19.06.2019

Нарушения функций органелл и других структур клетки. Что такое патологические клетки крови


Патология клеток- это научная дисциплина, изучающая «больную» клетку, не только морфологические изменения клетки, но и нарушения ее функций. Подобно нормальной цитологии, патологическая цитология исследует структуру и функцию клетки, но в условиях патологии.

«Попробуем представить себе, чем была бы медицина, если бы ее средства исследования ограничивались областью патологической анатомии. Чем была бы патоморфология, если бы она основывалась исключительно на изучении трупов? Чем была бы клиника, если бы она руководствовалась только выводами, полученными при исследовании трупов? Между тем до последнего времени патология клетки базировалась только на изучении «трупов» клеток, которые исследовались на гистологических срезах. Благодаря применению фазового контраста и микрокиносъемки появилась возможность изучать изменения в живых клетках. Возникла, так сказать, клиника больных клеток; начались исследования симптомов их поражения, их реакции на вмешательство извне, процессов, ведущих к гибели клеток или к их выздоровлению. Микрокиносъемка в фазовом контрасте в сочетании с микродиссекцией и культурой in vitro - весьма ценные динамические методы изучения живых клеток» - писал французский гистолог-цитолог А. Поликар.

В классической общей патологии различают клетки здоровые (нормальные) и клетки с нарушенными функциями (вследствие регрессивных и прогрессивных изменений), а также мертвые клетки, которые проявляются в виде некроза ткани, и имеют самые различные формы.

Со строением и функциями нормальной клетки вы подробно знакомились в курсах общей биологии, гистологии, биохимии. Подробное описание мертвой клетки Вам представят патологоанатомы. В задачу же настоящего раздела входит дать наиболее общие представления о «больных» клетках, о тех функциональных нарушениях, что отмечаются в них.

Структуры живой клетки образуют несколько систем:

Генетического программирования (ядро),

Восприятия внешних сигналов (рецепторы и внутриклеточные посредники-мессенджеры),

Энергетического обеспечения (митохондрии),

Пластического обеспечения (рибосомы),

накопления и распределения различных веществ (эндоплазматическая сеть накапливает и распределяет кальций),

Обеспечения специфических функций (миофпбриллы, нейрофибриллы, тонофибриллы, микроворсинки, десмосомы, лизосомы в фагоцитах и др.),

Репаративные системы, деятельность которых направлена па восстановление нарушенных структур или на их обновление (лизосомы),

Система внутриклеточных регуляторов.

В патологической физиологии клетки мы можем выделить патологию восприятия сигналов, патологию клеточных оргапеил. общую патологию клетки и патологию клеточных популяций.


Нарушение жизнедеятельности организма человека при заболева­ниях всегда так или иначе связано с изменением функционирования кле­ток. В свою очередь, нарушение функционирования клетки, вызванные действием неблагоприятных факторов, например недостатком кислоро­да или действием токсичных соединений, может вначале и не привести к повреждению клетки: как только окружающие условия восстановятся до нормы, состояние клетки вновь будет близким к исходному.
Повреждением называется изменение функционирования клетки, которое сохраняется после удаления повреждающего агента. Серьезное повреждение клетки может сопровождаться процессами, приводящими к ее гибели. Часто это связано с включением специального механизма апоптоза (запрограммированная смерть клетки).
Следует различать прямое действие неблагоприятного фактора на данную клетку и косвенное его влияние, опосредованное воздействием на другие клетки, органы, ткани и организм в целом.
К прямому действию относится повреждающее влияние ядов, на­правленное непосредственно на клетку, например цианистого калия, ко­торый угнетает клеточное дыхание, ингибируя фермент цитохромоксидазу. Прямое нарушение жизнедеятельности клетки и ее повреждение могут быть вызваны отсутствием кислорода, чрезмерно низким значени­ем рН, низким осмотическим давлением в окружающей среде, недостат­ком ионов кальция, действием ультрафиолетовой или ионизирующей ра­диации и др.
В условиях целостного организма первичное действие повреждаю­щего фактора на клетки-мишени (т.е. клетки, повреждаемые непосред­ственно) сопровождается изменениями и в других клетках. Эти изменения опосредованы нарушением функционирования клеток-мишеней и поэто­му могут быть названы вторичными. Следовательно, обнаружив измене­ния в функционировании клеток того или иного органа при неблагоприят­ном воздействии, нельзя еще говорить о том, что данное воздействие само по себе вызвало наблюдаемые изменения в клетках. Одной из задач пато­логической физиологии является анализ последовательности событий - от момента воздействия повреждающего фактора до реализации этого повреждения на всех уровнях - клеточном, тканевом, органном.
Первичное специфическое действие повреждающих факторов на клетки. Повреждение клетки выражается в определенном нарушении ее структуры и функций. При этом различные повреждающие факторы вызывают неодинаковые специфические первичные нарушения в клеточ­ных структурах. При механическом повреждении происходит в первую очередь повреждение клеточных мембран и межклеточных контактов. Термическое повреждение может быть связано с активацией ферментов и индукцией синтеза определенных белков, а также нарушением внутри­клеточной регуляции. При действии ионизирующей и ультрафиолетовой радиации первичным является разрушение молекул, поглотивших энер­гию, с образованием свободных радикалов, что приводит к поражению внутриклеточных структур. При химическом повреждении может проис­ходить ингибирование отдельных ферментов, например подавление ак­тивности цитохромоксидазы цианидами. В то же время яды змей, скор­пионов, пчел и других жалящих животных содержат ферменты (главным образом различные фосфолипазы), которые гидролизуют фосфолипиды и повреждают мембраны, вызывая гемолиз эритроцитов, поражение не­рвных клеток и т.д.
Развитие повреждения клетки после первичного, специфичес­кого воздействия. Первичное, специфическое воздействие поврежда­ющего фактора направлено на конкретные молекулярные структуры клет­ки. Химический состав клеточных структур определяется в основном нуклеиновыми кислотами, белками, липидами и полисахаридами; все эти соединения могут быть мишенью для повреждающего действия факто­ров окружающей клетку среды. Нарушение клеточных структур вызывает каскад процессов, заканчивающихся общим ответом клетки как целого на внешнее неблагоприятное воздействие. При этом можно различить несколько стадий такого ответа в зависимости от Силы и продолжитель­ности воздействия. При слабых повреждающих воздействиях развивает­ся обратимое повреждение клеток {стадия паранекроза). В этих случаях после прекращения действия повреждающего фактора клетка восстанав­ливает свою жизнедеятельность. Практически у всех клеток при действии на них повреждающих агентов резко увеличивается проницаемость кле­точных мембран для ионов, в частности для ионов кальция, с последую­щей активацией различных внутриклеточных систем: протеинкиназ, фос­фолипаз, систем биосинтеза белков, фосфодиэстеразы, циклических нуклеотидов, аденилатциклазы, сократительного аппарата клетки и др. Эта первая обратимая стадия в определенной степени направлена на ком­пенсацию нарушений, вызываемых повреждающим фактором, будь то компенсация на уровне одной клетки или на уровне целого организма. Внешне паранекроз проявляется в помутнении цитоплазмы, вакуолиза­ции, возникновении грубодисперсных осадков, увеличении проникнове­ния в клетку различных красителей.
Замечательной особенностью развития патологических изменений в клетках в ответ на самые различные неблагоприятные воздействия яв­ляется их идентичность, которая позволила Д.Н. Насонову и В.Я. Александрову выдвинуть в 1940 г. теорию о неспецифической реакции клеток на повреждение. Каким бы ни был повреждающий агент и на какие бы клетки он ни действовал, ответ клеток по ряду показателей остается одинако­вым. К числу таких показателей относятся:
1) уменьшение дисперсности коллоидов цитоплазмы и ядра;
2) увеличение вязкости цитоплазмы, которому иногда предшествует
некоторое уменьшение вязкости;
3) увеличение сродства цитоплазмы и ядра к ряду красителей.
Во многих случаях наблюдаются также увеличение клеточной проницаемости, появление флюоресценции, повышение кислотности цитоплаз­мы, нарушение многих клеточных функций и т.д. Причины такого стерео­типа изменений в морфологии клеток при их повреждении заключаются в том, что сами молекуклярно-клеточные механизмы повреждения клеток сходны, даже если причины, вызвавшие повреждение, различны.
При более сильном или более длительном воздействии повреждаю­щего фактора в клетках наступают необратимые изменения. Эта стадия получила название некробиоза (от греч. necrosis - мертвый и bios - жизнь), состояние как бы «между жизнью и смертью». Она заканчивается некрозом клеток и их аутолизом или же включением механизмов апоптоза.
Этапы изучения механизма действия неблагоприятных факто­ров. Выяснение патогенеза различных заболеваний требует использо­вания различных методических приемов.
Первым этапом изучения механизмов нарушений, возникающих в клетке, служат клинические наблюдения.
На втором этапе исследуются изменения, происходящие в различ­ных структурах клеток после воздействия на организм животного повреж­дающего агента.
Полученные данные позволяют приступить к третьему этапу иссле­дования: изучению механизма действия повреждающего фактора на экпериментальных моделях. Это дает возможность составить гипотетичес­кую схему последовательности событий при действии повреждающего агента (например, четыреххлористого углерода на клетки печени).

