23.06.2019

Роботы наши помощники в медицине. Презентация на тему "медицинская робототехника ". Здравоохранение и роботы


Все больше людей в мире опасаются, что рано или поздно их должность будет упразднена, а выполнять работу за них будут роботы. Грозит ли такая перспектива врачам? В ближайшем будущем - вряд ли. Несмотря на то что механические помощники не испытывают эмоций и не устают, их реакции в сложных ситуациях сильно уступают человеческим. А врач - именно та профессия, где нужно принимать ответственные решения в условиях неопределенности: слишком индивидуален каждый организм, слишком много всего может пойти не так.

Поэтому полноценный робот-врач - все еще фантастика. Что, однако, совершенно не мешает медикам и ученым, ведущим исследования в околомедицинских сферах, использовать роботов в хвост и в гриву.

Несомненно, если мы говорим о роботах в медицине, первым делом следует упомянуть систему da Vinci. Эти роботы были в числе пионеров автоматизированной хирургии, их прототип был разработан еще в конце 1980-х годов.

Da Vinci - одновременно и хирург, и ассистент. Врач-оператор управляет манипуляторами машины, наблюдая за ее действиями через специальную камеру. Такие операции чрезвычайно дороги - сам по себе робот стоит немало, и расходники для него тоже недешевы, зато он обладает высочайшей точностью, и опытный хирург-оператор способен творить с его помощью чудеса.

В России системы da Vinci используются с 2007 года - например, такой робот есть в новосибирской клинике им. Мешалкина, - но большого распространения они не получили (как легко догадаться, из-за цены). Весной 2017 года российские ученые заявили , что смогли сконструировать аналогичного робота, который даже лучше оригинала, но и эта разработка требует гигантских финансовых вливаний - хотя бы для того, чтобы поставить ее производство на коммерческую основу.

Робот-хирург da Vinci полностью контролируется оператором, но теперь появились более самостоятельные аналоги. Пожалуй, пиком робосамостоятельности можно назвать недавний случай в Китае - там механический стоматолог провел часовую операцию по установке двух имплантатов полностью в одиночку, врачи-люди только наблюдали, не вмешиваясь. Погрешность при установке была минимальной. Хотя интересно, как себя при этом чувствовала пациентка? Все-таки иногда человеческий фактор - скорее плюс, чем минус.

Впрочем, за квалификацию китайских роботов переживать не приходится - осенью разработанный тамошними мастерами робот с искусственным интеллектом сдал экзамен на врача и набрал при этом, кстати, на 96 баллов больше, чем требовалось для прохождения (456 при норме 350).

Собеседник и строитель

Функции у роботов могут быть самыми разнообразными. Скажем, есть робот-психотерапевт , который общается с пациентами в чате, используя технологии машинного обучения. Он весьма востребован - более двух миллионов консультаций в неделю. Возможно, это связано с тем, что людям неприятно, что специалист может как-то оценивать их поведение, а с роботом такой ситуации не возникнет никогда.

Есть робот-наностроитель - он умеет строить «домики» из молекул. Может быть, это звучит глуповато, но на самом деле у этой крохотульки (их нужно выстроить миллион друг на друге, чтобы эта башня достигла миллиметровой высоты) огромнейшее будущее. Скажем, она может по молекулярной формуле построить нужное лекарство - да вообще что угодно может построить. Он пока еще только появился и на поток производство таких устройств еще не поставлено, но вполне вероятно, что когда-нибудь их будут использовать повсеместно. Управляются они, если что, не кнопками, а химическими сигналами.

Еще один недавно представленный робот - механизм , который помогает сокращаться не всему сердцу, а только его половине. Часто сердечная недостаточность затрагивает только часть сердца, и зачем тогда тратить лишние ресурсы на здоровую часть? В таких случаях вполне может пригодиться специальный механизм - он похож на букву Э, где полуокружность «обнимает» пострадавшую от болезни часть и помогает ей биться, а средняя палочка выступает якорем, чтобы робот никуда не уполз.

К слову, о ползании - роботы совсем необязательно технически сложны. На днях опубликовали данные исследования , в котором использовался роботизированный макет младенца из фольги. Ученые с его помощью проверяли, как много аллергенов и прочей дряни вдыхает ребенок, ползая по ковру, по сравнению с взрослым, который гуляет по тому же ковру ногами. Результаты исследования, честно говоря, лучше не знать.

