройничного нерва – тригеминальная невралгия, в ядрах таламуса – таламический болевой синдром и др.

Возникший в афферентном входе (дорзальные рога спинного мозга или каудальное ядро тройничного нерва) генератор сам по себе не способен вызвать патологическую боль. Только при вовлечении в процесс высших отделов системы болевой чувствительности (таламус, ретикулярная формация ствола мозга, кора головного мозга) боль проявляется как синдром, как страдание. Тот отдел ноцицептивной системы, под влиянием которого образуется патологическая боль, играет роль первичной детерминанты. Из первично и вторично измененных образований системы болевой чувствительности формируется и закрепляется пластическими процессами ЦНС новая патологическая интеграция – патологическая алгическая система. Образования измененной ноцицептивной системы различных уровней составляют основной ствол патологической алгической системы. Уровни поражения ноцицептивной системы, ответственные за формирование патологической алгической системы, представлены в таблице 27.

Таблица 27

Уровни и образования измененной ноцицептивной системы, составляющие основу патологической алгической системы

Уровни поражения ноцицептивной системы Структуры измененной ноцицептивной системы
Периферические отделы Сенситизированные ноцицепторы, очаги эктопического возбуждения (поврежденные и регенерирующие нервы, демиелинизированные участки нервов, невринома); группы гиперактивированных нейронов спинальных ганглиев
Спинальный уровень Агрегаты гиперактивных нейронов (генераторы) в афферентных ноцицептивных реле - в дорсальных рогах спинного мозга и в ядрах спинального тракта тройничного нерва (каудальное ядро)
Супраспинальный уровень Ядра ретикулярной формации ствола, ядра таламуса, сенсо-моторная и орбитофронтальная кора, эмоциогенные структуры

По патогенезу различают три основных вида болевых синдромов: соматогенные, нейрогенные, психогенные.

Соматогенные болевые синдромы возникают в результате активации ноцицептивных рецепторов в момент и после травмы, при воспалении ткани, опухолях, различных повреждениях и заболеваниях внутренних органов. Они проявляются развитием чаще эпикритической, реже протопатической боли. Боль всегда воспринимается в зоне повреждения или воспаления, однако она может выходить и за ее пределы.

Нейрогенные болевые синдромы возникают в результате значительных повреждений периферических и (или) центральных структур ноцицептивной системы. Они отличаются значительной вариабельностью, что зависит от характера, степени и локализации повреждения нервной системы. Развитие нейрогенных болевых синдромов обусловлено морфологическими, метаболическими и функциональными нарушениями в структурах ноцицептивной системы.

Психогенные болевые синдромы возникают в результате значительного психоэмоционального напряжения при отсутствии выраженных соматических расстройств. Психогенная боль часто проявляется развитием головных и мышечных болей и сопровождается отрицательными эмоциями, психическим перенапряжением, межличностными конфликтами и т.д. Психогенная боль может возникать как при функциональных (истерическом, депрессивном неврозе), так и при органических (шизофрении и других видах психозов) расстройствах ВНД.

К особым разновидностям клинических болевых синдромов относят каузалгию и фантомную боль. Каузалгия – приступообразная, усиливающаяся жгучая боль в области повреждённых нервных стволов (обычно лицевого, тройничного, седалищного и др.). Фантомная боль формируется в сознании как субъективное болевое ощущение в отсутствующей части тела и возникает вследствие раздражения центральных концов перерезанных при ампутации нервов.

Среди других видов боли также выделяют проекционные, иррадиирующие, отраженные и головные боли. Проекционные боли ощущаются в периферическом участке нерва, при раздражении его центрального (проксимального) участка. Иррадиирующие боли возникают в области иннервации одной ветви нерва при наличии очага раздражения в зоне иннервации другой ветви этого же нерва. Отраженные боли возникают в участках кожи, иннервируемых из того же сегмента спинного мозга, что и внутренние органы, где расположен очаг повреждения. Головные боли отличаются очень большим разнообразием по характеру, типу, форме, интенсивности, длительности, тяжести, локализации с вовлечением как соматических, так и вегетативных реакций. К ним приводят многообразные расстройства мозгового и системного кровообращения, нарушения кислородного и субстратного обеспечения мозга, а также различные повреждения.

Боль в условиях затянувшейся патологии выступает в роли важного патогенетического фактора развития патологических процессов и заболеваний.

В современной медицинской практике с целью обезболивания используются подходы направленные на снижение активности ноцицептивной системы и повышение активности антиноцицептивных систем. Для этого применяется этиотропная, патогенетическая и симптоматическая терапия боли и следующие методы обезболивания:

Фармакологические (используются средства местного, общего и комбинированного обезболивания);

Психологические (внушение, самовнушение, гипноз и др.);

Физические (электроакупунктура, электронаркоз, электрофорез, диадинамические токи, горчичники, массаж);

Хирургические (иммобилизация костей при их переломах, вправление вывихов, удаление опухолей, желчных или почечных камней, иссечение соединительнотканных рубцов, при длительных нетерпимых болях проводят коагуляцию нервных структур, волокон – источника болевой афферентации).

Современные представления о функционировании механизмов боли и обезболивания основываются на данных анатомо-морфологических, нейрофизиологических и биохимических исследований. Среди них можно выделить два основных научных направления. К первому из них относится исследование анатомической природы и физиологических свойств нейрональных субстратов, осуществляющих передачу ноцицептивной импульсации. Второе направление связано с изучением физиологических и нейрохимических механизмов в отдельных образованиях мозга при различных видах воздействий, приводящих к обезболиванию (Калюжный, 1984).

Восприятие боли обеспечивается сложноорганизованной ноцицептивной системой, включающей в себя особую группу периферических рецепторов и центральных нейронов, расположенных во многих структурах центральной нервной системы и реагирующих на повреждающее воздействие (Хаютин, 1976; Лиманский, 1986; Ревенко и др., 1988; La Motte et al., 1982; Meyer et al., 1985; Torebjork, 1985; Szoicsanyi, 1986).

Болевые рецепторы.

Существуют различные типы ноцицепторов, которые контролируют целостность функционирования органов и тканей, а также реагируют на резкие отклонения параметров внутренних сред организма. В коже преобладают мономодальные А-δ-механорецепторы и полимодальные С-ноцицепторы, встречаются и бимодальные (термо — и механорецепторы) А-δ и С-ноцицепторы (Cervero, 1985; Лиманский, 1986; Ревенко, 1988).