Морфологически она проявляется в изменении структуры, размеров, формы и количества ядер и ядрышек, в появлении разнообразных ядерных включений и изменений ядерной оболочки. Особую форму ядерной патологии представляет патология митоза; с патологией хромосом ядра связано развитие хромосомных синдромов и хромосомных болезней.

Структура и размеры ядер

Структура и размеры ядра (речь идет об интерфазном, интермитозном, ядре) зависят в первую очередь от плоидности, в частности от содержания в ядре ДНК, и от функционального состояния ядра. Тетраплоидные ядра имеют диаметр больше, чем диплоидные, октоплоидные - больше, чем тетраплоидные.

Большая часть клеток содержит диплоидные ядра. В пролиферирующих клетках в период синтеза ДНК (S-фаза) содержание ДНК в ядре удваивается, в постмитотический период, напротив, снижается. Если после синтеза ДНК в диплоидной клетке не происходит нормального митоза, то появляются тетраплоидные ядра. Возникает полиплоидия - кратное увеличение числа наборов хромосом в ядрах клеток, или состояние плоидности от тетраплоидии и выше.

Полиплоидные клетки выявляют различными способами: по размеру ядра, по увеличенному количеству ДНК в интерфазном ядре или по увеличению числа хромосом в митотической клетке. Они встречаются в нормально функционирующих тканях человека. Увеличение числа полиплоидных ядер во многих органах отмечается в старости. Особенно ярко полиплоидия представлена при репаративной регенерации (печень), компенсаторной (регенерационной) гипертрофии (миокард), при опухолевом росте.

Другой вид изменений структуры и размеров ядра клетки встречается прианеуплоидии, под которой понимают изменения в виде неполного набора хромосом. Анеуплоидия связана с хромосомными мутациями. Ее проявления (гипертетраплоидные, псевдоплоидные, «приблизительно» диплоидные или триплоид-ные ядра) часто обнаруживаются в злокачественных опухолях.

Размеры ядер и ядерных структур независимо от плоидии определяются в значительной мере функциональным состоянием клетки. В связи с этим следует помнить, что процессы, постоянно совершающиеся в интерфазном ядре, разнонаправленны: во-первых, это репликация генетического материала в S-периоде («полуконсервативный» синтез ДНК); во-вторых, образование РНК в процессе транскрипции, транспортировка РНК из ядра в цитоплазму через ядерные поры для осуществления специфической функции клетки и для репликации ДНК.

Функциональное состояние ядра находит отражение в характере и распределении его хроматина. В наружных отделах диплоидных ядер нормальных тканей находят конденсированный (компактный) хроматин -гетерохроматин, в остальных ее отделах - неконденсированный (рыхлый) хроматин - эухроматин. Гетеро- и эухроматин отражают различные состояния активности ядра; первый из них считается «малоактивным» или «неактивным», второй - «достаточно активным». Поскольку ядро может переходить из состояния относительно функционального покоя в состояние высокой функциональной активности и обратно, морфологическая картина распределения хроматина, представленная гетеро- и эухроматином, не может считаться статичной. Возможна «гетерохроматинизация» или «эухроматинизация» ядер, механизмы которой изучены недостаточно. Неоднозначна и трактовка характера и распределения хроматина в ядре.

Например, маргинация хроматина, т. е. расположение его под ядерной оболочкой, трактуется и как признак активности ядра, и как проявление его повреждения. Однако конденсация эухроматиновых структур(гиперхроматоз стенки ядра), отражающая инактивацию активных участков транскрипции, рассматривается как патологическое явление, как предвестник гибели клетки. К патологическим изменениям ядра относят также егодисфункциональное (токсическое) набухание, встречающееся при различных повреждениях клетки. При этом происходит изменение коллоидно-осмотического состояния ядра и цитоплазмы вследствие торможения транспорта веществ через оболочку клетки.

