16.10.2019

Построение графика обратной зависимости (гиперболы). Визуальный гид (2019). Разбираемся с магией гиперболы


Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

Гипербола – это множество точек плоскости, разница расстояний которых от двух заданных точек, фокусов, есть постоянная величина и равна .

Аналогично эллипсу фокусы размещаем в точках , (см. рис. 1).

Рис. 1

Видно из рисунка, что могут быть случаи и title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> , тогда согласно определению

Известно, что в треугольнике разница двух сторон меньше третьей стороны, поэтому, например, с у нас получается:

Поднесём к квадрату обе части и после дальнейших преобразований найдём:

где . Уравнение гиперболы (1) – это каноническое уравнение гиперболы.

Гипербола симметрична относительно координатных осей, поэтому, как и для эллипса, достаточно построить её график в первой четверти, где:

Область значения для первой четверти .

При у нас есть одна из вершин гиперболы . Вторая вершина . Если , тогда из (1) – действительных корней нет. Говорят, что и – мнимые вершины гиперболы. Из соотношением получается, что при достаточно больших значениях есть место ближайшего равенства title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> . Поэтому прямая есть линией, расстояние между которой и соответствующей точкой гиперболы направляется к нулю при .

Форма и характеристики гиперболы

Исследуем уравнение (1) форму и расположение гиперболы.

  1. Переменные и входят в уравнение (1) в парных степенях. Поэтому, если точка принадлежит гиперболе, тогда и точки также принадлежат гиперболе. Значит, фигура симметрична относительно осей и , и точки , которая называется центром гиперболы.
  2. Найдём точки пересечения с осями координат. Подставив в уравнение (1) получим, что гипербола пересекает ось в точках . Положив получим уравнение , у которого нет решений. Значит, гипербола не пересекает ось . Точки называются вершинами гиперболы. Отрезок = и называется действительной осью гиперболы, а отрезок – мнимой осью гиперболы. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Прямоугольник, созданный осями и называется главным прямоугольником гиперболы.
  3. С уравнения (1) получается, что , то есть . Это означает, что все точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и левая от прямой (левая ветвь гиперболы).
  4. Возьмём на гиперболе точку в первой четверти, то есть , а поэтому . Так как 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> , при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция монотонно возрастает при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> . Аналогично, так как при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция выпуклая вверх при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> .

Асимптоты гиперболы

Есть две асимптоты гиперболы. Найдём асимптоту к ветви гиперболы в первой четверти, а потом воспользуемся симметрией. Рассмотрим точку в первой четверти, то есть . В этом случае , , тогда асимптота имеет вид: , где

Значит, прямая – это асимптота функции . Поэтому в силу симметрии асимптотами гиперболы есть прямые .

За установленными характеристиками построим ветвь гиперболы, которая находится в первой четверти и воспользуемся симметрией:

Рис. 2

В случае, когда , то есть гипербола описывается уравнением . В этой гиперболе асимптоты, которые и есть биссектрисами координатных углов .

Примеры задач на построение гиперболы

Пример 1

Задача

Найти оси, вершины, фокусы, ексцентриситет и уравнения асимптот гиперболы. Построить гиперболу и её асимптоты.

Решение

Сведём уравнение гиперболы к каноническому виду:

Сравнивая данное уравнение с каноническим (1) находим , , . Вершины , фокусы и . Ексцентриситет ; асмптоты ; Строим параболу. (см. рис. 3)

Написать уравнение гиперболы:

Решение

Записав уравнение асимптоты в виде находим отношение полуосей гиперболы . По условию задачи следует, что . Поэтому Задачу свели к решению системы уравнений:

Подставляя во второе уравнение системы, у нас получится:

откуда . Теперь находим .

Следовательно, у гиперболы получается такое уравнение:

Ответ

.