Принято считать, что соматическая и висцеральная афферентные системы различаются своими свойствами. А-δ-волокна соматической афферентной ноцицептивной системы передают соматически организованную сенсорную информацию, которая в различных отделах мозга подвергается пространственно-временному анализу и воспринимается как локализованная острая, или колющая боль. В С-волокнах соматической афферентной ноцицептивной системы кодируется интенсивность действия ноцицептивного стимула, который вызывает ощущение разлитой жгучей, труднопереносимой (вторичной) боли и определяет связанные с нею сложные мотивационные и эмоциональные формы поведения (Женило, 2000).

Активизация рецепторов висцеральной афферентной ноцицептивной системы обычно проявляется в вегетативных реакциях и характеризуется возрастанием мышечного тонуса, развитием тревожного состояния, ощущениями тупой, диффузной (висцеральной) боли, часто осложненной отраженными болями кожных зон (Cervero, 1985; 1987; Зильбер, 1984; Женило, 2000).

Таким образом, в формировании болевой реакции значительная роль принадлежит ноцицепторам. Однако, независимо от того, каковы механизмы возникновения ноцицептивной информации на периферии, в формировании боли ключевое значение имеют процессы, происходящие в ЦНС. Именно на основе центральных механизмов: конвергенции, суммации, взаимодействия быстрой миелинизированной и медленной немиелинизированной систем на разных уровнях ЦНС – создаются ощущение и качественная окраска боли при действии различных ноцицептивных раздражений (Калюжный, 1984; Михайлович, Игнатов, 1990; Брагин, 1991; Price, 1999).

Участие спинного мозга в передаче болевой импульсации.

Первым центральным звеном, воспринимающим разномодальную афферентную информацию, является нейрональная система заднего рога спинного мозга. Она представляет собой цитоархитектонически весьма сложную структуру, которую в функциональном отношении можно рассматривать как своеобразный первичный интегративный центр сенсорной информации (Михайлович, Игнатов, 1990; Вальдман и др., 1990).

Согласно данным А. В. Вальдмана и Ю. Д. Игнатова (1990), конвергентные интернейроны заднего рога спинного мозга, большинство из которых имеют восходящие проекции, представляют собой первую станцию переключения ноцицептивной импульсации и принимают самое непосредственное участие в возникновении информации такого качества, которая высшими отделами головного мозга расценивается как болевая и запускает сложные механизмы ответного реагирования на боль. Однако в настоящее время есть все основания считать, что активность релейных нейронов, связанных с ноцицептивной афферентацией, их ответы на разномодальные стимулы, взаимодействие на них различных афферентных входов и, следовательно, формирование восходящего импульсного потока модулируется нейронами желатинозной субстанции (Rethelyi et al., 1982; Dubner, Bennett, 1983; Bicknell, Beal, 1984; Dubner et al., 1984; Perl, 1984; Iggo еt al., 1985). После весьма сложной обработки болевой афферентации в сегментарном аппарате спинного мозга, где на нее воздействуют возбуждающие и тормозные влияния, исходящие из периферических и центральных отделов нервной системы, ноцицептивные импульсы через интернейроны передаются в клетки передних и боковых рогов, вызывая рефлекторные моторные и вегетативные реакции. Другая часть импульсов возбуждает нейроны, аксоны которых формируют восходящие проводящие пути.

Восходящие пути болевой импульсации.

Ноцицептивная информация, поступающая в задние рога спинного мозга, попадает в мозг по двум «классическим» восходящим афферентным системам – лемнисковой и экстралемнисковой (Martin, 1981; Chignone, 1986). В пределах спинного мозга одна из них располагается в дорсальной и дорсолатеральной зоне белого вещества, другая - в его вентролатеральной части. Также отмечено, что в ЦНС не существует специализированных путей болевой чувствительности, а интеграция боли осуществляется на различных уровнях на основе сложного взаимодействия лемнисковых и экстралемнисковых проекций (Kevetter, Willis, 1983; Ralston, 1984; Willis, 1985; Михайлович, Игнатов, 1990; Bernard, Besson, 1990).

Вентролатеральная система разделяется на спиноталамический, спиноретикулярный и спиномезенцефалический тракты. Спиноталамический тракт является важным восходящим путем, существующим для передачи широкого спектра информации о свойствах болевого стимула и обозначается как неоспиноталамический, а два других объединяются в палеоспиноталамический тракт (Willis et al., 2001; 2002).

Нейроны спиноталамического тракта подразделяются на четыре группы: первая – нейроны широкого динамического диапазона или мультирецептивные; вторая - высокопороговые нейроны (ноцицептивно-специфические); третья - низкопороговые; четвертая - глубокие нейроны, активирующиеся различными проприорецептивными раздражениями. Терминали нейронов спиноталамического тракта оканчиваются в специфических (релейных) ядрах таламуса (вентропостериолатеральное ядро), а также в диффузно-ассоциативных (медиальная часть заднего комплекса) и неспецифических (интраламинарный комплекс – субмедиальное ядро) ядрах. Кроме того, определенное число аксонов, направляющихся в вентропостериолатеральное ядро, отдает коллатерали в центролатеральном ядре, а также к нейронам медиальной ретикулярной формации и центрального серого вещества (Ma et al., 1987; Giesler, 1995; Willis et al., 2001; 2002).

Большинство терминалей висцеральных ноцицептивных афферентных волокон оканчивается на мультирецепторных нейронах спиноталамического тракта, получающих также информацию от соматических ноцицептивных афферентов, что позволяет рассматривать их как важную афферентную ноцицептивную систему, способную передавать сигналы, вызванные действием механических стимулов с широким диапазоном энергии (Bushnell et al., 1993; Женило, 2000).

Значительный объем ноцицептивной информации поступает в ствол мозга через те аксоны спиноретикулярного тракта, являющегося вторым по величине путем передачи ноцицептивной информации, терминали которых распределены в медиальной ретикулярной формации продолговатого мозга, а также в релейных ядрах таламуса (Chignone, 1986). Некоторые спиноретикулярные нейроны являются энкефалинсодержащими (Михайлович, Игнатов, 1990). Спиноретикулярные нейроны имеют небольшие кожные рецептивные поля и активируются как неноцицептивными, так и ноцицептивными стимулами, причем частота их разрядов увеличивается с усилением интенсивности раздражения.

Спиномезенцефалический тракт образован аксонами и нейронами, лежащими вместе с нейронами спиноталамического тракта и сопровождающими их до перешейка среднего мозга, где терминали спиномезенцефалического тракта распределяются среди интегративных структур, которые формируют рефлексы ориентации и управляют вегетативными реакциями, а также структур, участвующих в появлении аверсивных ответов. Некоторые аксоны спиномезенцефалического тракта образуют коллатерали в вентробазальных и медиальных ядрах таламуса. Через эту систему запускаются сложные соматические и висцеральные антиноцицептивные рефлексы (Willis et al., 2001; 2002).