Патология клетки – типовой патологический процесс, характеризующийся нарушением внутриклеточного гомеостаза, что ограничивает функциональные возможности клетки и может приводить ее к гибели или снижению продолжительности жизни .

Гомеостаз клетки – способность клетки существовать при изменении условий обитания с сохранением устойчивого динамического равновесия со средой.

Понятие «гомеостаз клетки » включает в себя ряд показателей (констант): внутриклеточное постоянство ионов водорода, электронов, кислорода, субстратов для энергетического и пластического обеспечения жизнедеятельности клетки, ферментов, нуклеотидов и еще ряд веществ.

Константы (лат. constantus – постоянная величина) гомеостаза клетки зависят от:

    структурно-функционального состояния ее различных мембран (плазмолемы, митохондрий, лизосом и др.) и органелл, интенсивности течения внутриклеточных биохимических процессов. Это своеобразная «метаболическая составляющая гомеостаза » и определяется работой исполнительного аппарата клетки;

    информационных процессов . Нормальная жизнедеятельность клетки невозможна без информации, поступающей к ней из внешней среды. Очень часто она изменяет параметры внутриклеточного постоянства, что является следствием включения приспособительных (адаптивных) программ, позволяющих клетке оптимально приспосабливаться к конкретной ситуации согласно поступившей информации. «Правильность » изменения констант внутриклеточного гомеостаза и их поддержание в границах нормы в данном случае определяется в первую очередь количеством и качеством информационного обеспечения клетки (наличием сигнальных молекул, рецепторов, пострецепторных связей и др.). Исполнительный аппарат клетки выполняет лишь «полученные указание ».

Следовательно, патология клетки может возникнуть и без первичного «полома » ее исполнительного аппарата, а из-за нарушений в механизмах сигнализации, в так называемой «информационной составляющей » внутриклеточного гомеостаза.

В зависимости от природы этиологического фактора, нарушающего гомеостаз (метаболическое и/или информационное его составляющее) клетки, различают физические, химические и биологические повреждающие агенты.

Физические этиологические факторы – это механические и температурные воздействия (гипо- и гипертермия), энергия электрического тока, ионизирующей радиации и электромагнитных волн, влияние факторов космического полета (ускорение, гипокенезия) и др.

Химические этиологические факторы – воздействие многочисленных неорганических и органических веществ (кислоты, щелочи, соли тяжелых металлов, этиловый и метиловый спирт). Патология может быть обусловлена дефицитом или избытком белков, жиров, углеводов, витаминов, микроэлементов и др. веществ. Немаловажное значение в этой группе факторов имеют и лекарственные препараты.

Все, выше названные патогенные факторы, вызывают различные повреждения клеток.

Тип (вид) повреждения клетки зависит от :

    скорости развития основных проявлений нарушений функции клеток . Выделяют острое и хроническое повреждение клетки. Острое повреждение развивается быстро, и как правило, в результате однократного, но интенсивного повреждающего воздействия. Хроническое повреждение протекает медленно и является следствием многократного влияния, но менее интенсивного по силе повреждения агента;

    жизненного цикла клетки, на период которого приходится воздействие повреждающего фактора. Различают митотические и интерфазные повреждения;

    от степени (глубины) нарушения клеточного гомеостаза – обратимые и необратимые повреждения;

    от характера взаимодействия повреждающего фактора с клеткой . Если патогенный агент действует непосредственно на клетку, то говорят о прямом (первичном) ее повреждении. В условиях целостного организма влияние причины может осуществляться и через формирование цепи вторичных реакций. Например, при механической травме непосредственно в месте воздействия этого агента образуются биологически активные вещества (БАВ) – это продукты распада погибших клеток, гистамин, оксидазы, простогландины и др. соединения, синтезируемые поврежденными клетками. БАВ, в свою очередь, вызывают нарушения функции клеток, ранее не попавших под влияние данного фактора. Такое повреждение получило название опосредованное или вторичное . Воздействие этиологического фактора может проявляться опосредованно и через изменения нервных и эндокринных регуляций (шок, стресс), при отклонениях физико-химического состояния организма (ацидоз, алколоз), при нарушениях системного кровообращения (сердечная недостаточность), гипоксии, гипо- и гипертермия, гипо- и гипегликемия и др.

    от характера повреждений вызванных определенным патогенным фактором . Рассматривают специфические и неспецифические повреждения.

Литвицкий П.Ф. (2002) выделяет и специфические повреждения определенных клеток, возникающее при взаимодействии с самыми различными патогенными факторами. В качестве примера приводит развитие контрактур мышечных клеток при влиянии на них физических, химических и биологических факторов, или, возникновение гемолиза эритроцитов при аналогичных воздействиях.

Неспецифические повреждения – это стандартные, стереотипные изменения в клетках возникающие при их взаимодействии с широким спектром этиологических факторов. В качестве примера можно привести следующие нарушения:

    повышение проницаемости мембран клеток;

    активация свободно-радикальных и перекисных реакций;

    внутриклеточный ацидоз;

    денатурация молекул белков;

    дисбаланс ионов и воды;

    изменение интенсивности окислительного фосфорилирования.

Взаимосвязи между специфическими и неспецифическими повреждениями клеток разнообразны. Они могут возникать одновременно, либо одно из них предшествует другому. Выяснение конкретных видов нарушений, времени их возникновения и соотношении между собой, дает врачу необходимую информацию о характере и интенсивности действия причинного фактора, глубине и распространенности патологического процесса. Это в свою очередь обеспечивает проведение более этиотропной и патогенетической профилактики и терапии. Например, если при гепатитах различного происхождения регистрируется только увеличение в плазме крови концентрации ионов К и аланинаминотрансферазы (АЛТ) то это свидетельствуют о легком течении или начале заболевания. Калий и АЛТ находятся в цитоплазме, возрастание их содержание за пределами клеточной мембраны характерны при нарушении ее проницаемости (неспецифическое повреждение). Появление же в крови довольно специфического для печени фермента – сорбитдегидрогеназы и органеллоспецифичных – глютаматдегидрогеназы (локализация - митохондрии), кислой фосфотазы (локализация лизосомы) говорит об усугублении патологического процесса . Он уже не ограничивается только мембраной клетки, а затрагивает и внутриклеточные структуры.