Гипербола и её каноническое уравнение обновлено: Июнь 17, 2017 автором: Научные Статьи.Ру

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается обычно через 2а, Фокусы гиперболы обозначают буквами F 1 и F 2 , расстояние между ними - через 2с. По определению гиперболы 2а

Пусть дана гипербола. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

х 2 /a 2 + y 2 /b 2 = 1, (1)

где b = √(с 2 - а 2). Уравнение вида (I) называется каноническим уравнением гиперболы При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат -ее центром симметрии (рис. 18). Оси симметрии гиперболы называются просто ее осями, центр симметрии-центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. 18 вершины гиперболы суть точки А" и А.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2а и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженные) являются асимптотами гиперболы; их уравнения суть:

y = b/a x, y = - b/a x

Уравнение

X 2 /a 2 + y 2 /b 2 = 1 (2)

определяет гиперболу, симметричную относительно координатных осей с фокусами на оси ординат; уравнение (2),как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

x 2 /a 2 - y 2 /b 2 = 1, - x 2 /a 2 + y 2 /b 2 = 1

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуоясми (а = b) называется равносторонней,; ее каноническое уравнение имеет вид

х 2 - у 2 = а 2 или - х 2 + у 2 = а 2 .

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы ε > 1. Если М(х; у) - произвольная точка гиперболы, то отрезки F 1 М и F 2 M (см. рис. 18) называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

r 1 = εх + а, r 2 = εх - а,

фокальные радиусы точек левой ветви - по формулам

r 1 = -εх - а, r 2 = -εх + а

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

x = -a/ε, x = a/ε

называются ее директрисами (см. рис. 18). Если гипербола задана уравнением (2), то директрисы определяются уравнениями

x = -b/ε, x = b/ε

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентриситету гиперболы:

515. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная, кроме того, что:

1) ее оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с = 10 и ось 2b = 8;

3) расстояние между фокусами 2с = 6 и эксцентриситет ε = 3/2;

4) ось 2а = 16 и эксцентриситет ε = 5/4;

5) уравнения асимптот у = ±4/3х и расстояние между фокусами 2с = 20;

6) расстояние между директрисами равно 22 2/13 и расстояние между фокусами 2с = 26; 39

7) расстояние между директрисами равно 32/5 и ось 2b = 6;

8) расстояние между директрисами равно 8/3 и эксцентриситет ε = 3/2;

9) уравнения асимптот у = ± 3/4 х и расстояние между директрисами равно 12 4/5.

516. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, зная, кроме того, что:

1) ее полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2с = 10 и эксцеитриситет ε = 5/3; оч и. 12

3) уравнения асимптот у = ±12/5х и расстояние между вершинами равно 48;

4) расстояние между директрисами равно 7 1/7 и эксцентриситет ε = 7/5;

5) уравнения асимптот у = ± 4/3x и расстояние между директрисами равно 6 2/5.

517. Определить полуоси а и b каждой из следующих гипербол:

1) x 2 /9 - y 2 /4 = 1; 2) x 2 /16 - y 2 = 1; 3) x 2 - 4y 2 = 16;

4) x 2 - y 2 = 1; 5) 4x 2 - 9y 2 = 25; 6) 25x 2 -16y 2 = 1;

7) 9x 2 - 64y 2 = 1.

518. Дана гипербола 16x 2 - 9y 2 = 144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

519. Дана гипербола 16x 2 - 9у 2 = -144. Найти: 1) полуоси a и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

520. Вычислить площадь треугольника, образованного асимптотами гиперболы x 2 /4 - y 2 /9 = 1 и прямой 9x + 2y - 24 = 0.

521. Установить, какие линии определяются следующими уравнениями:

1) y = +2/3√(x 2 - 9); 2) y = -3√(x 2 + 1)

3) x = -4/3√(y 2 + 9); 4) +2/5√(x 2 + 25)

522. Дана точка M 1 (l0; - √5) на гиперболе - x 2 /80 - y 2 /20 = 1. Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1 .

523. Убедившись, что точка M 1 (-5; 9/4) лежит на гилерболе x 2 /16 - y 2 /9 = 1, определить фокальные радиусы точки M 1 .