Вообще о роботах в медицине можно рассказывать бесконечно, и пока говоришь об одном - изобретают другого, третьего, пятого. Все эти роботы в конечном итоге приносят пользу пациентам - непосредственную или косвенную. С помощью разнообразных устройств врачи получают все больше и больше возможностей, но без человека эти роботы бесполезны, так что вряд ли нас ожидает судьба планеты Шелезяки.

Ксения Якушина

Фото istockphoto.com

В мировую медицину активно интегрируются искусственный интеллект и сложные методы автоматизации из робототехники. Применение роботов поднимает здравоохранение на новый уровень, оптимизируя ход лечения, отслеживания динамики, проведения анализа и хирургических операций. Ниже представлена подборка из 10 любопытных медицинских роботов, выпущенных на сегодняшний день.

Робот-ассистент da Vinci

Производитель: компания Intuitive Surgical, США.

Головной офис компании Intuitive Surgical, Inc. расположен в городе Саннивейл, штат Калифорния. Считается мировым лидером в роботической малоинвазивной хирургии.

Краткая справка о роботе

Робот da Vinci разработан как вспомогательный инструмент для хирургов. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно. Робот использует специальные инструменты, включая миниатюрные камеры для визуализации и стандартные инструменты (т.е. ножницы, скальпели и пинцеты), разработанные для точной диссекции при проведении полостных операций.

За 2016 год было проведено 750 000 операций с помощью da Vinci. С момента выпуска робота – 4 000 000. По состоянию на 31 декабря 2016 года в мире было установлено 3919 систем. В России – 26 систем во всех крупных городах. Создатели робота da Vinci нацелены на решение ряда проблем в хирургии. Во-первых, улучшенное качество изображения (в 3D), которое помогает хирургам и персоналу преодолеть ограничения невооруженного глаза при идентификации тканевых структур при операции. Во-вторых, внедрение интеллектуальных систем. Современные датчики, обеспечивающие одновременную обратную связь, упрощают выявление тканевых структур как источника осложнений и вариабельности.

Робот Preceyes

Производитель: компания Preceyes B.V., Голландия.

Головной офис компании Preceyes B.V. расположен в городе Эйндховен, провинция Северный Брабант. Целью компании считается развитие новых высокоточных методов терапии и облегчение способов проведения витреоретинальной хирургии.

Робот Preceyes разработан как деликатное роботизированное решение для помощи хирургам-офтальмологам при проведении операции. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно – через сенсорный экран и джойстик. Компания Preceyes B.V. ставит еще одной своей целью повышение профессионализма хирургов, а не замену человека машиной.

Краткая справка о роботе

Первая операция с использованием робота Preceyes прошла в оксфордской клинике Джона Рэдклиффа в Великобритании в 2016 году. Создатели робота Preceyes нацелены на решение ряда проблем в хирургии:

  • смягчение резких неосторожных движений хирурга, что помогает хирургу исключить повреждения внутренних органов;
  • повышенная точность. Точность движений робота – 1 на 1000 долей миллиметра.

Робот Veebot


Производитель: стартап Veebot, США.

Информация о головном офисе отсутствует. Целью компании считается предоставление точного и непродолжительного забора крови у пациента с автоматизацией процесса и проведением инфузионной терапии.

Краткая справка о роботе

Робот Veebot пока проходит испытания и демонстрирует выбор места введения иглы в 83% случаев. Создатели машины заявляют о планах повысить результат до 90% перед проведением первых клинических испытаний. Для зажатия и улучшения визуализации вен робот оснащен рукавом. Также для улучшения видимости вен применяются инфракрасные и звуковые датчики, вид с камеры и четкий алгоритм для определения места, наклона и глубины введения иглы.

Робот SurgiBot


Производитель: компания TransEnterix, США.

Головной офис компании TransEnterix находится в городе Моррисвилль, штат Северная Каролина. Компания считается пионером в области применения робототехники для повышения качества малоинвазивной хирургии. Также компания нацелена на решение клинических и экономических сложностей при проведении лапароскопии.