Спиноцервикоталамический тракт образован преимущественно низкопороговыми и мультирецептивными нейронами и несет информацию о действии механических неболевых и температурных раздражителей (Brown, 1981; Downie et al., 1988).

Основными проводниками, по которым передается афферентная висцеральная информация от интерорецепторов, являются блуждающий, чревный и тазовый нервы (Кеrr, Fukushima, 1980). Проприоспинальные и проприоретикулярные проекции, наряду с палеоспиноталамическим трактом, участвуют в передаче плохо локализованной, тупой боли и в формировании вегетативных, эндокринных и аффективных проявлений боли (Yaksh, Hammond, 1990).

Существует четкое соматотопическое распределение каждого афферентного канала, независимо от того, принадлежит он к соматическим или висцеральным системам. Пространственное распределение этих проводников обусловливается уровнем последовательного вхождения в спинной мозг (Сervero, 1986; Женило, 2000).

Таким образом, можно выделить несколько восходящих проекций, которые существенно отличаются по морфологической организации и имеют непосредственное отношение к передаче ноцицептивной информации. Однако их ни в коем случае нельзя рассматривать как пути проведения исключительно боли, поскольку они являются также и основными субстратами сенсорного входа в различные структуры головного мозга другой модальности. Современные морфологические, физиологические исследования и обширная практика нейрохирургических вмешательств свидетельствуют о том, что ноцицептивная информация достигает высших отделов мозга через многочисленные дублирующие каналы, которые в силу обширной конвергенции и диффузных проекций вовлекают в формирование боли сложноорганизованную иерархию различных структур головного мозга, в которых происходит взаимодействие разномодальных афферентных систем (Михайлович, Игнатов, 1990).

Роль головного мозга в формировании болевой реакции.

Анализ данных литературы свидетельствует о том, что при болевом раздражении ноцицептивный поток передается из спинного мозга практически во все структуры головного мозга: ядра ретикулярной формации, центральное околоводопроводное серое вещество, таламус, гипоталамус, лимбические образования и кору больших полушарий, которые выполняют самые разнообразные функции как сенсорного, двигательного, так и вегетативного обеспечения защитных реакций, возникающих в ответ на ноцицептивное раздражение (Дуринян и др., 1983; Gebhart, 1982; Fuchs, 2001; Fuchs et al., 2001; Guiibaud, 1985; Лиманский, 1986; Ta, Маякова, 1988; Михайлович, Игнатов. 1990; Брагин, 1991). Однако во всех областях мозга отмечены широкая конвергенция и взаимодействие соматических и висцеральных афферентных систем, что позволяет предположить принципиальное единство центральных механизмов регуляции болевой чувствительности (Вальдман, Игнатов, 1990; Калюжный, 1991). При этом диффузные восходящие проекции передают ноцицептивную информацию ко многим образованиям различных этажей мозга, которые выполняют самые разнообразные функции как сенсорного, двигательного, так и вегетативного обеспечения защитных реакций, возникающих в ответ на ноцицептивное раздражение (Fuchs et al., 2001; Guilboud et al., 1987; Та, Маякова, 1988).

В таламусе можно выделить три основных ядерных комплекса, имеющих непосредственное отношение к интеграции боли: вентробазальный комплекс, задняя группа ядер, медиальные и интраламинарные ядра. Вентробазальный комплекс является главной структурой соматосенсорной системы, мультисенсорная конвергенция на нейронах которой обеспечивает точную соматотопическую информацию о локализации боли, ее пространственную соотнесенность и сенсорно-дискриминативный анализ (Guilboud et al., 1987). Таламические ядра наряду с вентробазальным комплексом участвуют в передаче и оценке информации о локализации болевого воздействия и частично – в формировании мотивационно-аффективных компонентов боли.

Медиальные и интраламинарные ядра таламуса, получающие наряду с ноцицептивными входами массивный афферентный приток из центрального серого вещества гипоталамуса, лимбической и стриопаллидарной систем и имеющие обширные субкортикальные и корковые проекции, играют основополагающую роль в интеграции «вторичной», протопатической боли. Эти ядра формируют также сложные вегетомоторные высокоинтегрированные защитные реакции на ноцицепцию, а также мотивационно-поведенческие проявления боли и ее аффективное, дискомфортное восприятие (Cheng, 1983).

Кора головного мозга принимает участие как в перцепции боли, так и в ее генезе (Porro, Cavazzuti, 1996; Casey, 1999; Ingvar and Hsieh, 1999; Treede et al., 2000; Чурюканов, 2003). Первая соматосенсорная зона коры S1 непосредственно участвует в механизмах формирования перцептуально-дискриминативного компонента системной болевой реакции, ее удаление приводит к повышению порогов восприятия боли (Rainville et al., 1997; Bushnell et al., 1999; Petrovic et al., 2000; HOf Bauer et al., 2001). Вторая соматосенсорная область коры S2 имеет ведущее значение в механизмах формирования адекватных защитных реакций организма в ответ на болевое раздражение, ее удаление приводит к снижению порогов восприятия. Орбито-фронтальная область коры играет значительную роль в механизмах формирования эмоционально-аффективного компонента системной болевой реакции организма, ее удаление не изменяет порогов восприятия перцептуально-дискриминативного компонента и значительно повышает пороги восприятия эмоционально-аффективного компонента боли (Решетняк, 1989). Исследования с использованием позитронной эмиссионной томографии в комбинации с методом ядерно-магнитного резонанса выявили существенные изменения кровотока и локального метаболизма в полях коры при ноцицептивных воздействиях (Talbot et al., 1991; Jones, Derbyshire, 1994).

Данные морфологических исследований по изучению внутримозговых связей с использованием различных методов (ретроградного аксонального транспорта пероксидазы хрена, дегенарации, иммунорадиологических, гистохимических и др.) представлены на рис. 2.5. (Брагин, 1991).

Таким образом, болевая реакция «является интегративной функцией организма, которая мобилизует самые разнообразные функциональные системы для защиты организма от воздействующих вредящих факторов и включает такие компоненты, как сознание, ощущения, память, мотивации, вегетативные, соматические и поведенческие реакции, эмоции» (Анохин, Орлов, 1976).

Анатомическими основаниями возникновения боли является иннервация органов тонкими миелинизированными (А-) нервными волокнами. Окончания этих нервных волокон возбуждаются раздражителями высокой интенсивности и таким образом в физиологических условиях проявляют потенциально повреждающие (ноксическую) раздражительные воздейсвтия. Поэтому они также получили название ноцирецепторы. Возбуждение периферических ноцирецепторов после переработки в спинном мозге проводится в центральную нервную систему, где наконец и возникает ощущение боли. В патофизиологических условиях чувствительность периферических ноци-рецепторов, а также центральной переработки боли увеличиваются, например, в рамках воспалений. Так сигнал тревоги боли становится требующим лечения симптомом.

