26.09.2019

Производная угловой коэффициент касательной. Уравнение касательной и уравнение нормали к графику функции


В этой статье мы разберем все типы задач на нахождение

Вспомним геометрический смысл производной : если к графику функции в точке проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси ) равен производной функции в точке .


Возьмем на касательной произвольную точку с координатами :


И рассмотрим прямоугольный треугольник :


В этом треугольнике

Отсюда

Это и есть уравнение касательной, проведенной к графику функции в точке .

Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти и .

Есть три основных типа задач на составление уравнения касательной.

1. Дана точка касания

2. Дан коэффициент наклона касательной, то есть значение производной функции в точке .

3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.

Рассмотрим каждый тип задач.

1 . Написать уравнение касательной к графику функции в точке .

.

б) Найдем значение производной в точке . Сначала найдем производную функции

Подставим найденные значения в уравнение касательной:

Раскроем скобки в правой части уравнения. Получим:

Ответ: .

2 . Найти абсциссы точек, в которых касательные к графику функции параллельны оси абсцисс.

Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции в точках касания равно нулю.

а) Найдем производную функции .

б) Приравняем производную к нулю и найдем значения , в которых касательная параллельна оси :

Приравняем каждый множитель к нулю, получим:

Ответ: 0;3;5

3 . Написать уравнения касательных к графику функции , параллельных прямой .

Касательная параллельна прямой . Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной , а, тем самым, значение производной в точке касания .

Это второй тип задач на нахождение уравнения касательной.

Итак, у нас дана функция и значение производной в точке касания.

а) Найдем точки, в которых производная функции равна -1.

Сначала найдем уравнение производной.

Приравняем производную к числу -1.

Найдем значение функции в точке .

(по условию)

.

б) Найдем уравнение касательной к графику функции в точке .

Найдем значение функции в точке .

(по условию).

Подставим эти значения в уравнение касательной:

.

Ответ:

4 . Написать уравнение касательной к кривой , проходящей через точку

Сначала проверим, не является ли точка точкой касания. Если точка является точкой касания, то она принадлежит графику функции, и её координаты должны удовлетворять уравнению функции. Подставим координаты точки в уравнение функции.

Title="1sqrt{8-3^2}">. Мы получили под корнем отрицательное число, равенство не верно, и точка не принадлежит графику функции и не является точкой касания.

Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания .

Найдем значение .

Пусть - точка касания. Точка принадлежит касательной к графику функции . Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:

.

Значение функции в точке равно .

Найдем значение производной функции в точке .

Сначала найдем производную функции . Это .

Производная в точке равна .

Подставим выражения для и в уравнение касательной. Получим уравнение относительно :

Решим это уравнение.

Сократим числитель и знаменатель дроби на 2:

Приведем правую часть уравнения к общему знаменателю. Получим:

Упростим числитель дроби и умножим обе части на - это выражение строго больше нуля.

Получим уравнение

Решим его. Для этого возведем обе части в квадрат и перейдем к системе.

Title="delim{lbrace}{matrix{2}{1}{{64-48{x_0}+9{x_0}^2=8-{x_0}^2} {8-3x_0>=0} }}{ }">

Решим первое уравнение.

Решим квадратное уравнение, получим

Второй корень не удовлетворяет условию title="8-3x_0>=0">, следовательно, у нас только одна точка касания и её абсцисса равна .

Напишем уравнение касательной к кривой в точке . Для этого подставим значение в уравнение - мы его уже записывали.

Ответ:
.

Прямая y = f(x) будет являться касательной к графику, изображенному на рисунке в точке х0 при том условии, если она проходит через данную точку с координатами (х0; f(x0)) и имеет угловой коэффициент f"(x0). Найти этот коэффициент, учитывая особенности касательной, несложно.

Вам понадобится

  • - математический справочник;
  • - тетрадь;
  • - простой карандаш;
  • - ручка;
  • - транспортир;
  • - циркуль.