Краткая справка о роботе

Роботизированная система SurgiBot TM разработана как малоинвазивная платформа с применением инструментов в ходе единичного рассечения. Применение гибких инструментов при операции контролируется хирургом из стерильного поля. Робот оснащен щупами, регулятором чувствительности управляющих ручек и камерой с фонариком, которая выводит изображение хода процесса на стандартный монитор.

Робот SurgiBot пока не доступен для покупки.

Робот Smart Tissue Autonomous Robot (STAR), США


Производитель: "Национальный детский медицинский центр" (Children"s National Medical Center), город Вашингтон, округ Колумбия. Ученые-разработчики нацелены на создание высокоточного робота для автономных операций на мягких тканях.

Краткая справка о роботе

Робот STAR основан на работе технологии NVIDIA GeForce GTX TITAN GPU с применением механической руки, с 3D-камерой, машинным зрением в ближнем диапазоне инфракрасных волн и биомаркерами для четкой ориентации в оперируемой полости.

Система Robodoc


Производитель: компания Curexo Technology Corporation, США.

Головной офис компании Curexo Technology Corporation расположен в городе Фремонт, штат Калифорния. Миссия компании заключается в повышении заботы о пациентах посредством работы над качеством и создания точных роботизированных платформ.

Краткая справка о роботе

На территории США, Европы, Японии, Кореи и Индии при помощи Robodoc было проведено 28000 операций по замене суставов.

Работа с роботом включает два этапа: планирование и составление плана перед операцией. В ходе первого этапа пациент проходит КТ-сканирование для получения и вывода изображения на 4 рабочих окна, составляющих один экран. После выбора и анализа точной анатомической структуры импланта из базы идет планирование операции с передачей информации на вспомогательный механизм ROBODOС Surgical Assistant. Робот оснащен фиксаторами и специальным регистратором DigiMatch, формирующим точное изображение картины костной ткани в пространстве.

Auris Robotic Endoscopy System (ARES)

Производитель: компания Auris Surgical Robotics, США.

Головной офис компании Auris Surgical Robotics расположен в Силиконовой долине. Компания нацелена на создание нового поколения хирургических роботов, способных расширить сферу применения специализированных платформ для проведения медицинских процедур.

Краткая справка о роботе

В конце 2014 года было проведено клиническое исследование с участием пациентов с подозрением развития рака. Типы хирургических операции проводятся за счет взаимозаменяемости механических рук робота с инструментами и гибкого эндоскопа. Среди инструментов отмечены лазеры, пинцеты, иглы и скальпели, при помощи которых хирург проведет биопсию, операцию по восстановлению слизистой желудка и иссечение опухолей. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через рабочую станцию на рабочем столе компьютера.

Роботизированная установка CorPath 200

Производитель: компания Corindus Vascular Robotics, США.

Головной офис компании Corindus Vascular Robotics расположен в городе Уолтем, штат Массачуссетс. Компания считается мировым лидером в области роботизированной сердечно-сосудистой хирургии.

Краткая справка о роботе

Роботизированная установка CorPath 200 предназначена для коронарной ангиопластики с расширением суженных или заблокированных артерий. Стандартное проведение операции допускает риск облучения из-за рентгена. Установка не запрограммирована под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через джойстик. Удаленный контроль уточняет движение катетера и повышает безопасность пациента.

Магнитные микророботы


Производитель: Федеральная политехническая школа Лозанны (EPFL), Франция, и Eidgenössische Technische Hochschule Zürich (ETHZ), Швейцария.

Краткая справка о роботе

Магнитные микророботы предназначены для точечной доставки лекарственных веществ в организм пациента. Структура микроробота имитирует тело червя Trypanosoma brucei, который передвигается при помощи регулярного сжатия придатка-жгутика. Использование биосовместимого гидрогеля и магнитных наночастиц делает микророботов безмоторными, гибкими и мягкими. Управление проходит через электромагнитное поле, которое преобразует магнитные наночастицы в крепления и инициируют движение микроробота.


Страна-производитель: компания Medtech S.A., Франция.

Головной офис компании Medtech расположен в городе Монпелье. Миссия компании заключается в создании отношений, инструментов и программ, нацеленных на внедрение передовых медицинских решений на рынок медицинских услуг.