524. Эксцентриситет гиперболы ε = 2, фокальный ра-диус ее точки М, проведенный из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом директрисы.

525. Эксцентриситет гиперболы ε = 3, расстояние от точки, М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

526. Эксцентриситет гиперболы ε = 2, центр ее лежит в начале координат, один из фокусов F(12; 0). Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 13, до директрисы, соответствующей заданному фокусу.

527. Эксцентриситет гиперболы ε = 3/2, центр ее лежит в начале координат, одна из директрис дана уравнением х = -8. Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 10, до фокуса, соответствующего заданной директрисе.

528. Определить точки гиперболы - x 2 /64 - y 2 /36 = 1, расстояние которых до правого фокуса равно 4,5.

529. Определить точки гиперболы x 2 /9 - y 2 /16 = 1, расстояние которых до левого фокуса равно 7.

530. Через левый фокус гиперболы x 2 /144 - y 2 /25 = 1 про-веден перпендикуляр к ее оси, содержащей вершины. Определить расстояния от фокусов до точек пересечения этого перпендикуляра с гиперболой.

531. Пользуясь одним циркулем, построить фокусы гиперболы x 2 /16 - y 2 /25 = 1 (считая, что оси координат изображены и масштабная единица задана).

532. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки М 1 (6; -1) и М 2 (-8; 2√2) гиперболы;

2) точка M 1 (-5; 3) гиперболы и эксцентриситет ε = √2;

3) точка M 1 (9/2;-l) гиперболы и уравнения асимптот у = ± 2.3х;

4) точка M 1 (-3 ; 5.2) гиперболы и уравнения директрис х = ± 4/3;

5) уравнения асимптот у = ±-3/4х и уравнения директрис х = ± 16/5

533. Определить эксцентриситет равносторонней гиперболы.

534. Определить эксцентриситет гиперболы, если отрезок между ее вершинами виден из фокусов сопряженной гиперболы под углом в 60°.

535. Фокусы гиперболы совпадают с фокусами эллипса x 2 /25 + y 2 /9 = 1. Составить уравнение гиперболы, если ее эксцентриситет ε = 2.

536. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса x 2 /100 + y 2 /64 = 1, а директрисы проходят через фокусы этого эллипса.

537. Доказать, что расстояние от фокуса гиперболы x 2 /a 2 - y 2 /b 2 = 1 до ее асимптоты равно b.

538. Доказать что произведение расстояний от любой точки гиперболыx x 2 /a 2 - y 2 /b 2 = 1 до двух ее асимптот есть величина постоянная, равная a 2 b 2 /(a 2 + b 2)

539. Доказать, что площадь параллелограмма, ограниченного асимптотами гиперболы x 2 /a 2 - y 2 /b 2 = 1 и прямыми, проведенными через любую ее точку параллельно асимптотам, есть величина постоянная, равная ab/2.

540. Составить уравнение гиперболы, если известны ее полуоси а и b, центр С(х 0 ;у 0) и фокусы расположены на прямой: 1) параллельной оси Ох; 2) параллельной оси Оу.

541. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16x 2 - 9у 2 - 64x - 54у - 161 =0;

2) 9x 2 - 16у 2 + 90x + 32y - 367 = 0;

3) 16x 2 - 9у 2 - 64x - 18у + 199 = 0.

542. Установить, какие линии определяются следующими уравнениями:

1) у = - 1 + 2/3√(x 2 - 4x - 5);

2) у = 7- 3/2√(х 2 - 6х + 13);

3) x = 9 - 2√(y 2 + 4y + 8);

4) Х = 5 + 3/4√(y 2 + 4y - 12).

Изобразить эти линии на чертеже.

543. Составить уравнение гиперболы, зная, что:

1) расстояние между ее вершинами равно 24 и фокусы суть F 1 (-10;2), F 2 (16; 2);

2) фокусы суть F 1 (3;4), F 2 (-3; -4) и расстояние между директрисами равно 3,6;

3) угол между асимптотами равен 90° и фокусы суть F 1 (4; -4), F 1 (- 2;2).