Инструкция

  • Примите к сведению, что график дифференцируемой функции f(x) в точке х0 не имеет различий с отрезком касательной. Поэтому он является достаточно близким к отрезку l, к проходящему через точки (х0; f(х0)) и (х0+Δx; f(x0 + Δx)). Чтобы задать прямую, проходящую через точку А с коэффициентами (х0; f(х0)), укажите ее угловой коэффициент. При этом он равен Δy/Δx секущей касательной (Δх→0) , а также стремится к числу f‘(x0).
  • Если значений f‘(x0) не существует, то, возможно, касательной нет, или же она проходит вертикально. Исходя из этого, присутствие производной функции в точке х0 объясняется существованием невертикальной касательной, которая соприкасается с графиком функции в точке (х0, f(х0)). В данном случае угловой коэффициент касательной равняется f"(х0). Становится понятен геометрический смысл производной, то есть расчет углового коэффициента касательной.
  • То есть для того чтобы найти угловой коэффициент касательной, нужно найти значение производной функции в точке касания. Пример: найти угловой коэффициент касательной к графику функции у = х³ в точке с абсциссой Х0 = 1. Решение: Найдите производную данной функции у΄(х) = 3х²; найдите значение производной в точке Х0 = 1. у΄(1) = 3 × 1² = 3. Угловой коэффициент касательной в точке Х0 = 1 равен 3.
  • Начертите на рисунке дополнительные касательные таким образом, чтобы они соприкасались с графиком функции в следующих точках: x1, х2 и х3. Отметьте углы, которые образуются данными касательными с осью абсцисс (угол отсчитывается в положительном направлении - от оси до касательной прямой). Например, первый угол α1 будет острым, второй же (α2) – тупой, ну а третий (α3) будет равняться нулю, так как проведенная касательная прямая является параллельной оси ОХ. В этом случае тангенс тупого угла есть отрицательное значение, а тангенс острого угла – положительное, при tg0 и результат равен нулю.

Вам понадобится

  • - математический справочник;
  • - тетрадь;
  • - простой карандаш;
  • - ручка;
  • - транспортир;
  • - циркуль.

Инструкция

Примите к сведению, что график дифференцируемой функции f(x) в точке х0 не имеет различий с отрезком касательной. Поэтому он достаточно близким к отрезку l, к проходящему через точки (х0; f(х0)) и (х0+Δx; f(x0 + Δx)). Чтобы задать прямую, проходящую через точку А с коэффициентами (х0; f(х0)), укажите ее угловой коэффициент. При этом он равен Δy/Δx секущей касательной (Δх→0) , а также стремится к числу f‘(x0).

Если значений f‘(x0) не существует, то, касательной нет, или же она проходит вертикально. Исходя из этого, производной функции в точке х0 объясняется существованием невертикальной касательной, которая соприкасается с графиком функции в точке (х0, f(х0)). В данном случае угловой коэффициент касательной равняется f"(х0). Становится понятен геометрический производной, то есть углового коэффициента касательной.

То есть для того чтобы найти угловой коэффициент касательной, нужно найти значение производной функции в точке касания. Пример: найти угловой коэффициент касательной к функции у = х³ в точке с абсциссой Х0 = 1. Решение: Найдите производную данной функции у΄(х) = 3х²; найдите значение производной в точке Х0 = 1. у΄(1) = 3 × 1² = 3. Угловой коэффициент касательной в точке Х0 = 3.

Начертите на рисунке дополнительные касательные таким образом, чтобы они соприкасались с графиком функции в точках: x1, х2 и х3. Отметьте углы, которые образуются данными касательными с осью абсцисс (угол отсчитывается в положительном направлении - от оси до касательной прямой). Например, угол α1 будет острым, же (α2) – тупой, ну а третий (α3) будет равняться нулю, так как проведенная касательная прямая является параллельной оси ОХ. В этом случае тангенс тупого угла есть отрицательное значение, а тангенс острого угла – положительное, при tg0 и результат равен нулю.