Повышенная чувствительность в области периферических ноцирецепторов может проявляться как спонтанная активность или как сенсибилизация к термическим или механическим раздражениям. Мощный приток ноцицептивной информации (нейрональная активность в ноцирецепторах) из области воспаления может кроме того вызвать повышенную переработку боли в спинном мозгу (центральная сенсибилизация). Эта центральная сенсибилизация опосредуется, с одной стороны, напрямую и остро более высокой частотой входящих потенциалов действия и при этом высвобождаемыми в спинном мозгу нейротрансмиттерами и ко-трансмиттерами.

С другой стороны, также определенные факторы роста через специфические рецепторы сенсорных окончаний воспринимаются на периферии и транспортируются в клеточные ядра ганглионов задних корешков. Там они вызывают подострое изменение экспрессии генов, например, нейропептидов и нейротрансмиттеров, которые, в свою очередь, могут усиливать восприятие боли.

Сигнал тревоги боли становится требующим лечения симптомом

Спинальные ноцицептивные нейроны активируют через восходящие пути латеральную и медиальную таламокортикальную систему. При этом латеральная система через активирование первичного и вторичного сенсорного кортекса особенно в дискриминационном аспекте восприятия боли, а медиальная система через активирование переднего Сingulum, островка и префронтального кортекса имеют особое значения для аффективных компонентов.

Центральная нервная система через нисходящие пути модулирует обработку ноцицептивной информации в спинном мозгу. Подавляющие пути в большинстве происходят из периаквадуктулярной серой полости и Nucleus raphe magnus. Для терапии боли эти нисходящие пути имеют особый интерес, так как они особенно активируются опиатами.

В дальнейшем описываются детали возникновения боли. При этом по многим причинам воздействию подвергаются периферические механизмы; это однако не связано со значением центральных компонентов.

Периферические механизмы - первичные афферентные ноцицептор ы

Сенсорные протеины

Наиболее простой механизм, который может вызывать боли обусловленные воспалением, это непосредственное раздражение или сенсибилизация ноцицептивных нервных окончаний медиаторами воспаления. Для большого количества медиаторов известны специфические рецепторы на сенсорных окончаниях. У части этих рецепторов их активация приводит к активации деполяризации и вместе с тем может возбуждать эти ноцицепторы. Как источники этих медиаторов рассматриваются:

поврежденные клетки тканей (ATP, калий, энзимы, понижение рН и др.),
кровеносные сосуды (брадикинин, эндотелин),
стволовые клетки (гистомин, протеазы, фактор роста нервов NGF, туморнекротизирующий фактор TNF и др.),
лейкоциты (цитокины, простагландины, лейкотриены и др.).
В качестве непосредственных прямых активаторов ноцицепторов имеют значение особенно ацетилхолин, брадикинин, серотонин, кислая рН, аденозин трифосфат (АТР) и аденонозин. В отношении эндотелина считается, что он играет особую роль при болях ассоциирующих с опухолью.

Наряду с активирующими рецепторами ноцицептивные нервные окончания снабжены также и ингибирующими рецепторами. Важнейшими из них считаются опиат- и каннабиноидрецепторы. Роль периферических опиат-рецепторов для модуляции восприимчивости ноцицепторов уже подробно изучалась.В качестве новой цели анальгетиков за последнее время были описаны каннабиноид-рецепторы (СВ1 и СВ2), причем экспрессия СВ2-рецептров оказалась особенно выраженной на воспалительных клетках, тогда как СВ1-рецепторы среди прочего экспримиро-ваны в периферических ноцицепторах и центральной нервной системе.

Уже имеются первые результаты терапевтического применения каннабиноидов, однако их место в терапии боли еще не установлено. Стоит отметить, что более современные исследования к тому же исходят из взаимодейсвтия между опиоидами и каннабиоидами, при которой эндогенные опиаты высвобождаются при введении каннабиоидов, или опиаты высвобождают эндогенные каннабиноиды. В дальнейшем будут описаны более подробно рецепторы, которые рассматриваются в качестве терапевтической цели анальгетической терапии.

Transient-Rezeptor-Potenzial (TRP)-каналы

За последнее время был клонирован целый ряд температуро-чувствительных ионных каналов из семейства TRP-каналов (‘transient rezeptor potential). Наиболее известными представителями этой группы является TRPV1 (Capsacin-рецептор), который может активироваться высокой тем-пературой и пониженной рН средой. Другие представители семейства ваниллоидов (TRPV1, TRPV2, TRPV3, TRPV4) возбуждаются при стимуляции высокой температурой, тогда как каналы TRPM8 и TRPA1 (ANKTM1) реагируют на охлаждение или ноксические раздражения холодом. Дополнительно к активации при сильном охлаждении TPRA1 активируется и острыми естественными составными частями горчичного масла, имбиря и маслом корицы, а также брадикинином.

Активность TPRV1 модифицируется быстрым обратимым фосфорилированием и приводит к сенсибилизации или десенсибилизации реакции на тепловое раздражение и химическую раз-дражимость. Особая роль TPRV1 при этом видится в том, что этот рецептор как интегрируемый элемент определяет химическую и физическую раздражимость, что делает его многообещающей целью для терапии боли. Наряду с краткосрочными модуляциями восприимчивости также регулируется экспрессия TRPV1 на ноцицептивных нейронах: повышенная экспрессия описыва-ется как при воспалительных, так и при нейропатических болях.

ASIC: «acid-sensing ion channels»

Тканевой ацидоз играет важную роль при воспалении и усиливает боль и гиперальгезию. Более высокие раздражения рН могут активировать TRPV1, легкий ацидоз наоборот в первую очередь определяется через активацию ASIC («acid-sensing ion channel»). Локальное введение нестероидных антифлогистиков может путем рН-раздражения уменьшать индуцированную болевую реакцию, при чем в основе этого эффекта по всей вероятности лежит не подавление циклооксигеназы, но непосредственное подавление ASIC-каналов.

Брадикинин

Брадикинин - это вазоактивный провоспалительный нонапептид, чей ноцицептивный эффект на сенсорные терминалы опосредуется рецепторами брадикинин-В1 и В2. При этом исходят из того, что В1-рецепторы экспримируются особенно при воспалительном процессе. Также и у людей в рамках UV- индуцированных воспалительных реакциях была описана повышенная чувствительность к В1 и В2-агонистам. В настоящее время еще нет клинических сведений о терапевти-ческом применении В1 и В2-антагонистов; в связи с особой ролью рецепторов брадикинина при боли и воспалении они представляются особенно интересными в применении их при хрониче-ских воспалительных заболеваниях связанных с болью, как например при остеоартрите.