544. Составить уравнение гиперболы, если известны ее эксцентриситет ε = 5/4, фокус F (5; 0) и уравнение соответствующей директрисы 5х - 16 = 0.

545. Составить уравнение гиперболы, если известны ее эксцентриситет е - фокус F(0; 13) и уравнение соответствующей директрисы 13y - 144 = 0.

546. Точка А (-3; - 5) лежит на гиперболе, фокус которой F (-2;-3), а соответствующая директриса дана уравнением x + 1 = 0. Составить уравнение этой гиперболы.

547. Составить уравнение гиперболы, если известны ее эксцентриситет ε = √5, фокус F(2;-3) и уравнение соответствующей директрисы Зх - у + 3 = 0.

548. Точка M 1 (1; 2) лежит на гиперболе, фокус которой F(-2; 2), а соответствующая директриса дана уравнением 2х - у - 1 = 0. Составить уравнение этой гиперболы.

549. Дано уравнение равносторонней гиперболы х 2 - у 2 = а 2 . Найти ее уравнение в новой системе, приняв за оси координат ее асимптоты.

550. Установив, что каждое из следующих уравнений определяет гиперболу, найти для каждой из них центр, полуоси, уравнения асимптот и построить их на чертеже: 1) ху = 18; 2) 2ху - 9 = 0; 3) 2ху + 25 = 0.

551. Найти точки пересечения прямой 2x - y - 10 = 0 и гиперболы х 2 /20 - y 2 /5 = 1.

552. Найти точки пересечения прямой 4х - 3y - 16 = 0 и гиперболы х 2 /25 - y 2 /16 = 1.

553. Найти точки пересечения прямой 2x - y + 1 = 0 и гиперболы х 2 /9 - y 2 /4 = 1.

554. В следующих случаях определить, как расположена прямая относительно гиперболы: пересекает ли, касается или проходит вне ее:

1) x - y - 3 = 0, х 2 /12 - y 2 /3 = l;

2) x - 2y + 1 = 0, х 2 /16 - y 2 /9 = l;

555. Определить, при каких значениях m прямая y = 5/2x + m

1) пересекает гиперболу x 2 /9 - y 2 /36 = 1; 2) касается ее;

3) проходит вне этой гиперболы.

556. Вывести условие, при котором прямая у = kx + m касается гиперболы х 2 /a 2 - y 2 /b 2 = 1.

557. Составить уравнение касательной к гиперболе х 2 /a 2 - y 2 /b 2 = 1 в ее точке Af, (*,; #i).

558. Доказать, что касательные к гиперболе, про-веденные в концах одного и того же диаметра, параллельны.

559. Составить уравнения касательных к гиперболе х 2 /20 - y 2 /5 = 1, перпендикулярных к прямой 4x + Зy - 7 = 0.

560. Составить уравнения касательных к гиперболе x 2 /16 - y 2 /64 = 1, параллельных прямой 10x - 3y + 9 = 0.

561. Провести касательные к гиперболе x 2 /16 - y 2 /8 = - 1 параллельно прямой 2x + 4y - 5 = 0 и вычислить расстояние d между ними.

562. На гиперболе x 2 /24- y 2 /18 = 1 найти точку М 1 , ближайшую к прямой Зx + 2y + 1 = О, и вычислить расстояние d от точки M x до этой прямой.

563. Составить уравнение касательных к гиперболе х 2 - y 2 = 16, проведенных из точки A(- 1; -7).

564. Из точки С(1;-10) проведены касательные к гиперболе x 2 /8 - y 2 /32 = 1. Составить уравнение хорды, соединяющей точки касания.

565. Из точки Р(1; -5) проведены касательные к гиперболе x 2 /3 - y 2 /5 = 1. Вычислить расстояние d от точки Р до хорды гиперболы, соединяющей точки касания.