Касательной к заданной окружности называется прямая линяя, которая имеет только одну общую точку с этой окружностью. Касательная к окружности всегда перпендикулярна его радиусу, проведённому к точке касания. Если две касательные проведены из одной точки, не принадлежащей окружности, то расстояния от этой точки до точек касания всегда будет одинаковым. Касательные к окружностям строятся разными способами, в зависимости от их расположения относительно друг друга.

Инструкция

Построение касательной к одной окружности.
1. Строится окружность радиуса R и берётся A, которую будет проходить касательная.
2. Строится окружность с центром в середине отрезка OA и радиусам равным этого отрезка.
3. Пересечения двух точками касания касательных проведённых через точку A к заданной окружности.

Внешняя касательная к двум окружностям .

2. Проводится окружность радиусом R – r с центром в точке O.
3. К полученной окружности проводится касательная из O1, точка касания обозначена M.
4. Радиус R проходящий через точку M на точку T – точку касания окружности.
5. Через центр O1 малой окружности проводится радиус r параллельно R большой окружности. Радиус r указывает на точку T1 – точку касания малой окружности.
окружностям .

Внутренняя касательная к двум окружностям .
1. Строятся две окружности радиусом R и r.
2. Проводится окружность радиусом R + r с центром в точке O.
3. К полученной окружности проводится касательная из точки O1, точка касания обозначена буквой M.
4. Луч OM пересекает первую окружность в точке T – в точке касания большой окружности.
5. Через центр O1 малой окружности проводится радиус r параллельно лучу OM. Радиус r указывает на точку T1 – точку касания малой окружности.
6. Прямая TT1 – касательная к заданным окружностям .

Источники:

  • внутренняя касательная

Угловой шкаф – идеальный вариант для пустующих углов в квартире. Кроме того, конфигурация угловых шкаф ов придает интерьеру классическую атмосферу. В качестве отделки угловых шкаф ов может быть использован любой материал, который подходит для этой цели.

Вам понадобится

  • ДВП, МДФ, шурупы, гвозди, пильный диск, фриз.

Инструкция

Вырежьте из фанеры или ДВП шаблон шириной 125 мм, длиной 1065 мм. Кромки необходимо запилить под углом 45 градусов. По готовому шаблону определите размеры боковых стенок, а так же место, где будет расположен шкаф .

Крышку соедините с боковыми стенками и треугольными полками. Крепление крышки должно происходить к верхним кромкам боковых стенок при помощи шурупов. Для прочности конструкции дополнительно используют клей. Полки прикрепите к планкам.

Наклоните пильный диск под углом 45 градусов и скосите по направляющей планке переднюю кромку боковых стенок. Неподвижные полки прикрепите к планкам МДФ. Соедините боковые стенки при помощи шурупов. Следите за тем, чтобы не было щелей.

В стене сделайте отметки, между которыми поставьте каркас углового шкаф а. С помощью шурупов прикрепите шкаф к стене. Длина дюбеля должна быть 75 мм.

Из цельной плиты МДФ выпилите лицевую рамку. С помощью дисковой пилы вырежьте в ней проемы, используя линейку. Допилите углы.

Найдите значение абсциссы точки касания, которую обозначаются буквой «а». Если она совпадает с заданной точкой касательной, то «а» будет ее х-координате. Определите значение функции f(a), подставив в уравнение функции величину абсциссы.

Определите первую производную уравнения функции f’(x) и подставьте в него значение точки «а».

Возьмите общее уравнение касательной, которое определяется как y = f(a) = f (a)(x – a), и подставьте в него найденные значения a, f(a), f "(a). В результате будет найдено решение графика и касательной.

Решите задачу иным способом, если заданная точка касательной не совпала с точкой касания. В этом случае необходимо в уравнение касательной вместо цифр подставить «а». После этого вместо букв «х» и «у» подставьте значение координат заданной точки. Решите получившееся уравнение, в котором «а» является неизвестной. Поставьте полученное значение в уравнение касательной.

Составьте уравнение касательной с буквой «а», если в условии задачи задано уравнение функции и уравнение параллельной линии относительно искомой касательной. После этого необходимо производную функции , чтобы координату у точки «а». Подставьте соответствующее значение в уравнение касательной и решите функцию.