Краткая справка о роботе

Робот Rosa разработан для результативности и безопасности хирургических операций по неврологии. Робот Rosa – единственный роботизированный механизм, который прошел одобрение на проведение неврологических операций на территории Европы, США и Канады. Механизм работает по принципу GPS для черепа в ходе краниальных операций, требующих хирургического планирования на основании предоперационной информации, точной анатомии пациента и управления инструментами. Робот Rosa включает нейронавигационную станцию и высокоточный манипулятор, которые повышают безопасность и скорость точных нейрохирургических операций.

Профессор Дмитрий Пушкарь говорит: "Роботизированная хирургия стала настоящим переворотом в медицине. Робот da Vinci изменил качество хирургии во всем мире".

Применение роботов в медицине аналогично революции, которая предвосхищает тесное взаимодействие человека и технологий. Благодаря автоматизации снижается роль человеческого фактора, приводящего к ошибкам врачей, а лечение становится доступнее.

Фото: roboticsbusinessreview.com

Научная робототехника – дисциплина, которая предполагает изучение всех особенностей создания роботов. На занятиях учащиеся узнают теоретические основы, историю и законы роботов, особенности их использования в реальной жизни.

Впервые слово «робот» применено чешским драматургом К. Чапеком в 1921 году. Он говорил о рабах, созданных для выполнения желаний человека. Слово robota переводится с чешского как «принудительное рабство».

Практически за 100 лет развития научной робототехники произошли серьезные изменения. Роботы из мира фантастики стали реальностью. Специальные машины применяются практически во всех областях промышленности, добычи полезных ископаемых, медицины. Само же направление стало увлекательным инструментом для получения новых знаний в разных отраслях технических наук, проектирования. У учеников появляется возможность реализовать себя в качестве проектировщиков, техников и даже артистов.

Роботы в современном мире

Активно развивается медицинская робототехника. Многие представляют себе робота в качестве внимательного, всегда вежливого, не устающего врача. Однако сегодня многие ученые говорят о том, что заменить человека техника не может. Она помогает справиться с рутинными задачами, например:

Регистрацией обратившихся за помощью;
- работы с электронными картами;
- предоставление справок.

Роботосекретарей уже создано довольно много. Применяются они в самых разных сферах жизнедеятельности человека. В рамках медицинской робототехники появились и специальные машины, оснащенные специальными камерами для перевозки медикаментов и документов. Такие устройства могут отвечать на вопросы, сопровождать клиентов до нужного места.

Наглядным примером стал Omnicell M5000. Он позволяет оптимизировать работу с медикаментами в стационарах. Машина формирует наборы лекарств для каждого пациента на заранее заданный срок. Это значительно снижает риск возникновения ошибки из-за человеческого фактора. Робот может создать около 50 наборов в час. У обычного медицинского персонала за 60 минут получается сделать только 4 набора.

Использование роботов в промышленности

Активно используется сегодня робототехника в промышленности. Есть три основных типа:

  1. Управляемые. Предполагают, что каждым действием управляет оператор.
  2. Автоматические и полуавтоматические. Работают строго по заданной программе.
  3. Автономные. Совершают последовательные действия без участия человека.

    К примерам можно отнести KUKA KR QUANTEC PA. Это один из самых продвинутых палетоукладчиков. Есть разновидность, которая может работать при очень низких температурах. Создан был специально для функционирования в больших морозильных камерах.

    Робототехника в промышленности представлена и многофункциональными устройствами. Например, Baxter имеет манипуляторы, которые способны выполнять все те же действия, что и рука человека. Интересным является тот факт, что машина может самостоятельно контролировать прилагаемые усилия.

    Stratasys Infinite-Build 3D Demonstrator – еще одна машина, которая является гибридом робота и 3D-принтера. Техника используется в авиационном и космическом производстве, поскольку может производить печать на горизонтальных и вертикальных поверхностях любого размера.

    Активно развивается робототехника в Японии. В этой стране были созданы сиделки RIBA и RIBA-II. Их главная задача заключается в переносе пациентов, которые не могут ходить самостоятельно. Машины помогают им садиться из кровати в кресло-коляску и наоборот. Роботы умеют наклоняться, а поверхность рук создана так, чтобы пациент чувствовал себя максимально комфортно.

    Интересным является изобретение ученых Техасского университета. Они наделили искусственный интеллект шизофренией. Для эксперимента применялся робот с нейронной сетью, повторяющей мозг человека. Машина не могла нормально запоминать, воспроизводить рассказы. В один момент он даже взял на себя ответственность за террористический акт.