566. Гипербола проходит через точку А(√6; 3) и касается прямой 9x + 2у - 15 == 0. Составить уравнение этой гиперболы при условии, что ее оси совпадают с осями координат.

567. Составить уравнение гиперболы, касающейся двух прямых: 5x - 6y - 16 = 0, 13x - 10y - 48 = 0, при условии, что ее оси совпадают с осями координат.

568. Убедившись, что точки пересечения эллипса x 2 /3 - y 2 /5 = 1 и гиперболы x 2 /12 - y 2 /3 = 1 являются вершинами прямоугольника, составить уравнения его сторон.

569. Даны гиперболы x 2 /a 2 - y 2 /b 2 = 1 и какая-нибудь ее касательная: Р - точка пересечения касательной с осью Ox, Q - проекция точки касания на ту же ось. Доказать, что ОР OQ = а 2 .

570. Доказать, что фокусы гиперболы расположены по разные стороны от любой ее касательной.

571. Доказать, что произведение расстояний от фокусов до любой касательной к гиперболе x 2 /a 2 - y 2 /b 2 = 1 есть величина постоянная, равная b 2 .

572. Прямая 2x - y - 4 == 0 касается гиперболы, фокусы которой находятся в точках F 1 (-3; 0) и F 2 (3;0). Составить уравнение этой гиперболы.

573. Составить уравнение гиперболы, фокусы кото-рой расположены на оси абсцисс симметрично относительно начала координат, если известны уравнение касательной к гиперболе 15x + 16y - 36 = 0 и расстояние между ее вершинами 2а = 8.

574. Доказать, что прямая, касающаяся гиперболы в некоторой точке М, составляет равные углы с фокальными радиусами F 1 M, F 2 M и проходит внутри угла F 1 MF 2 . Х^

575. Из правого фокуса гиперболы x 2 /5 - y 2 /4 = 1 под углом α(π

576. Доказать, что эллипс и гипербола, имеющие общие фокусы, пересекаются под прямым углом.

577. Коэффициент равномерного сжатия плоскости к оси Ох равен 4/3 . Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /16 - y 2 /9 = 1. Указание. См. задачу 509.

578. Коэффициент равномерного сжатия плоскости к оси Оу равен 4/5. Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /25 - y 2 /9 = 1.

579. Найти уравнение линии, в которую преобразуется гипербола х 2 - у 2 = 9 при двух последовательных равномерных сжатиях плоскости к координатным осям, если коэффициенты равномерного сжатия плос- кости к осям Ох и Оу соответственно равны 2/3 и 5/3.

580. Определить коэффициент q равномерного сжатия плоскости к оси Ох, при котором гипербола - x 2 /25 - y 2 /36 = 1 преобразуется в гиперболу x 2 /25 - y 2 /16 = 1.

581. Определить коэффициент q равномерного сжатия плоскости к оси Оу, при котором гипербола x 2 /4 - y 2 /9 = 1 преобразуется в гиперболу x 2 /16 - y 2 /9 = 1.

582. Определить коэффициенты q 1 и q 2 двух последовательных равномерных сжатий плоскости к осям Ох и Оу, при которых гипербола x 2 /49 - y 2 /16 = 1 преобразуется в гиперболу x 2 /25 - y 2 /64 = 1.

Определение. Гиперболой называется геометрическое место точек плоскости у абсолютная величина разности расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами у есть постоянная величина, при условии, что эта величина не равна нулю и меньше расстояния между фокусами.

Обозначим расстояние между фокусами через а постоянную величину, равную модулю разности расстояний от каждой точки гиперболы до фокусов, через (по условию ). Как и в случае эллипса, ось абсцисс проведем через фокусы, а за начало координат примем середину отрезка (см. рис. 44). Фокусы в такой системе будут иметь координаты Выведем уравнение гиперболы в выбранной системе координат. По определению гиперболы для любой ее точки имеем или

Но . Поэтому получим

После упрощений, подобных тем, которые были сделаны при выводе уравнения эллипса, получим следующее уравнение:

которое является следствием уравнения (33).