При составлении уравнения касательной к графику функции используется понятие «абсцисса точки касания». Данная величина может задаваться изначально в условиях задачи или же ее необходимо определять самостоятельно.

Инструкция

Начертите на листе в клеточку оси координат х и у. Изучите заданное уравнение для графика функции. Если оно является , то достаточно два значения для параметра у при любых х, после чего построить найденные точки на оси координат и соединить их линией. Если же график нелинейный, то составьте таблицу зависимости у от х и подберите как минимум пять точек для построения графика.

Определите значение абсциссы точки касания для случая, когда заданная точка касательной не совпадает с графиком функции. Задаем третий параметр буквой «а».

Запишите уравнение функции f(a). Для этого в исходное уравнение вместо х подставьте а. Найдите производную функции f(x) и f(a). Подставьте необходимые данные в общее уравнение касательной, которое имеет вид: y = f(a) + f "(a)(x – a). В результате получить уравнение, которое из трех неизвестных параметров.

Подставьте в него вместо х и у координаты заданной точки, через которую проходит касательная. После этого найдите решение полученного уравнения для всех а. Если оно является квадратным, то будет два значения абсциссы точки касания. Это , что касательная проходит два раза возле графика функции.

Нарисуйте график заданной функции и , которые заданы по условию задачи. В этом случае необходимо также задать неизвестный параметр а и подставить его в уравнение f(a). Приравняйте производную f(a) к производной уравнения параллельной прямой. Данное выходит из условия параллельности двух . Найдите корни полученного уравнения, которые будут являться абсциссами точки касания.

Прямая y=f(x) будет касательной к изображенному на рисунке графику в точке х0 в том случае, если она проходит через точку с координатами (х0; f(x0)) и обладает угловым коэффициентом f"(x0). Найти такой коэффициент, зная особенности касательной, несложно.

Вам понадобится

  • - математический справочник;
  • - простой карандаш;
  • - тетрадь;
  • - транспортир;
  • - циркуль;
  • - ручка.

Инструкция

Если значения f‘(x0) не существует, то либо касательной нет, либо она проходит вертикально. Ввиду этого, наличие производной функции в точке х0 обусловлено существованием невертикальной касательной, соприкасающейся с графиком функции в точке (х0, f(х0)). В этом случае угловой коэффициент касательной равен будет f"(х0). Таким образом, становится ясен геометрический смысл производной – расчет углового коэффициента касательной.

Определите общую . Подобного рода сведения можно получить, обратившись к данным переписи населения. Для определения общих коэффициентов рождаемости, смертности, брачности и разводимости вам понадобится найти произведение общей населения и расчетного периода. Получившееся число запишите в знаменатель.

Поставьте на числителя показатель, соответствующий искомому относительному. Например, если перед вами стоит определить общий коэффициент рождаемости, то на месте числителя должно находиться число, отражающее общее количество рожденных за интересующий вас период. Если вашей целью является уровня смертности или брачности, то на место числителя поставьте число умерших в расчетный период или число вступивших в брак, соответственно.

Умножьте получившееся число на 1000. Это и будет искомый вами общий коэффициент. Если же перед вами стоит задача найти общий коэффициент прироста, то вычтите из коэффициента рождаемости коэффициент смертности.

Видео по теме

Источники:

  • Общие коэффициенты естественного движения населения

Главным показателем эффективности экстракции является коэффициент распределения . Он считается по формуле: Со/Св, где Со – концентрация извлекаемого вещества в органическом растворителе (экстракторе), а Св – концентрация этого же вещества в воде, после наступления равновесия. Как можно опытным путем найти коэффициент распределения?

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f (x 0). Тогда прямая, проходящая через точку (x 0 ; f (x 0)), имеющая угловой коэффициент f ’(x 0), называется касательной.