Как было отмечено выше, патология клетки возникает вследствие нарушения ее гемостаза. Он может изменяться не только при непосредственном воздействии патогенного агента на клетку (тем самым, нарушая в основном работу ее исполнительного аппарата), но и при недостаточности информационных механизмов, инициирующих включение тех или иных адаптогенных программ. В связи с этим, природу заболеваний человека можно рассматривать с двояких позиций – материально-энергетических и информационных (А.Ш. Зайчик, Л.П. Чурилов, 1999). Болезнь развивается, и при повреждении исполнительного аппарата клетки (материально-энергетическая позиция ), и при нарушении ее информационных механизмов (информационная позиция ). Основываясь на последнем положеним, существует даже специальная терминология – «болезни регуляции », «дизрегуляционная патология ».

Данные позиции легче выявляются на начальных этапах патологии клетки. По мере ее развития различия между ними более затруднительны, и тем не менее, этиотропная и патогенетическая терапия будет более адекватной и успешной при установлении истинного механизма (причины) развития того или иного проявления патологии.

Сейчас мы приступаем непосредственно к рассмотрению ответа клетки на патогенный агент. Согласно нашего плана (рис. 1), сюда входят вопросы адаптации и паранекроза. Они между собой тесно связаны, так как любой патологический процесс (болезнь) состоит из двух компонентов: повреждения (альтерации ) и защитно-приспособительных (адаптивных ) механизмов. Альтерация моментально вызывает активацию адаптивных механизмов, направленных на поддержание жизнедеятельности клетки в изменившихся условиях. Параллельное изучение вопросов альтерации и защитно-приспособи-тельных механизмов создает определенные трудности в усвоении учебного материала. Поэтому мы первоначально разберем механизмы повреждения гомеостаза клетки, а затем защитно-приспособительных реакций. При этом будем помнить, что начальный этап альтерации клетки – паранекроз – это не только повреждение, но и наличие защитно-приспособительных механизмов, пусть и не в полной мере выполняющих свое назначение.

Рассмотрение патологии клетки начинаем с нарушений, возникающих при непосредственном воздействии на нее патогенного агента. Взаимодействие этиологического фактора с различными структурными образованиями клетки, ведет к нарушению ее гомеостаза (его метаболической составляющей ), и, следовательно, развитию болезни. Патология может возникнуть при повреждении различных биомембран клетки (особенно часто повреждается плазмолемма) и внутриклеточных образований: ядра, митохондрий, лизосом и др. (рис. 2).

Клетки - основные структурно-функциональные элементы тканей, органов и организма в целом - для выполнения своих функций поддерживают собственный гомеостаз, осуществляют обмен веществ и энергии, реализуют генетическую информацию, передают её потомству и прямо или опосредованно (через межклеточный матрикс и жидкости) обеспечивают функции организма. Любая клетка (рис. 4-1) либо функционирует в границах нормы (гомеостаз), либо приспосабливается к жизни в изменившихся условиях (адаптация), либо гибнет при превышении её адаптивных возможностей (некроз) или действии соответствующего сигнала (апоптоз).

Гомеостаз (гомеокинез) - динамическое равновесие в данной клетке, с другими клетками, межклеточным матриксом и гуморальными

Рис. 4-1. Гомеостаз, адаптация и типовые формы патологии клеток. Слева в овале - границы нормы. Существенное свойство типовых патологических процессов - их обратимость. Если степень повреждения выходит за пределы адаптивных возможностей, процесс становится необратимым (примеры - некроз, апоптоз, дисплазия, опухолевый рост).

факторами, обеспечивающее оптимальную метаболическую и информационную поддержку. Жизнь клетки в условиях гомеостаза - постоянное взаимодействие с различными сигналами и факторами.

Адаптация - приспособление в ответ на изменения условий существования клеток (в том числе на воздействие повреждающего фактора).

Гибель клетки - необратимое прекращение жизнедеятельности. Происходит либо вследствие генетически программированного процесса (апоптоз), либо в результате летального повреждения (некроз).

Типовые формы патологии клеток: дистрофии, дисплазии, метаплазия, гипотрофия (атрофия), гипертрофия, а также некроз и патологические формы апоптоза.

Повреждение Повреждающие факторы

Эффект повреждающего фактора может быть обратимым или необратимым (рис. 4-2).

Природа повреждающего фактора трояка: физическая, химическая или биологическая (включая социальную).

Генез. По происхождению повреждающие факторы подразделяют на экзогенные и эндогенные.

Рис. 4-2. Признаки обратимого и необратимого повреждения. [по 4].

Экзогенные факторы (действуют на клетку извне):

физические воздействия (механические, термические, лучевые, электрический ток);

химические агенты (кислоты, щёлочи, этанол, сильные окислители);

инфекционные факторы (вирусы, риккетсии, бактерии, эндо- и экзотоксины микроорганизмов, гельминты и др.).

Эндогенные агенты (образуются и действуют внутри клетки):

физической природы (например, избыток свободных радикалов; колебания осмотического давления);

химические факторы (например, накопление или дефицит ионов H+, K+, Ca 2 +, кислорода, углекислого газа, перекисных соединений, метаболитов и др.);

биологические агенты (например, белки, лизосомальные ферменты, метаболиты, Ig, цитотоксические факторы; дефицит или избыток гормонов, ферментов, простагландинов - Пг).

Эффекты повреждающих факторов достигаются прямо (первичные факторы повреждения) или опосредованно (при формировании цепи вторичных патологических реакций - вторичные факторы повреждения).

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

К наиболее важным механизмам клеточной альтерации относятся:

♦ расстройства энергетического обеспечения клетки;

♦ повреждение мембран и ферментов;

♦ активация свободнорадикальных и перекисных процессов;

♦ дисбаланс ионов и воды;

♦ нарушения в геноме или экспрессии генов;

♦ расстройства регуляции функций клеток.

Расстройства энергетического обеспечения клетки

Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ. Главная причина расстройств - гипоксия (недостаточное снабжение клеток кислородом и нарушение биологического окисления).

Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и со- пряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

Транспорт энергии. Заключённая в макроэргических связях энергия АТФ поступает к эффекторным структурам (миофибриллы, ион-

ные насосы и др.) с помощью АДФ-АТФ-транслоказы и КФК. При повреждении этих ферментов или мембран клеток нарушается функция эффекторных структур.

Утилизация энергии может быть нарушена преимущественно за счёт уменьшения активности АТФаз (АТФаза миозина, Na+K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са 2 +-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Повреждение мембран

Повреждение клеточных мембран происходит за счёт следующих процессов:

Активация гидролаз. Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз и протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу, что сопровождается значительным повышением проницаемости мембран.

Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез альтерированных или утраченных мембранных макромолекул (а также их синтез de novo) подавляется, что приводит к недостаточному восстановлению мембран.

Нарушения конформации макромолекул (их пространственной структуры) приводит к изменениям физико-химического состояния клеточных мембран и их рецепторов, что приводит к искажениям или потере их функций.

Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления) - важный механизм повреждения мембран и гибели клетки.

Свободнорадикальные и перекисные реакции - в норме это необходимое звено транспорта электронов, синтеза Пг и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды, учитывая наличие большого их числа в мембранах клеток (свободнорадикальное перекисное окисление липидов - СПОЛ). При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Этапы СПОЛ: образование активных форм кислорода - генерация свободных радикалов органических и неорганических веществ - продукция перекисей и гидроперекисей липидов.

Активные формы кислорода - ❖ синглетный (Ό 2) ❖ супероксидный радикал (O 2 -)

❖ пероксид водорода (H 2 O 2) ❖ гидроксильный радикал (OH -).

Прооксиданты и антиоксиданты. Интенсивность СПОЛ регулируется соотношением активирующих (прооксидантов) его и подавляющих (антиоксидантов) факторов.

Прооксиданты - легко окисляющиеся соединения, нейтрализующие свободные радикалы (нафтохиноны, витамины A и D, восстановители - НАДФH 2 , НАДH 2 , липоевая кислота, продукты метаболизма Пг и катехоламинов).

Антиоксиданты - вещества, ограничивающие или даже прекращающие свободнорадикальные и перекисные реакции (ретинол, каротиноиды, рибофлавин, токоферолы, маннитол, супероксиддисмутаза, каталаза).

Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды - амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

Дисбаланс ионов и воды

Внутриклеточная жидкость содержит примерно 65% всей воды организма и характеризуется низкими концентрациями Na+ (10 ммоль/л), Cl - (5 ммоль/л), HCO 3 - (10 ммоль/л), но высокой концентрацией K+ (150 ммоль/л) и PO 4 3- (150 ммоль/л). Низкая концентрация Na+ и высокая концентрация K+ обусловлены работой Na+,K+-АТФазы, выкачивающей Na + из клеток в обмен на K + . Клеточный дисбаланс ионов и воды развивается вслед за расстройствами энергетического обеспечения и повреждением мембран.

К проявлениям ионного и водного дисбаланса относятся: ❖ изменение соотношения отдельных ионов в цитозоле; ❖ нарушение трансмембранного соотношения ионов; ❖ гипергидратация клеток; ❖ гипогидратация клеток; ❖ нарушения электрогенеза.

Изменения ионного состава обусловлены повреждениями мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-АТФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой K + .

Осмотическое набухание и осмотическое сморщивание клеток. Состояние клеток при изменении осмотичности рассмотрено на рис. 4-3.

Гипергидратация. Основная причина гипергидратации повреждён- ных клеток - повышение содержания Na + , а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и

Микроразрывами мембран. Такая картина наблюдается, например, при осмотическом гемолизе эритроцитов (рис. 4-3). Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекционных заболеваниях (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Рис. 4-3. Состояние взвешенных в растворе NaCl эритроцитов. По оси абсцисс: концентрация (С) NaCl (ммоль/л); по оси ординат: объём клеток (V). При концентрации NaCl 154 ммоль/л объём клеток такой же, как и в плазме крови (изотонический раствор NaCl), При увеличении концентрации NaCl (гипертонический раствор NaCl) вода выходит из эритроцитов, и они сморщиваются. При уменьшении концентрации NaCl (гипотонический раствор NaCl) вода входит в эритроциты, и они набухают. При гипотоничности раствора, примерно в 1,4 раза превышающей значение изотонического раствора, происходит разрушение мембраны. .

Нарушения электрогенеза (изменения характеристик мембранного потенциала - МП и потенциалов действия - ПД) имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Генетические нарушения

Изменения в геноме и экспрессии генов - существенный фактор повреждения клетки. К таким нарушениям относятся мутации, дерепрессии и репрессии генов, трансфекции, нарушения митоза.

Мутации (так, мутация гена инсулина приводит к развитию сахарного диабета).

Дерепрессия патогенного гена (дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую).

Репрессия жизненно важного гена (подавление экспрессии гена фенилаланин 4-монооксигеназы обусловливает гиперфенилаланинемию и развитие олигофрении).

Трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа.

Нарушения митоза (так, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведёт к формированию хромосомных болезней).

ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТОК

Любое повреждение клетки вызывает в ней разной степени выраженности специфические и неспецифические изменения. Специфические изменения развиваются при действии определённого патогенного фактора на различные клетки или в определённых видах клеток при действии разных повреждающих агентов.

Патогенные факторы, вызывающие специфические изменения в различных клетках: осмотическое давление, разобщители, гиперальдостеронемия и др.

Осмотическое давление. Повышение осмотического давления в клетке всегда сопровождается её гипергидратацией, растяжением мембран и нарушением их целостности (феномен «осмотическая деструкция клеток»).

Разобщители. Под влиянием разобщителей окисления и фосфорилирования (например, высших жирных кислот - ВЖК или Ca 2 +) снижается или блокируется сопряжение этих процессов и эффективность биологического окисления.

Гиперальдостеронемия. Повышенное содержание в крови и интерстиции альдостерона ведёт к накоплению в клетках Na+.

Группы клеток, реагирующие специфическими изменениями на действие различных повреждающих агентов:

Мышечные элементы на влияние разнообразных патогенных факторов значительной силы реагируют развитием их контрактуры.

Эритроциты при различных повреждениях подвергаются гемолизу с выходом Hb.

Неспецифические изменения (стереотипные, стандартные) развиваются при повреждении различных видов клеток и действии на них широкого спектра патогенных агентов. Примеры: ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и воды, снижение эффективности биологического окисления.

Типовые формы патологии

Основными типовыми формами патологии клеток являются их гипотрофия и атрофия, гипертрофия и дистрофии, дисплазии, метаплазия, а также некроз и апоптоз.

Гипотрофия и атрофия. Гипотрофия характеризуется уменьшением размеров и массы клетки, крайней степенью чего является атрофия. Гипотрофия и атрофия обычно сочетаются с уменьшением количества клеток - гипоплазией. Это приводит к уменьшению объёма органа, истончению кожи и слизистых оболочек. Пример: уменьшение массы и числа клеток в ишемизированной ткани или органе. Гипертрофия. Для гипертрофии характерно увеличение размеров и массы клетки. Нередко это сопровождается увеличением числа клеток (гиперплазией). Выделяют физиологическую и патологическую гипертрофию.