    Были созданы специальные модели и для обычных людей. Например, робот-симулятор ребенка. Создан он был тоже в Японии. Такая машина может познакомить будущих родителей со всеми сложностями воспитания. Он умеет выражать эмоции, плакать, просить кушать и пр.

    Достижения в мире робототехники для школьников

    Сегодня кружок робототехники в школе можно найти во многих странах. Родители часто покупают различные устройства для привлечения интереса к науке. Это привело к тому, что на рынке появились игрушки, которые можно программировать на выполнение различных задач. Остановимся на самых интересных:

  4. Sphero 2. и Ollie. Предназначены для детей от 8 лет. Игрушку-робота практически невозможно сломать. Она не боится воды, умеет плавать. Управляется со смартфона или планшета.
  5. KIBO. Довольно простой по внешнему виду конструктор. Он позволяет научиться программировать. Работает следующим образом: сканирует отметки на деревянных кубиках. Каждая надпись обозначает определенное действие.
  6. LEGO Education WeDo. Робот, которого можно создать самостоятельно. В комплекте есть все необходимое для полноценной работы. Можно докупать дополнительные элементы для расширения возможностей машины.

    Обычно на кружках робототехники в школе предлагают самостоятельно собрать свое первое управляемое устройство. Это не только вызывает восторг у большинства детей, но и дает возможность получить новые знания.

    Робототехника для детей в Солнечногорске

    Сегодня количество кружков, на которых можно получить новые знания в самых продвинутых областях, впечатляет. Робототехника в Солнечногорске, например, привлекает как детей дошкольного возраста, так и подростков. Возможно, именно за ними в будущем будет настоящий прорыв в мире роботов. Педагоги следят за всеми новинками, постоянно обучаются сами. Это позволяет им и детям идти в ногу со временем.

    Робототехника в Солнечногорске, как и в других городах, больше имеет познавательную направленность. На сегодняшний день главная задача – заинтересовать детей всех возрастов, научить их применять теоретические знания на практике.

    Робототехника для детей в Солнечногорске предполагает небольшие группы, возможность получения индивидуальных консультаций и применение в работе полноценных конструкторов. Дополнительно дети осваивают работу со светодиодами, 3D-моделированием, пайкой. Обучение начинается всегда с основ сборки. По мере освоения материала даются основы программирования, конструирование.

Вторая половина ХХ века стала временем интенсивного развития всех областей науки, техники, электроники и роботостроения. Медицина стала одним из главных векторов внедрения роботов и искусственного интеллекта. Главной целью развития медицинской робототехники является высокая точность и качество обслуживания, повышение эффективности лечения, уменьшение рисков нанесения вреда здоровью человека. Поэтому в этой статье мы рассмотрим новые методы лечения, а также использование роботов и автоматизированных систем в различных областях медицины.

Еще в середине 70-х годов в больнице городе Фэрфакс, США, штат Виржиния, появился первый медицинский мобильный робот ASM, который перевозил контейнеры с подносами для питания больных. В 1985 году впервые мир увидел роботизированную хирургическую систему PUMA 650, разработанную специально для нейрохирургии. Чуть позже хирурги получили новый манипулятор PROBOT, а в 1992 году появилась система RoboDoc, применявшаяся в ортопедии при протезировании суставов. Через год компания Computer Motion Inc. представила автоматическую руку Aesop для удержания и изменения положения видеокамеры при лапароскопических операциях. А в 1998 году этот же производитель создал более совершенную систему ZEUS. Обе эти системы не являлись полностью автономными, их задачей было ассистирование врачам при операции. В конце 90х годов компания-разработчик Intuitive Surgical Inc создала универсальную роботизированную хирургическую систему с дистанционным управлением – Da Vinci, которая с каждым годом совершенствуется и внедряется во многие медицинские центры мира до сих пор.

Классификация медицинских роботов:

В настоящее время роботы играют колоссальную роль в развитии современной медицины. Они способствуют точной работе при операциях, помогают провести диагностику и поставить правильный диагноз. Заменяют отсутствующие конечности и органы, восстанавливают и улучшают физические возможности человека, снижают время на госпитализацию, обеспечивают удобство, быстроту реагирования и комфорт, экономят финансовые затраты на обслуживание.