Аксональные протеины

Традиционно функция аксональных ионных каналов на проведение потенциала действия в смысле «все-или-ничего» ограничивалась. Современные данные однако указывают на то, что частота потенциала действия также модулируется аксонально. Кроме того, ионные каналы, имеющие значение в возникновении нейрональных мембранных потенциалов, также потенциально участвуют в возникновении спонтанной активности в рамках нейропатических состояний боли. В качестве примера можно было бы назвать кальций-зависимые калиевые каналы (sK), которые при проведении потенциалов действия вызывают медленную гиперполяризацию и вместе с тем снижение возбудимости. Уменьшение этих каналов уже было описано при травматических поражениях нервов с нейропатическими болями.

Функциональным противником sK-каналов являются индуцированные гиперполяризацией потоки (Ih), которые передаются через циклически нуклеоид-модулированные HCN-каналы (HCN: hy-perpolarization-activated cyclic nucleotid-modulated). Повышенная экспрессия HCN-каналов связывается с возникновением спонтанной активности при нейропатических болях.

Сенсибилизация сенсорных или аксональных нейрональных ионных каналов для наглядности будет рассматриваться отдельно, тем не менее, имеются существенные перекрытия в механизмах сенсибилизации: так аксональыне тетродоксинрезистентные зависимые от напряжения натриевые каналы (TTXr Na+) также сенсибилизируются и такими медиаторами, которые обычно активируют или сенсибилизируют сенсорные окончания (аденозин, простагландин Е2 или серотонин).

Особенности специальных классов ноцицептторов

Прочная взаимосвязь аксональных и сенсорных каналов выражается и в том, что различные классы нервных волокон отличаются как по своим сенсорным, так и по аксональным характеристикам: при функциональном распределении первичных аффренецием по их сенсорным особенностям (например, механо-сенситивные ноцицепторы, не-ноцицептинвые холодовые рецепторы) эти группы проявляют высокоспецифичные шаблоны индуцированной активностью гиперполяризации. Выраженная высокая индуцированная активностью гиперполяризация специфична для, так называемых, «немых ноцоцепторов», которые играют особую роль в сенсибилизации и нейрогенном воспалении.

Нейро-иммунологические взаимодействия

По клинической картине и первичному месту воспаления различаются воспалительная боль и нейропатическая боль. При этом в первом случае возбуждены или сенсибилизированы терминалы ноцицепторов в области воспаления, а при нейропатической боли, наоборот, боль исходит из повреждения, которое изначально пришлось на аксон нерва, но не на его сенсибилизированное окончание.

Хотя клиническая картина воспалительной и нейропатической боли отличаются друг от друга, однако из современных исследований следует, что локальное воспаление периферических нервов играет решающую роль в патофизиологии нейропатической боли. Кроме того, оказалось, что не-нейрональные клетки играют активную роль в процессе сенсибилизации: глиальные клетки, которые активируются в рамках повреждения нервов, могут сенсибилизировать нейроны путем выделения хемокинов. Это взаимодействие иллюстрирует прочную взаимосвязь между воспалением и ноцицепцией наряду с уже известной и изученной активностью воспалительных медиаторов в ноцицептивных нервных окончаниях в клинически воспаленной ткани.

Между миалинизированными нервными волокнами, местными тканевыми клетками и клетками воспаления существует многогранное взаимодействие. Кератиноциты могут сенсибилизировать ноцицептивные окончания через выделение ацетилхолина и фактора нервного роста (NGF); и наоборот, кератиноциты могут активироваться нейропептидами (например, субстанция Р, CGRP) из ноцицепторов. Особое взаимодействие существует между стволовыми клетками и нервными клетками: большое количество медиаторов стволовых клеток могут сенсибилизировать ноцицептивные нервные окончания (NGF, триптаза, TNF-a, гистамин). NGF сенсибилизирует ноцицепторы остро путем активации протеинкиназы А. Кроме того, NGF опосредует повышенную экспрессию нейропептидов, а также сенсорных протеинов, таких как рецептор капсацина, который затем снова усиленно транспортируется на периферию.

Между нервными волокнами, локальными тканевыми клетками и клетками воспаления существуют многогранные взимоотношения
Наряду с активирующими взаимодействиями между нейронами, тканевыми клетками и клетками воспаления существуют также и ингибирующие взаимодействия. Как ингибирующие медиаторы, дермальными нейронами выделяются нейропептиды, как вазоинтестинальный вазопептид, а также эндогенные опиаты. Стволовые клетки вырабатывают интерлейкин 10 и IL-1-рецептор-антогонисты, действующие противовоспалительно. Кератиноциты к тому же синтезируют меланин-стимулирующий гормон (a-MSH) и нейтральную нейропептидазу (NEP), которая ограничива-ет действие активирующих нейропептидов.

Таким образом, проявляется комплексная взаимосвязь противоположно направленного подавления и активации, при чем различные «Reichweite» активрующих и ингибирующих медиаторов имеют значение для пространственного распространения воспаления.

Центральные механизмы

Опыт и здравый смысл говорят, что поврежденные месте тела больше чувствительны к боли. Эта форма сверхчувствительности называется первичная гипералгезия и может объясняться локальным действием медиаторов воспаления на затронутые нервные окончания. Первичной гиперальгезии противопоставляется вторичная гиперальгезия, возникающая в непораженной ткани вокруг места повреждения.

Вокруг этого места поражения холод, касание («brush evoked hyperalgesia» или Allodinie) и раздражение от укола иглой (Pinprickhyperalgesia) воспринимаются как неприятные или болезненные. Происхождение этой формы вторичной гиперальгезии находится не в самой поврежденной области. Скорее речь идет о сенсибилизации спинальных нейронов массивным ноцицептивным раздражением и в результате этого измененной спинальной обработкой в направлении ноцицепции. Центральная сенсибилизация может этим объяснить, почему боль и сверхчувствительность не остаются строго ограниченными областью повреждения, но занимают гораздо большие ареалы. Молекулярные механизмы центральной сенсибилизации не до конца понятны, существенная роль однако принадлежит глютамат-рецепторам на спинальном уровне (NMDA- и мета-ботропные рецепторы), которые уже служат в качестве терапевтических целей (например кетамин).

Многие хронические состояния боли однако не могут быть объяснены периферическими или спинальными нарушениями переработки, но рассматриваются как следствия комплексной взаимосвязи генетических и психо-социальных факторов. Поэтому в клиническом плане возникает необходимость мультимодального и мультидисциплинарного подхода к терапии боли. Значение процесса обучения в возникновении или лечении хронических состояний боли за последнее время значительно приросло.

