30.09.2019

Почему сумма углов треугольника равна 180. Теорема о сумме углов треугольника


Теорема. Сумма внутренних углов треугольника равна двум прямым углам.

Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что

∠1 + ∠2 + ∠3 = 180°.

Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно АС.

При вершине В мы получили три угла: ∠4, ∠2 и ∠5. Их сумма составляет развёрнутый угол, следовательно, она равна 180°:

∠4 + ∠2 + ∠5 = 180°.

Но ∠4 = ∠1 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей АВ.

∠5 = ∠3 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей ВС.

Значит, ∠4 и ∠5 можно заменить равными им ∠1 и ∠3.

Следовательно, ∠1 + ∠2 + ∠3 = 180°. Теорема доказана.

2. Свойство внешнего угла треугольника.

Теорема. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

В самом деле, в треугольнике ABC (рис. 209) ∠1 + ∠2 = 180° - ∠3, но и ∠ВСD, внешний угол этого треугольника, не смежный с ∠1 и ∠2, также равен 180° - ∠3.

Таким образом:

∠1 + ∠2 = 180° - ∠3;

∠BCD = 180° - ∠3.

Следовательно, ∠1 + ∠2= ∠BCD.

Выведенное свойство внешнего угла треугольника уточняет содержание ранее доказанной теоремы о внешнем угле треугольника, в которой утверждалось только, что внешний угол треугольника больше каждого внутреннего угла треугольника, не смежного с ним; теперь же устанавливается, что внешний угол равен сумме обоих внутренних углов, не смежных с ним.

3. Свойство прямоугольного треугольника с углом в 30°.

Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

Пусть в прямоугольном треугольнике АСВ угол В равен 30° (рис. 210). Тогда другой его острый угол будет равен 60°.

Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний.

Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.

Теорема о сумме внутренних углов треугольника

Сумма углов треугольника равна 180°.

Доказательство:

  • Дан треугольник АВС.
  • Через вершину B проведем прямую DK параллельно основанию AC.
  • \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
  • \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
  • \angle DBK = \angle DBA + \angle B + \angle CBK
  • Так как развернутый угол равен 180 ^\circ , а \angle CBK = \angle C и \angle DBA = \angle A , то получим 180 ^\circ = \angle A + \angle B + \angle C.

Теорема доказана

Следствия из теоремы о сумме углов треугольника:

  1. Сумма острых углов прямоугольного треугольника равна 90° .
  2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45° .
  3. В равностороннем треугольнике каждый угол равен 60° .
  4. В любом треугольнике либо все углы острые, либо два угла острые, а третий - тупой или прямой.
  5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Теорема о внешнем угле треугольника

Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом

Доказательство:

  • Дан треугольник АВС, где ВСD - внешний угол.
  • \angle BAC + \angle ABC +\angle BCA = 180^0
  • Из равенств угол \angle BCD + \angle BCA = 180^0
  • Получаем \angle BCD = \angle BAC+\angle ABC.

То, что «Сумма углов любого треугольника в Эвклидовой геометрии равна 180 градусов» можно просто запомнить. Если запомнить не просто, можно провести парочку экспериментов для лучшего запоминания.

Эксперимент первый

Начертите на листе бумаги несколько произвольных треугольников, например:

  • с произвольными сторонами;
  • равнобедренный треугольник;
  • прямоугольный треугольник.

Обязательно пользуйтесь линейкой. Теперь нужно вырезать полученные треугольники, делая это ровно по начерченным линиям. Закрасьте углы каждого треугольника цветным карандашом или фломастером. Например, в первом треугольники все углы будут красными, во втором - синими, третьем – зелеными. http://bit.ly/2gY4Yfz

От первого треугольника отрежьте все 3 угла и вершинами соедините их в одно точке, так, чтобы ближайшие стороны каждого угла соединялись. Как видно, три угла треугольника образовали развернутый угол, который равен 180 градусов. То же самое проделайте с двумя другими треугольниками – результат будет тот же. http://bit.ly/2zurCrd

Эксперимент второй

Чертим произвольный треугольник ABC. Выбираем любую вершину (например, C) и через нее проводим прямую DE, параллельную противоположной стороне (AB). http://bit.ly/2zbYNzq

Получаем следующее:

  1. Углы BAC и ACD равны, как внутренние накрестлежащие относительно AC;
  2. Углы ABC и BCE равны, как внутренние накрестлежащие относительно BC;
  3. Видим, что углы 1, 2 и 3 – углы треугольника, соединенные в одной точке образовали развернутый угол DCE, который равен 180 градусов.

Теорема о сумме углов треугольника гласит, что сумма всех внутренних углов любого треугольника равна 180°.

Пусть внутренние углы треугольника равны a, b и c, тогда:

a + b + c = 180°.

Из данной теории можно сделать вывод, что сумма всех внешних углов любого треугольника равна 360°. Так как внешний угол является смежным углом с внутренним, то их сумма равна 180°. Пусть внутренние углы треугольника равны a, b и c, тогда внешние углы при этих углах равна 180° - a, 180° - b и 180° - c.