Существует несколько видов медицинских роботов, отличающихся своими функциональными возможностями и конструкцией, а также сферой применения для различных областей медицины:

Роботы-хирурги и роботизированные хирургические системы - применяются для проведения сложных хирургических операций. Являются не автономными устройствами, а дистанционно управляемым инструментом, который обеспечивает врача точностью, повышенной сноровкой и управляемостью, дополнительной механической силой, уменьшает утомляемость хирурга, снижает риск заболевания хирургической бригады гепатитом, ВИЧ и другими заболеваниями.

Роботы-симуляторы пациентов - предназначены для отработки навыков принятия решений и практических врачебных интервенций в лечении патологий. Такие устройства полностью воспроизводят физиологию человека, моделирует клинические сценарии, реагируют на введение препаратов, анализируют действия обучаемых и соответствующим образом реагируют на клинические воздействия.

Экзоскелеты и роботизированные протезы - экзоскелеты способствуют повышению физической силы и помогают при восстановительном процессе опорно-двигательного аппарата. Роботизированные протезы - импланты, которые заменяют отсутствующие конечности, состоят из механико-электрических элементов, микроконтроллеров с искусственным интеллектом, а также способны управляться от нервных окончаний человека.

Роботы для медицинских учреждений и роботы-помощники - являются альтернативой санитарам, медсестрам и медбратам, сиделкам, няням и другому медицинскому персоналу, способны обеспечивать уход и внимание пациенту, помогать в реабилитации, обеспечивать постоянную связь с лечащим врачом, транспортировать больного.

Нанороботы - микророботы, действующие в организме человека на молекулярном уровне. Разрабатываются для диагностики и лечения раковых заболеваний, проведения исследований кровеносных сосудов и восстановления поврежденных клеток, могут анализировать структуру ДНК, проводить ее корректировку, уничтожать бактерии и вирусы и т.д.

Другие специализированные медицинские роботы - существует огромное количество роботов, помогающие в том или ином процессе лечения человека. Например, устройства, которые способны автоматически перемещаться, дезинфицировать и кварцевать больничные помещения, замерять пульс, брать кровь на анализ, производить и выдавать медикаменты и др.

Рассмотрим подробнее каждый вид роботов на примерах современных автоматизированных устройств, разрабатываемых и внедренных во многих сферах медицины.

Роботы-хирурги и роботизированные хирургические системы:

Самым известным роботом-хирургом во всем мире является аппарат "Da Vinci". Устройство, произведенное компанией Intuitive Surgical, весит полтонны и состоит из двух блоков, один - блок управления, предназначен для оператора, а второй - четырёхрукий автомат, который выполняет роль хирурга. Манипулятор с искусственными запястьями имеет семь степеней свободы, аналогично с рукой человека, и 3D визуализационную систему, которая выводит трехмерное изображение на монитор. Такая конструкция повышает точность движений хирурга, исключает тремор рук, неловкие движения, уменьшает длину разрезов и кровопотерю во время операции.

Робот хирург Da Vinci

С помощью робота возможно провести огромное количество различных операций таких, как восстановление митрального клапана, реваскуляризация миокарда, абляция тканей сердца, установка эпикардиального электронного стимулятора сердца для бивентрикулярной ресинхронизации, операции на щитовидной железе , желудочное шунтирование, фундопликация по Nissen, гистерэктомия и миомэктомия, операции на позвоночнике, замена дисков, тимэктомия - операция по удалению вилочковой железы, лобэктомия легкого, операции в урологии , эзофагоэктомия, резекция опухоли средостения, радикальная простатэктомия, пиелопластика, удаление мочевого пузыря, перевязка и развязка маточных труб , радикальная нефрэктомия и резекция почки, реимплантация мочеточника и другие.

В настоящее время развернулась борьба за рынок медицинских роботов и автоматизированных хирургических систем. Ученые и компании-производители медицинского оборудования стремятся внедрить свои устройства, поэтому с каждым годом появляется все больше роботизированных аппаратов.