При открытие роли каннабиоидов в устранении (стирании) негативных содержаний памяти продемонстрировало новые возможности комбинации фармакотерапии и терапии поведения. Всеохватывающие и многообещающие возможности для дальнейшего анализа и терапевтического влияния на центральные механизмы боли, включая электростимуляционые методы, не могут быть описаны здесь из-за отсутствия места.

Резюме для практики

Периферические механизмы возникновения болей нашли отражение в прочном взаимодействии нейронов и окружающих тканевых и воспалительных клеток, что проявляется как в раздражающей, так и ингибирующем взаимодействии и представляет многообразие возможных терапевтических целей. На спинальном уровне процессы сенсибилизации приводят к распространению болей и способствуют хронификации. Процессы обучения и стирание адверсивного содержания памяти имеют большое значение при хронических состояниях боли как для патофизиологии, так и для терапии.

Введение


Знание клеточного механизма передачи и модуляции ноцицептивной информации может быть полезно:


1) для лучшего понимания фармакологии известных анальгетических препаратов;


2) для развития направлений создания новых анальгетиков.


Основные нейрофизиологические понятия


Боль может распространяться по А-дельта и С-волокнам ноцицептора и в зависимости от интенсивности ноцицепторной активации (периферический механизм боли). При определенных условиях боль может передаваться по А-бета-волокнам, когда низкий порог возбудимости механорецепторов активируется тактильной стимуляцией. За этот феномен ответственны изменения функциональных свойств второго нейрона (центральный механизм боли).


Периферический механизм боли


Высокий порог активации требует интенсивной патологической стимуляции для запуска «системы тревоги» и усиления болевой чувствительности. В ситуациях, когда патологические стимулы вызывают повреждение ткани и развитие сопутствующей воспалительной реакции, тонкие миелиновые и немиелиновые волокна могут подвергаться сенситизации. В связи с этим порог их активации уменьшается, рецептор запускает разряды более высокой частоты или даже может иметь спонтанную активность.


Подобные изменения проводниковых свойств ноцицептора развиваются в связи с появлением химических субстанций, которые вырабатываются в месте повреждения, где часто наблюдается воспаление (алгогенные вещества). Рецептор может активироваться стимулами меньшей интенсивности. Феномен «периферической сенситизации» несет ответственность за увеличение болевой чувствительности, что в конечном счете приводит к повышению интенсивности боли при стимуляции той же силы (гипералгезия).


Центральный механизм боли


Длительная или повторная стимуляция может изменять свойства ответа нейронов заднего рога (нейрональная пластичность). Нейроны заднего рога могут сенситизироваться и отвечать более сильным стимулом после прохождения импульса (феномен «взведенного курка»).


При определенных условиях некоторые нейроны заднего рога могут становиться чувствительными даже к непатологической стимуляции, которая проводится по низкопороговым А-бета-волокнам, так что даже легкое прикосновение может становиться болезненным (аллодиния).


Такая гиперчувствительность может рассматриваться как патологическое состояние, так как боль в этом случае не является защитным сигналом о нарушениях в организме. Стимуляция низкой интенсивности может вызывать и пролонгировать мучительную боль. У некоторых пациентов спонтанная боль может развиваться без видимой причины.


Патологическая боль


Какие нарушения ЦНС, вызванные длительными и интенсивными патологическими стимулами, мы можем лечить или, что лучше, предотвращать? Природа изменений нейронов заднего рога, вызываемых интенсивной стимуляцией, изучена далеко не полностью. Однако некоторые механизмы направленного фармакологического воздействия на процессы сенситизации определились достаточно четко.


Woolf и соавт. доказали, что второй нейрон заднего рога участвует в образовании спиноталамического тракта (восходящий путь для патологической информации), который активируется возбуждающими аминокислотами (ВАК). Наиболее изученным в этом плане является глутамат. ВАК подобно нейротрансмиттерам могут активировать различные рецепторы: NMDA (n-метил-d-аспартат), АМРА и QA (альфа-амино-3-гидрокси-5-метилизосоксазол-5-проприонат и квисквалат) и метаботропические рецепторы (1,3-транс-1-аминоциклопентил-1,3-дисарбоксилат (трансAPCD)).


Позвольте в первую очередь обсудить NMDA-рецептор. При физиологических условиях активация NMDA способствует продукции cGMP (циклический гуанозин-монофосфат). При патологических состояниях залп импульсов, генерированных длительной и интенсивной патологической стимуляцией, может перестимулировать NMDA-рецептор и запустить каскад интрацеллюлярных реакций, которые увеличивают продукцию NО (оксид азота).


В случае гиперпродукции NО может диффундировать из клетки, где был выработан, и становиться токсичным для других клеток, не имеющих NO-синтазы и других внутриклеточных защитных механизмов. Предполагается, что NО в высоких концентрациях (как продукт суперстимуляции NMDA-рецептора возбуждающими аминокислотами) может воздействовать на малые энкефалинергические интернейроны, которые блокируют вход ноцицептивной информации («контроль входных ворот»). В связи с этим интенсивная патологическая стимуляция не контролируется нейронами заднего рога, что вызывает гипералгезию.


Теоретические предпосылки, представленные выше, дают возможность применения новых фармакологических подходов к анальгезии:


1) первый уровень, активация NMDA-рецептора, может быть блокирован кетамином или МК 801 ((+)-5-метил-10,11-дигидро-5Н дибензо(а,d)циклогептен-5,10-иминемалеат);


2) второй уровень, продукция NО в клетке, может блокироваться путем замещения L-аргинина на L-NAME (N-нитpo-L-аргинин-метил-эфир). L-аргинин является субстратом, используемым NO-синтазой для продукции NО. Его замена на L-NAME блокирует эту реакцию и предотвращает дальнейшую продукцию NO;


3) третий уровень касается центрального эффекта нестероидных противовоспалительных препаратов (НСПВП).


НСПВП обладают не только противовоспалительной активностью на периферии, где имеет место повреждение ткани, им присуща определенная центральная анальгетическая активность. Эта активность была изучена на уровне сенситизированных нейронов заднего рога. Кроме NMDA-рецепторов нейроны заднего рога содержат АМРА-рецепторы и метаботропические рецепторы, которые играют определенную роль в реализации центрального эффекта НСПВП. Обе эти группы рецепторов могут активироваться возбуждающими аминокислотами, что приводит к увеличению продукции простагландинов в клетках заднего рога. НСПВП легко проходят гематоэнцефалический барьер и могут вызывать центральный анальгетический эффект несколькими возможными путями, один из которых представляет собой блокаду синтеза простагландинов в нейронах заднего рога.