Найдем сумму внешних углов треугольника:

180° - a + 180° - b + 180° - c = 540° - (a + b + c) = 540° - 180° = 360°.

Ответ: сумма внутренних углов треугольника равна 180°; сумма внешних углов треугольника равна 360°.

“Скажи мне – и я забуду,
Покажи мне – и я запомню,
Вовлеки меня – и я научусь”
Восточная пословица

Цель: Доказать теорему о сумме углов треугольника, упражнять в решении задач, используя данную теорему, развивать познавательную деятельность учащихся, используя дополнительный материал из разных источников, воспитывать умение слушать других.

Оборудование: Транспортир, линейка, модели треугольников, полоска настроения.

ХОД УРОКА

1. Организационный момент.

Отметьте на ленте настроения свое состояние на начало урока.

2. Повторение.

Повторить понятия, которые будут использованы при доказательстве теоремы: свойства углов при параллельных прямых, определение развернутого угла, градусная мера развернутого угла.

3. Новый материал.

3.1. Практическая работа.

У каждого ученика находятся три модели треугольника: остроугольный, прямоугольный и тупоугольный. Предлагается измерить углы треугольника и найти их сумму. Проанализировать результат. Могут получиться значения 177, 178, 179, 180, 181, 182, 183 градуса. Посчитайте среднее арифметическое (=180°) Предлагается вспомнить, когда углы имеют градусную меру 180 градусов. Ученики вспоминают, что это развернутый угол и сумма односторонних углов.

Давайте попробуем получить сумму углов треугольника используя оригами.

Историческая справка

Оригами (яп., букв.: “сложенная бумага”) - древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в древний Китай, где и была открыта бумага.

3.2. Доказательство теоремы из учебника Атанасяна Л.С.

Теорема о сумме углов треугольника.

Докажем одну из важнейших теорем геометрии – теорему о сумме углов треугольника.

Теорема. Сумма углов треугольника равна 180°.

Доказательство. Рассмотрим произвольный треугольник ABC и докажем, что A + B + C= 180°.

Проведем через вершину В прямую а, параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4 равен углу 1, угол 5 равен углу 3.

Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е. угол 4+угол 2+угол 5=180°. Отсюда, учитывая предыдущие равенства, получаем: угол 1 + угол 2+ угол 3= 180°, или A + B+ C=180°. Теорема доказана.

3.3. Доказательство теоремы из учебника Погорелова А. В.

Доказать: A + B + C = 180 °

Доказательство:

1. Проведем через вершину B прямую BD // AC

2. DBC=ACB, как накрест лежащие при AC//BD и секущей BC.

3. ABD =ACB +CBD

Отсюда, A + B+C = ABD+BAC

4. ABD и BAC – односторонние при BD // AC и секущей AB, значит их сумма равна 180 ° , т.е. А+B + C=180 ° , что и требовалось доказать.

3. 4. Доказательство теоремы из учебника Киселева А.Н., Рыбкина Н.А.

Дано: АВС

Доказать: А+B +C=180 °

Доказательство:

1. Продолжим сторону АС. Проведем СЕ//АВ

2. А=ЕСД, как соответственные при АВ//СЕ и АД - секущей

3. В=ВСЕ, как накрест лежащие при АВ//СЕ и ВС - секущей.

4. ЕСД+ВСЕ+С=180 ° , значит А + В + С = 180 ° , что и требовалось доказать.

3.5. Следствия 1. В любом треугольнике все углы острые, либо два угла острых, а третий тупой или прямой.

Следствие 2.

Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.

3.6. Теорема позволяет классифицировать треугольники не только по сторонам, но и по углам.

Вид треугольника Равнобедренный Равносторонний Разносторонний
прямоугольный
тупоугольный
остроугольный

4. Закрепление.

4.1. Решение задач по готовым чертежам.

Найти неизвестные углы треугольника.

4.2. Проверка знаний.

1. В завершении нашего урока, ответьте на вопросы:

Существуют ли треугольники с углами:

а) 30, 60, 90 градусов,

b) 46, 4, 140 градусов,

с) 56, 46, 72 градуса?

2. Может ли в треугольнике быть:

а) два тупых угла,

b) тупой и прямой углы,

с) два прямых угла?

3. Определить вид треугольника, если один угол – 45 градусов, другой – 90 градусов.

4. В каком треугольнике сумма углов больше: в остроугольном, тупоугольном или прямоугольном?

5. Можно ли измерить углы любого треугольника?

Это вопрос-шутка, т.к. существует Бермудский треугольник, находящийся в Атлантическом океане между Бермудскими островами, государством Пуэрто-Рико и полуостровом Флорида, у которого невозможно измерить углы. (Приложение 1)

5. Итог урока.

Отметьте на ленте настроения свое состояние на конец урока.

Домашнее задание.

П. 30–31; № 223 а, б; № 227 а; рабочая тетрадь № 116, 118.

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть




© 2024
womanizers.ru - Журнал современной женщины