Физиологическая гипертрофия носит адаптивный характер (например, гипертрофия скелетных мышц у спортсменов).

Патологическая гипертрофия имеет (наряду с адаптивным) патологическое значение. Различают рабочую, викарную и нейрогуморальную патологическую гипертрофию, сочетающуюся с ремоделированием органа или ткани.

Рабочая гипертрофия развивается при постоянно повышенной нагрузке (например, патологическая гипертрофия миокарда при гипертонической болезни).

Викарная (заместительная) гипертрофия развивается в одном из парных органов при удалении второго.

Нейрогуморальная гипертрофия развивается при нарушении нейрогуморальной регуляции (например, акромегалия, гинекомастия).

Дистрофии

Клеточные дистрофии - нарушения обмена веществ, сопровождающиеся расстройством функций клеток.

Механизмы дистрофий разнообразны:

❖ синтез аномальных (в норме не встречающихся в клетке) веществ (например, белково-полисахаридного комплекса амилоида);

❖ избыточное превращение одних соединений в другие (например, углеводов в жиры при сахарном диабете);

❖ декомпозиция (фанероз): распад субклеточных структур и веществ (например, белково-липидных комплексов мембран при хронической гипоксии);

❖ инфильтрация клеток и межклеточного вещества органическими и неорганическими соединениями (например, липопротеинами низкой плотности - ЛПНП и Ca 2 + интимы артерий при атеросклерозе).

Классификация. Основным критерием классификации клеточных дистрофий является преимущественное нарушение метаболизма отдельных классов веществ. В связи с этим критерием различают диспротеинозы (белковые дистрофии), липидозы (жировые дистрофии), диспигментозы (пигментные дистрофии), углеводные и минеральные дистрофии. В отдельную группу выделяют тезаурисмозы (болезни накопления).

Диспротеинозы. Для белковых дистрофий характерно изменение физико-химических свойств клеточных белков. Выделяют зернистую, гиалиново-капельную и гидропическую дистрофии.

Липидозы. Для жировых дистрофий характерно увеличение содержания внутриклеточных липидов и их перераспределение в тканях и органах. Выделяют первичные и вторичные липидозы.

Первичные липидозы наблюдаются, как правило, при генетически обусловленных ферментопатиях (например, ганглиозидозы, цереброзидозы, сфинголипидозы).

Вторичные липидозы развиваются в результате воздействия различных патогенных факторов, таких как гипоксия, тяжёлые инфекции, системные заболевания, отравления (в том числе некоторыми ЛС - цитостатиками, антибиотиками, барбитуратами).

Углеводные дистрофии. Характеризуются нарушениями обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеинов (муцина, мукоидов).

Полисахариды. При нарушениях метаболизма полисахаридов в клетках можно наблюдать уменьшение содержания углеводов (например, гликогена при СД), отсутствие углеводов (агликогенозы; например, при циррозе печени или хронических гепатитах) и накопление избытка углеводов (например, гликогеноз фон Гирке - нефромегалический синдром - гликогенная инфильтрация клеток почек).

Гликопротеины. Углеводные дистрофии, связанные с нарушением метаболизма гликопротеинов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию (в связи с этим их называют также слизистыми дистрофиями).

Диспигментозы. Пигментные дистрофии классифицируют в зависимости от их происхождения (первичные и вторичные), механизма развития, структуры пигмента, проявлений и распро- странённости (местные и системные). Примеры:

Частицы сажи, угля и т.п. накапливаются в макрофагах лёгких в результате пребывания в загрязнённой атмосфере. В связи с этим ткань лёгких приобретает тёмно-серый цвет.

Гемосидерин. При гемолизе эритроцитов происходят освобождение Hb, его захват макрофагами печени, селезёнки, красного костного мозга и превращение в пигмент бурого цвета - гемосидерин.

Минеральные дистрофии. Из минеральных дистрофий наибольшее клиническое значение имеют нарушения обмена кальция, калия, железа, цинка, меди в виде отложения солей этих химических элементов (например, кальцинозы, сидерозы, отложение меди при гепатоцеребральной дистрофии).

Тезаурисмозы (от греч. thesauros - сокровищница) - болезни накопления промежуточных продуктов обмена углеводов, гликозаминогликанов, липидов и белков. Большинство тезаурисмозов - результат наследственных ферментопатий. В зависимости от типа накапливающихся веществ тезаурисмозы подразделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеиновые, мукополисахаридные (мукополисахаридозы), муколипидные (муколипидозы). В отдельные группы выделяют болезни накопления лизосомные и пероксисомные. Примеры:

Тэя-Сакса болезнь - врождённая недостаточность лизосомальной гексозаминидазы А нейронов - характеризуется накоплением ганглиозидов в цитоплазме нервных клеток.

Цереброгепаторенальный синдром (синдром Целлвегера) - типичная лизосомная болезнь накопления, развивающаяся вследствие дефектов генов, кодирующих белки пероксисом (в плазме крови и тканях увеличено содержание длинноцепочечных жирных кислот).

Болезнь Гоше - накопление в фагоцитирующих клетках селезён- ки и красного костного мозга избытка глюкоцереброзидов.

Гликогенозы - накопление в цитоплазме клеток внутренних органов разных форм аномального гликогена.

Метаплазия

Метаплазия - замещение клеток, свойственных данному органу, нормальными клетками другого типа. Примеры:

♦ Хронические воспалительные заболевания лёгких, дефицит витамина А, курение приводят к появлению среди клеток мерцательного эпителия бронхов островков многослойного плоского эпителия.

♦ При хроническом цервиците возможно замещение однослойного цилиндрического эпителия многослойным плоским.

♦ В результате забрасывания (рефлюкса) кислого содержимого желудка многослойный плоский эпителий слизистой оболочки пищевода замещается однослойным эпителием, характерным для тонкой кишки (пищевод Баррета).

Метаплазию рассматривают как пограничное состояние (на грани нормального). В ряде случаев участки метаплазии становятся диспластическими, что чревато их опухолевой трансформацией. Дисплазии - нарушения дифференцировки клеток, сопровождающиеся стойкими изменениями их структуры, метаболизма и функции (клеточный атипизм). В отличие от метаплазий, для дисплазий характерно появление признаков клеточного атипизма при сохранной структуре и архитектуре ткани. Дисплазии предшествуют опухолевому росту (предопухолевые состояния).