Кетамин


На уровне NMDA-рецептора кетамин и МК 801 используются как рецепторные антагонисты. NMDA-рецептор является довольно сложным комплексом с различными центрами взаимодействия. Кетамин, являясь его неполным антагонистом, связывается с рецептором в феноциклидном центре. МК 801 до настоящего времени остается недоступным для клинического использования.


Существует много методической литературы об использовании NMDA-антагонистов при моделировании боли у животных. В последних работах Meller и Gebhart показали, что NMDA-антагонисты уменьшают гипералгезию у крыс, вызванную интенсивной термической стимуляцией. Автором исследовались поведенческие параметры у крыс при моделировании нейропатической боли. Было отмечено, что кетамин может уменьшать некоторые, но не все, ноцицептивные ответы на фоне гипералгезии. Этот эффект может устраняться введением NMDA. В клинике кетамин с определенным успехом используется для купирования послеоперационной боли, фантомной боли и постгерпетической невралгии. В большинстве клинических исследований использовалась рацемическая смесь кетамина, при этом наблюдалось учащение психомиметических эффектов. Оуе и соавт. предположили, что более эффективная анальгезия с меньшим количеством побочных эффектов может быть достигнута при применении S-формы кетамина.


L-NAME
(N-нитро-L-аргинин-метил-эфир)


Meller и Gebhart продемонстрировали, что гипералгезия у крыс, вызванная интратекальным введением NMDA (1 рмоль/л), снижалась, если их лечили L-NAME. В исследовании автора показано, что L-NAME, используемый для терапии моделированной нейропатической боли у крыс, изменял поведенческие параметры в фазе гипералгезии этого синдрома. Антиноцицептивный эффект L-NAME устраняется введением L-аргинина или NMDA, так как эти два медиатора восстанавливают ноцицептивное поведение животных. L-NAME непригоден для клинического применения, но эксперименты на животных указывают новое направление возможного фармакологического вмешательства в нейрохимию боли.


Нестероидные противовоспалительные препараты


Ноцицептивные нейроны заднего рога активируются возбуждающими аминокислотами (ВАК), которые действуют как нейротрансмиттеры. Для нивелирования эффектов ВАК организм вырабатывает эндогенный антагонист ВАК — кайнуреническую кислоту. Предполагается, что при определенных условиях некоторые НСПВП (но не все) способны увеличивать продукцию кайнуренической кислоты. Таким образом, развивается блокада на уровне рецепторов ВАК. Это только один возможный механизм развития центрального анальгетического эффекта НСПВП. Этот эффект не зависит от степени блокады синтеза простагландинов. Спинальное действие НСПВП было продемонстрировано Malberg и Yaksh на крысах. Несколько раньше De Voghel с хорошим эффектом использовал эпидуральное введение лизина ацетилсалициловой кислоты у пациентов с раковой болью.


Заключение


Термин «боль» должен прекратить свое существование, так как имеется много видов боли с различной патофизиологией. Терапию следует адаптировать к специфическим требованиям, характерным для каждого вида боли. Возникновение патологической боли также является динамическим процессом, отражающим адаптивные изменения в ЦНС. Некоторые анальгетические препараты имеют в этом плане защитный эффект и могут использоваться для превентивной анальгезии.

Список литературы

1. C.J. Woolf. New Strategy for the Treatment of Inflammatory Pain: Prevention and Elimination of Central Sensitisation // Drugs. — 1994. — Vol. 47, suppl 5.

2. S.T. Meller, G.B. Gebhart. Spinal Med ators of Hyperalgesia // Drugs. — 1994. — Vol. 47, suppl 5.

3. A.B. Malmberg, T.L. Yaksh. Hyperalgesia Mediated by Spinal Glutamate or Substance P Receptor Blocked by Spinal Cyclooxygenase Inhibition // Science. — 1992. — Vol. 257.

4. I. Oye, O. Hustveit, A. Maurset, E. Ratti Moberg, O. Paulsen L.F. Skoglund. The Chiral Foms of Ketamine as Probes for NMDA receptor Function in Humans. NMDA Receptor Related Agents // Biochemistry, Pharmacology and Behavior / Еd. by Tsutomu Kameyama, Toshitaka Nabeshima, Edward F. Domino. — NPP Books, 1991.

5. D.T. Monagham, R.J. Bridges, C.У. Cotman. The excitatory amino acid receptor: their classes, Pharmacology, and Distinct properties in the function of the central nervous system // Pharmacol. Toxicol. — 1989. — Vol. 29. — P. 365-402.

6. B.M. Baron, B.L. Harrison, F.P. Miller, I.M. McDonald, F.G. Salituro, C.J. Schmidt, S.M. Sorensen, H.S. White, M.G. Palfreyman. Activity of 5,7-Dichlorokynurenic Acid, a Potent Antagonist at the N-Metyl-D-aspatate Receptor-Associated Glycine Binding Site / The American Society for Pharmacology and Experimental Therapeutics // Molecular Pharmacology. — 1990. — Vol. 38. — Р. 554-561.

БОЛЬ. ЭКСТРЕМАЛЬНЫЕ СОСТОЯНИЯ

Составили: д.м.н., профессор Д.Д.Цырендоржиев

к.м.н., доцент Ф.Ф.Мизулин

Обсуждено на методическом совещании кафедры патофизиологии "____" _______________ 1999 г.

Протокол №

План лекции

I. БОЛЬ, МЕХАНИЗМЫ РАЗВИТИЯ,

ОБЩАЯ ХАРАКТЕРИСТИКА И ВИДЫ

Введение

С незапамятных времен люди смотрят на боль как на сурового и неизбежного спутника. Не всегда человек понимает, что она верный страж, бдительный часовой организма, постоянный союзник и деятельный помощник врача. Именно боль учит человека осторожности, заставляет его беречь свое тело, предупреждая о грозящей опасности и сигнализируя о болезни. Во многих случаях боль позволяет оценить степень и характер нарушения целостности организма.

«Боль – это сторожевой пес здоровья», - говорили в Древней Греции. И в самом деле, несмотря на то, боль всегда мучительна, несмотря на то, что она угнетает человека, снижает его работоспособность, лишает сна, она необходима и до известных пределов полезна. Чувство боли предохраняет нас от обморожения и ожогов, предупреждает о грозящей опасности.

Для физиолога боль сводится к аффективной, эмоциональной окраске ощущения, вызываемого грубым прикосновением, теплом, холодом, ударом, уколом, ранением. Для врача проблема боли решается относительно просто – это предупреждение о нарушении функций. Медицина рассматривает боль с точки зрения пользы, которую она приносит организму и без которой болезнь может стать неизлечимой еще до того, как ее удается обнаружить.