Нетрудно заметить, что это уравнение совпадает с уравнением (27), полученным для эллипса. Однако в уравнении (34) разность , так как для гиперболы . Поэтому положим

Тогда уравнение (34) приводится к следующему виду:

Это уравнение называется каноническим уравнением гиперболы. Уравнению (36), как следствию уравнения (33), удовлетворяют координаты любой точки гиперболы. Можно показать, что координаты точек, не лежащих на гиперболе, уравнению (36) не удовлетворяют.

Установим форму гиперболы, пользуясь ее каноническим уравнением. Это уравнение содержит лишь четные степени текущих координат. Следовательно, гипербола имеет две оси симметрии, в данном случае совпадающих с координатными осями. В дальнейшем оси симметрии гиперболы мы будем называть осями гиперболы, а точку их пересечения - центром гиперболы. Ось гиперболы, на которой расположены фокусы, называется фокальной осью. Исследуем форму гиперболы в I четверти, где

Здесь так как иначе у принимал бы мнимые значения. При возрастании х от а до возрастает от 0 до Частью гиперболы, лежащей в I четверти, будет дуга , изображенная на рис. 47.

Так как гипербола расположена симметрично относительно координатных осей, то эта кривая имеет вид, изображенный на рис. 47.

Точки пересечения гиперболы с фокальной осью называются ее вершинами. Полагая в уравнении гиперболы, найдем абсциссы ее вершин: . Таким образом, гипербола имеет две вершины: . С осью ординат гипербола не пересекается. В самом деле, положив в уравнении гиперболы получим для у мнимые значения: . Поэтому фокальная ось гиперболы называется действительной осью, а ось симметрии, перпендикулярная фокальной оси, - мнимой осью гиперболы.

Действительной осью также называется отрезок, соединяющий вершины гиперболы, и его длина 2а. Отрезок, соединяющий точки (см. рис. 47), а также его длина называется мнимой осью гиперболы. Числа а и b соответственно называются действительной и мнимой полуосями гиперболы.

Рассмотрим теперь гиперболу, расположенную в I четверти и являющуюся графиком функции

Покажем, что точки этого графика, расположенные на достаточно большом расстоянии от начала координат, сколь угодно близки к прямой

проходящей через начало координат и имеющей угловой коэффициент

С этой целью рассмотрим две точки имеющие одну и ту же абсциссу и лежащие соответственно на кривой (37) и прямой (38) (рис. 48), и составим разность между ординатами этих точек

Числитель этой дроби - величина постоянная, а знаменатель неограниченно возрастает при неограниченном возрастании . Поэтому разность стремится к нулю, т. е. точки М и N неограниченно сближаются при неограниченном возрастании абсциссы.

Из симметрии гиперболы относительно координатных осей следует, что имеется еще одна прямая , к которой сколь угодно близки точки гиперболы при неограниченном удалении от начала координат. Прямые

называются асимптотами гиперболы.

На рис. 49 указано взаимное расположение гиперболы и ее асимптот. На этом рисунке указано также, как построить асимптоты гиперболы.

Для этого следует построить прямоугольник с центром в начале координат и со сторонами, параллельными осям и соответственно равными . Этот прямоугольник называется основным. Каждая из его диагоналей, неограниченно продолженная в обе стороны, является асимптотой гиперболы. Перед построением гиперболы рекомендуется строить ее асимптоты.

Отношение половины расстояния между фокусами к действительной полуоси гиперболы называется эксцентриситетом гиперболы и обозначается обычно буквой :

Так как для гиперболы , то эксцентриситет гиперболы больше единицы: Эксцентриситет характеризует форму гиперболы

Действительно, из формулы (35) следует, что . Отсюда видно, что чем меньше эксцентриситет гиперболы,

тем меньше отношение - ее полуосей. Но отношение - определяет форму основного прямоугольника гиперболы, а следовательно, и форму самой гиперболы. Чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении фокальной оси).




© 2024
womanizers.ru - Журнал современной женщины