ГИБЕЛЬ КЛЕТКИ

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток - некроз (гибель клетки вследствие её значительного - летального - повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз

Некроз (от греч. necros - мёртвый) - патологическая гибель клеток в результате действия на них повреждающих факторов.

Некроз является завершающим этапом клеточных дистрофий или следствием прямого действия на клетку повреждающих факторов значительной (разрушающей) силы. Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности адаптивных механизмов (защиты и регенерации повреждённых структур, компенсации нарушенных процессов). О необратимости повреждения клетки свидетельствуют, как правило, разрывы плазмолеммы и выраженные изменения структуры ядра (кариорексис - разрывы

ядерной мембраны, фрагментация ядра; кариолизис - распыление хроматина; кариопикноз - сморщивание содержимого ядра).

Паранекроз и некробиоз. Некрозу предшествуют паранекроз (сходные с некротическими, но ещё обратимые изменения метаболизма и структуры клеток) и некробиоз (совокупность необратимых дистрофических изменений, ведущих к некрозу).

Лизис и аутолиз. Некротизированные клетки подвергаются деструкции (лизису). Если разложение осуществляется при помощи лизосомных ферментов и свободных радикалов погибших клеток, процесс называется аутолизом.

Гетеролизис. Разрушение повреждённых и погибших клеток при участии других (неповреждённых) клеток (мигрирующих в зону альтерации фагоцитов, а также попавших в неё микробов) обозначают как гетеролизис.

Этиология и патогенез некроза. Выделяют несколько основных этиологических факторов некроза - травматические, токсические, трофоневротические, циркуляторные и иммуногенные. Развивающиеся в связи с действием этих факторов ишемия, венозная гиперемия и лимфостаз сопровождаются гипоксией и активацией механизмов повреждения клеток, что приводит, в конце концов, к некрозу.

Травматический некроз. Является результатом прямого действия на ткань физических (механических, температурных, вибрационных, радиационных) и др. факторов.

Токсический некроз. Развивается при действии на ткани токсинов, чаще микробных.

Трофоневротический некроз развивается при нарушении кровоснабжения или иннервации тканей при поражении периферической нервной системы. Примером трофоневротического некроза могут служить пролежни.

Иммуногенный некроз - результат цитолиза в ходе аутоагрессивных иммунных и аллергических реакций. Примером может служить фибриноидный некроз при феномене Артюса. Цитолиз с участием T-лимфоцитов-киллеров, NK-клеток и фагоцитов приводит к некрозу участков печени при хроническом гепатите.

Циркуляторный некроз. Вызван недостаточностью циркуляции крови в кровеносных и лимфатических сосудах в результате их тромбоза, эмболии, длительного спазма, сдавления извне. Недостаточная циркуляция в ткани вызывает её ишемию, гипоксию и некроз.

Апоптоз

Апоптоз (от греч. apoptosis - опадание листьев) - программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов, а также наблюдается при адаптации клетки к факторам среды. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток. Апоптоз - энергозависимый процесс. Нарушения или блокада апоптоза может стать причиной патологии (роста опухолей, реакций иммунной аутоагрессии, иммунодефицитов и др.).

Примеры апоптоза

Запрограммированная гибель клеток в ходе эмбрионального развития, гистогенеза и морфогенеза органов. Пример: гибель нейробластов (от 25 до 75%) на определённых этапах развития мозга.

Смерть клеток, выполнивших свою функцию (например, иммунокомпетентных клеток по завершении иммунного ответа или эозинофилов после дегрануляции).

Ликвидация аутоагрессивных T-лимфоцитов на определённых этапах развития тимуса или после завершения иммунного ответа.

Старение сопровождается гормонозависимой инволюцией и апоптозом клеток эндометрия, атрезией фолликулов яичников у женщин в менопаузе, а также - ткани простаты и яичек у пожилых мужчин.

Трансфекция - внедрение в клетку фрагмента нуклеиновой кислоты вируса (например, при вирусном гепатите, миокардите, энцефалите, СПИДе) нередко вызывает её апоптоз.

Опухолевый рост закономерно сопровождается апоптозом большого числа трансформированных клеток.

Механизм апоптоза

В ходе апоптоза выделяют четыре стадии - инициация, программирование, реализации программы, удаление погибшей клетки. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

Трансмембранные сигналы подразделяют на «отрицательные», «положительные» и смешанные. ❖ «Отрицательный» сигнал означает прекращение действия на клетку либо отсутствие в ткани факторов роста или цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток. ❖ «Положительный» сигнал подразумевает воздействие на клетку агента, запускающего программу апоптоза. Например, связывание ФНО с его мембранным рецептором CD95 активирует программу смерти клетки. ❖ Смешанный сигнал - комбинация сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, стимулированные митогеном, но не контактировавшие с чужеродным Аг; погибают и лимфоциты, на которые воз-

действовал Аг, но они не получили других сигналов (например, митогенного).

♦ Среди внутриклеточных стимулов апоптоза наибольшее значение имеют: ❖ избыток H + и свободных радикалов; ❖ повышенная температура; ❖ внутриклеточные вирусы и ❖ гормоны, обеспечивающие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

Стадия программирования (контроля и интеграции процессов апоптоза). Выделяют два варианта реализации стадии программирования: прямая активация эффекторных каспаз и эндонуклеаз (минуя геном клетки) и опосредованная их активация через экспрессию определённых генов.

Прямая передача сигнала. Осуществляется через адапторные белки, гранзимы и цитохром С. Прямая передача сигнала наблюдается в безъядерных клетках (например, эритроцитах).

Опосредованная через геном передача сигнала. На этой стадии специализированные белки либо блокируют потенциально летальный сигнал, либо реализуют сигнал к апоптозу путём активации исполнительной программы.

Белки-ингибиторы апоптоза (продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, в связи с чем уменьшается вероятность выхода в цитозоль одного из пусковых факторов апоптоза - цитохрома C).

Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Bax, антионкогенами Rb или p 53) активируют эффекторные цистеиновые протеазы (каспазы и эндонуклеазы).

Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и эндонуклеаз. Непосредственными исполнителями «умертвления» клетки являются Ca 2 +,Mg 2 +-зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы - апоптозные тельца.