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример - функция y = |x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k - угловой коэффициент. Касательная - не исключение, и чтобы составить ее уравнение в некоторой точке x 0 , достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x ), которая имеет производную y = f ’(x ) на отрезке . Тогда в любой точке x 0 ∈ (a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x 0) · (x − x 0) + f (x 0)

Здесь f ’(x 0) - значение производной в точке x 0 , а f (x 0) - значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’(x 0) · (x − x 0) + f (x 0). Точка x 0 = 2 нам дана, а вот значения f (x 0) и f ’(x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’(x ) = (x 3)’ = 3x 2 ;
Подставляем в производную x 0 = 2: f ’(x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x ) = 2sin x + 5 в точке x 0 = π /2.

В этот раз не будем подробно расписывать каждое действие - укажем лишь ключевые шаги. Имеем:

f (x 0) = f (π /2) = 2sin (π /2) + 5 = 2 + 5 = 7;
f ’(x ) = (2sin x + 5)’ = 2cos x ;
f ’(x 0) = f ’(π /2) = 2cos (π /2) = 0;

Уравнение касательной:

y = 0 · (x − π /2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет - просто мы наткнулись на точку экстремума.

С понятием касательной к графику функции вы уже знакомы. График дифференцируемой в точке х 0 функции f вблизи х 0 практически не отличается от отрезка касательной, а значит, он близок к отрезку секущей l, проходящей через точки (х 0 ; f (х 0)) и (х 0 +Δx; f (x 0 + Δx)). Любая из таких секущих проходит через точку А (х 0 ; f (х 0)) графика (рис. 1). Для того чтобы однозначно задать прямую, проходящую через данную точку A, достаточно указать ее угловой коэффициент. Угловой коэффициент Δy/Δx секущей при Δх→0 стремится к числу f ‘(x 0) (его мы примем за угловой коэффициент касательной) Говорят, что касательная есть предельное положение секущей при Δх→0 .

Если же f’(х 0) не существует, то касательная либо не существует (как у функции у = |x| в точке (0; 0), см. рис.), либо вертикальна (как у графика функции в точке (0; 0), рис.2).

Итак, существование производной функции f в точке хо эквивалентно существованию (невертикальной) касательной в точке (х 0 , f (х 0)) графика, при этом угловой коэффициент касательной равен f" (х 0). В этом состоитгеометрический смысл производной

Касательная к графику дифференцируемой в точке xо функции f - это прямая, проходящая через точку (x 0 ; f (x 0)) и имеющая угловой коэффициент f ‘(х 0).

Проведем касательные к графику функции f в точках x 1 , х 2 , х 3 (рис. 3) и отметим углы, которые они образуют с осью абсцисс. (Это угол, отсчитываемый в положительном направлении от положительного направления оси до прямой.) Мы видим, что угол α 1 острый, угол α 3 тупой, а угол α 2 равен нулю, так как прямая l параллельна оси Ох. Тангенс острого угла положителен, тупого - отрицателен, tg 0 = 0. Поэтому

F"(x 1)>0, f’(x 2)=0, f’(x 3)
Построение касательных в отдельных точках позволяет более точно строить эскизы графиков. Так, например, для построения эскиза графика функции синус предварительно находим, что в точках 0; π/2 и π производная синуса равна 1; 0 и -1 соответственно. Построим прямые, проходящие через точки (0; 0), (π/2,1) и (π, 0) с угловыми коэффициентами 1, 0 и -1 соответственно (рис. 4) Остается вписать в полученную трапецию, образованную этими прямыми и прямой Ох, график синуса так, чтобы при х, равном 0, π/2 и π, он касался соответствующих прямых.

Отметим, что график синуса в окрестности нуля практически не отличим от прямой у = х. Пусть, например, масштабы по осям выбраны так, что единице соответствует отрезок в 1см. Имеем sin 0,5 ≈ 0,479425, т. е. |sin 0,5 - 0,5| ≈ 0,02, и в выбранном масштабе это соответствует отрезку длиной 0,2 мм. Поэтому график функции y = sin x в интервале (-0,5; 0,5) будет отклоняться (в вертикальном направлении) от прямой у = х не более чем на 0,2 мм, что примерно соответствует толщине проводимой линии.




© 2024
womanizers.ru - Журнал современной женщины