Победить боль, уничтожить в самом зародыше это подчас непонятное «зло», преследующее все живое, - постоянная мечта человечества, уходящая корнями в глубь веков. За всю историю цивилизации найдены тысячи средств унять боль: травы, лекарства, физические воздействия.

Механизмы возникновения болевого ощущения одновременно и просты, и необыкновенно сложны. Не случайно до сих пор не затихают споры между представителями разных специальностей, изучающими проблему боли.

Итак, что же такое боль?

1.1. Понятие о боли и ее определения

Боль - сложное понятие, включающее в себя своеобразное ощущение боли и реакцию на это ощущение с эмоциональным напряжением, изменениями функций внутренних органов, двигательными безусловными рефлексами и волевыми усилиями, направленными на избавление от болевого фактора.

Боль реализуется специальной системой болевой чувствительности и эмоциональными структурами мозга. Она сигнализирует о воздействиях вызывающих повреждение, или об уже существующих повреждениях возникших вследствие действия экзогенных повреждающих факторов или развития патологических процессов в тканях.

Боль представляет собой результат раздражения в системе рецепторов, проводников и центров болевой чувствительности на разных уровнях неровной системы. Наиболее выраженные болевые синдромы возникают при поражении нервов и их ветвей чувствительных задних корешков спинного мозга и корешков чувствительных черепных нервов и оболочек головного и спинного мозга и, наконец, зрительного бугра.

Различают боли:

Местные боли – локализуются в очаге развития патологического процесса;

Проекционные боли ощущаются по периферии нерва при раздражении ее проксимальном участке;

Иррадиирующими называют болевые ощущения в области иннервации одной ветви при наличии раздражающего очага в зоне другой ветви того же нерва;

Отраженные боли возникают по типу висцерокутанного рефлекса при заболеваниях внутренних органов. При этом болезненный процесс во внутреннем органе, вызывая раздражение афферентных вегетативных нервных волокон ведет к появлению болевых ощущений в определенном участке кожи, связанном с соматическим нервом. Территории, где возникают висцеросенсорные боли, именуются зонами Захарьина-Геда.

Каузалгия (жгучая, интенсивная, нередко непереносимая боль) – особая категория болей, возникающих иногда после ранения нерва (чаще срединного богатого симпатическими волокнами). В основе каузалгии лежит частичное повреждение нерва с неполным нарушением проводимости и явленями раздражения вегетативных волокон. При этом в процесс вовлекаются узлы пограничного симпатического ствола и зрительный бугор.

Фантомные боли – иногда появляются после ампутации конечности. Боли обусловлены раздражением рубцом нерва в культе. Болевое раздражение проецируется сознанием в те области, которые были связаны с этими корковыми центрами ранее, в норме.

Помимо физиологической боли существует и патологическая боль – имеющее дизадаптивное и патогенетическое значение для организма. Непреодолимая, тяжелая, хроническая патологическая боль вызывает психические и эмоциональные расстройства и дизинтеграцию деятельности ЦНС, нередко приводит к суицидальным попыткам.

Патологическая боль имеет ряд характерных признаков, которых нет при физиологической боли.

К признакам патологической боли относятся:

    каузалгия;

    гиперпатия (сохранение сильной боли после прекращения провоцирующей стимуляции);

    гипералгезия (интенсивная боль при ноцицитивном раздражении зоны повреждения – первичная гипералгезия); либо соседних, или отдаленных зон – вторичная гипералгезия):

    аллодиния (провокация боли при действии не ноцициптивных раздражителей, отраженные боли, фантомные боли и т.д.)

Периферическими источниками раздражений, вызывающих патологически усиленную боль, могут быть тканевые ноцицепторы. При их активации – при воспалительных процессах в тканях; при сдавлении рубцом или разросшейся костной тканью нервов; при действии продуктов распада тканей (например, опухолей); под влиянием БАВ, продуцирующихся при этом, занчительно повышается возбудимость ноцицепторов. Причем, последние приобретают способность реагировать даже на обычные, неноцицивные воздействия (явление сенситизации рецепторов).

Центральным источником патологически усиленной боли может быть измененные образования ЦНС, которые входят в систему болевой чувствительности или модулируют ее деятельность. Так, агрегаты гиперактивных ноцициптивных нейронов, образующих ГПУВ в дорсальных оргах или в каудальном ядре тройничного нерва служат источниками, вовлекающий в процесс систему болевой чувствительности. Подобного рода боли центрального происхождения возникают и при изменениях в других образованиях системы болевой чувствительности – например, ретикулярными формациями продолговатого мозга, в таламических ядрах и др.

Все эти центрального происхождения болевые информации появляются при действии на указанные образования при травме, интоксикации, ишемии и др.

Каковы механизмы боли и ее биологическое значение?

1.2. Периферические механизмы боли.

До настоящего времени нет единого мнения о существовании строго специализированных структур (рецепторов) воспринимающих боль.

Существуют 2 теории восприятия боли:

Сторонники первой теории, так называемой «теории специфичности», сформулированной в конце 19 века немецким ученым Максом Фреем, признают существование в коже 4-х самостоятельных воспринимающих «приборов» – тепла, холода, прикосновения и боли – с 4-мя раздельными системами передачи импульсов в ЦНС.

Приверженцы второй теории – «теории интенсивности» Гольдшейдера соотечественника Фрея – допускают, что одни и те рецепторы и те же системы отвечают в зависимости от силы раздражения как неболевым так и болевым ощущениям. Чувство прикосновения, давления, холода, тепла может сделаться болевым, если вызвавший его раздражитель отличается чрезмерной силой.

Многие исследователи считают, что истина находится где-то посередине и большинство современных ученых признают, что болевое чувство воспринимается свободными окончаниями нервных волокон, разветвляющихся в поверхностных слоях кожи. Эти окончания могут иметь самую разнообразную форму: волосков, сплетений, спиралей, пластинок и т.д. Они и являются болевыми рецепторами или ноцицепторами.

Передача болевого сигнала передаются 2 типами болевых нервов: толстыми миелинизированными нервными волокнами типа А, по которым сигналы передаются быстро (со скоростью около 50-140 м/с) и, более тонкими безмиелиновыми нервными волокнами типа С - передаются сигналы значительно медленннее (со скоростью приблизительно 0,6-2 м/с). Соответствующие сигналы называют быстрой и медленной болью. Быстрая жгучая боль является реакцией на ранение или иное повреждение и обычно строго локализована. Медленная боль часто представляет собой тупое болевое ощущение и обычно менее четко локализована.




© 2024
womanizers.ru - Журнал современной женщины