Стадия удаления фрагментов погибших клеток. На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца (гетеролизис). В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

НЕКРОПТОЗ

В последние годы описан еще один вариант смерти клеток, отличающийся как от апоптоза, так и от некроза. Он обозначен как некроптоз. Программа некроптоза может быть стимулирована, подобно апоптозу, лигандами клеточных рецепторов из семейства фактора некроза опухолей (ФНОα). Однако гибель клетки происходит без активации протеаз, относящихся к каспазам (некроптоз развивается при полном подавлении активности каспаз).

Механизм разрушения клетки при некроптозе в большей мере подобен аутолизу. Считают, что некроптоз является одним из своеобразных механизмов гибели нервных клеток при инсультах.

Адаптация клеток

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТОК К ПОВРЕЖДЕНИЮ

Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы

Внутриклеточные механизмы адаптации реализуются в самих повреж- дённых клетках. К этим механизмам относят: ❖ компенсацию нарушений энергетического обеспечения клетки; ❖ защиту мембран и ферментов клетки; ❖ уменьшение или устранение дисбаланса ионов и воды в клетке; ❖ устранение дефектов реализации генетической программы клетки;

Компенсацию расстройств регуляции внутриклеточных процессов;

Снижение функциональной активности клеток; ❖ действие белков теплового шока; ❖ регенерацию; ❖ гипертрофию; ❖ гиперплазию.

Компенсация энергетических нарушений обеспечивается активацией процессов ресинтеза и транспорта АТФ, снижением интенсивности функционирования клеток и пластических процессов в них.

Устранение дисбаланса ионов и воды в клетке осуществляется путём активации буферных и транспортных клеточных систем.

Ликвидация генетических дефектов достигается путём репарации ДНК, устранения изменённых фрагментов ДНК, нормализации транскрипции и трансляции.

Компенсация расстройств регуляции внутриклеточных процессов заключается в изменении числа рецепторов, их чувствительности к лигандам, нормализации систем посредников.

Снижение функциональной активности клеток позволяет сэкономить и перераспределить ресурсы и, тем самым, увеличить возможности компенсации изменений, вызванных повреждающим фактором. В результате степень и масштаб повреждения клеток при действии

патогенного фактора снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций.

Белки теплового шока (HSP, от Heat Shock Proteins; белки стресса) интенсивно синтезируются при воздействии на клетки повреждающих факторов. Эти белки способны защитить клетку от повреждений и предотвратить её гибель. Наиболее распространены HSP с молекулярной массой 70 000 (hsp70) и 90 000 (hsp90). Механизм действия этих белков многообразен и заключается в регуляции процессов сборки и конформации других белков.

Межклеточные адаптивные механизмы

Межклеточные (системные) механизмы адаптации реализуются непов- реждёнными клетками в процессе их взаимодействия с повреждёнными.

Механизмы взаимодействия клеток:

♦ обмен метаболитами, местными цитокинами и ионами; ❖ реализация реакций системы ИБН;

♦ изменения лимфо- и кровообращения;

♦ эндокринные влияния;

нервные воздействия.

Примеры

Гипоксия. Уменьшение содержания кислорода в крови и клетках стимулирует активность нейронов дыхательного центра, деятельность сердечно-сосудистой системы, выброс эритроцитов из костного мозга. В результате увеличивается объём альвеолярной вентиляции, перфузия тканей кровью, число эритроцитов в периферической крови, что уменьшает или ликвидирует недостаток кислорода и активирует обмен веществ в клетках.

Гипогликемия. Повреждение клеток в условиях гипогликемии может быть уменьшено в результате инкреции глюкагона, адреналина, глюкокортикоидов, соматотропного гормона (СТГ), способствующих повышению уровня глюкозы в плазме крови и транспорта глюкозы в клетки.

Ишемия. Снижение кровоснабжения артериальной кровью какого-либо участка ткани, как правило, сопровождается увеличением притока крови по коллатеральным (обходным) сосудам, что восстанавливает доставку к клеткам кислорода и субстратов метаболизма.

Повышение устойчивости клеток к повреждению

Мероприятия и средства, повышающие устойчивость интактных клеток к действию патогенных факторов и стимулирующие адаптивные механизмы при повреждении клеток, подразделяют:

♦ по целевому назначению на лечебные и профилактические;

♦ по природе на медикаментозные, немедикаментозные и комбинированные;

♦ по направленности на этиотропные, патогенетические и саногенетические.

Профилактические и лечебные мероприятия

Немедикаментозные агенты. Немедикаментозные средства применяют с целью профилактики повреждения клетки. Эти средства повышают устойчивость клеток к ряду патогенных агентов.

Пример. Тренировка организма (по определённой схеме) умеренной гипоксией, стрессорными факторами, физическими нагрузками и охлаждением увеличивает резистентность к значительной гипоксии, ишемии, холоду, инфекционным и другим агентам. В основе увеличения резистентности клеток при тренировке лежит повышение надёжности и мощности регулирующих систем, механизмов энергетического и пластического обеспечения клеток, их компенсаторных, восстановительных и защитных реакций, механизмов синтеза белков и репарации ДНК, процессов формирования субклеточных структур и других изменений.

Медикаментозные средства. Лекарственные средства (ЛС) применяют, в основном, для активации адаптивных механизмов уже после воздействия патогенного агента. Большинство ЛС применяют с целью этиотропной или патогенетической терапии.

К основным воздействиям, имеющим целью уменьшить силу патогенного действия на клетки или блокировать механизм развития патологического процесса, относят: снижение степени или устранение нарушений энергетического обеспечения клеток; коррекцию и защиту механизмов трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращение повреждения генетического аппарата клетки; ? коррекцию механизмов регуляции и интеграции внутриклеточных процессов.

Комбинированные воздействия дают наибольший эффект (как лечебный, так и профилактический).

Общие принципы терапии и профилактики

К общим принципам терапии и профилактики относят этиотропный, патогенетический и саногенетический принципы.

Этиотропные воздействия направлены на предотвращение действия (профилактика) или на устранение, прекращение, уменьшение силы или длительности влияния патогенных факторов на клетки, а также устранение условий, способствующих реализации этого действия (лечение).

Саногенетические мероприятия имеют целью активацию адаптивных механизмов (компенсации, защиты, восстановления и приспособления клеток) к изменившимся условиям, что предотвращает развитие заболевания (профилактика) или ускоряет выздоровление организма (лечение).

Патогенетические воздействия направлены на разрыв звеньев патогенеза путём защиты механизмов энергоснабжения клеток, коррекции трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращения действия факторов, вызывающих изменения в генетическом аппарате клеток.




© 2024
womanizers.ru - Журнал современной женщины