Конкурентами "Da Vinci" стали новый робот-хирург MiroSurge , предназначенный для операций на сердце, роботизированная рука от компании UPM для точной вставки игл, катетеров и других хирургических инструментов в процедурах минимально инвазивной хирургии, хирургическая платформа под названием IGAR от компании CSII , роботизированная система-катетер Sensei X , производства Hansen Medical Inc для проведения сложных операций на сердце, система для трансплантации волос ARTAS от Restoration Robotics , хирургическая система Mazor Renaissance , которая помогает производить операции на позвоночнике и головном мозге, робот-хирург от ученых из SSSA Biorobotics Institute , а также робот-помощник для отслеживания хирургических инструментов от GE Global Research , находящийся в стадии разработки, и многие другие. Роботизированные хирургические системы служат ассистентами или помощниками для врачей и не являются полностью автономными устройствами.

Робот хирург MiroSurge


Робот хирург от UPM

Робот хирург IGAR

Робот катетер Sensei X

Роботизированная система по трансплантации волос ARTAS

Робот хирург Mazor Renaissance

Робот хирург от SSSA Biorobotics Institute

Робот для отслеживания хирургических инструментов от GE Global Research

Роботы-симуляторы пациентов:

Для отработки практических навыков будущих врачей существуют специальные роботы-манекены, которые воспроизводят функциональные особенности сердечно–сосудистой, дыхательной, выделительной систем, а также непроизвольно реагируют на различные действия обучающихся, например, при введении фармакологических препаратов. Самый популярный робот-симулятор пациента – HPS (Human Patient Simulator) от американской компании METI. К нему можно подключить прикроватный монитор и отслеживать показатели кровяного давления, минутного сердечного выброса, ЭКГ и температуры тела. Устройство способно потреблять кислород и выделять углекислый газ, как при настоящем дыхании. В режиме анестезии возможно поглощение или выделение закиси азота. Такая функция обеспечивает отработку навыков по искусственной вентиляции легких. Зрачки в глазах робота способны реагировать на свет, а подвижные веки закрываются или открываются в зависимости от того, находится ли пациент в сознании. На сонных, плечевых, бедренных, лучевых подколенных артериях прощупывается пульс, который меняется автоматически и зависит от артериального давления.

Симулятор HPS имеет 30 профилей пациентов с различными физиологическими данными, имитируя здорового мужнину, беременную женщину, пожилого человека и т.д. В процессе обучения моделируется определенный клинический сценарий, в котором описывается место действия и состояние пациента, цели, необходимое оборудование и медикаменты. Робот имеет фармакологическую библиотеку, состоящую из 50 препаратов, включая газообразные анестетики и внутривенные препараты. Управление манекеном производится с помощью беспроводного компьютера, позволяя инструктору контролировать все аспекты процесса обучения непосредственно рядом со студентом.

Следует отметить большую популярность манекенов-симуляторов рожениц, например, GD/F55. Он разработан для обучения медицинского персонала в отделениях акушерства и гинекологии, позволяет отработать практические навыки и умения в гинекологии, акушерстве, неонтологии, педиатрии, интенсивной терапии и сестринском уходе в родильном отделении. Робот Simroid имитирует пациента в кресле стоматолога, его ротовая полость в точности повторяет человеческую. Устройство способно симулировать звуки и стон, которые создает человек, если ему больно. Существуют роботы-тренажеры для обучения манипуляционной технике. Это, по сути, муляж человека с имитаторами вен и сосудов, выполненных из эластичных трубок. На таком устройстве студенты отрабатывают навыки венесекции, катетеризации, венепункции.

Экзоскелеты и роботизированные протезы:

Один из самых известных медицинских устройств является роботизированный костюм - экзоскелет. Он помогает людям с ограниченными физическими возможностями перемещать свои тела. В момент, когда человек пытается пошевелить руками или ногами, специальные датчики на коже считывают небольшие изменения в электрических сигналах организма, приводя в рабочее состояние механические элементы экзоскелета. Одними из популярных устройств стали Walking Assist Device (вспомогательное устройство для ходьбы) от японской компании Honda , реабилитационный экзоскелет HAL от компании Cyberdyne , широко применяемый в японских больницах, аппарат Parker Hannifin университета Вандербильта (Vanderbilt University) , дающий возможность двигать суставами бедер и колен, мощный экзоскелет NASA Х1 , разработанный для космонавтов и парализованных людей, экзоскелет Kickstart от Cadence Biomedical , работающий не от батареи, а использующий кинетическую энергию, генерируемую человеком при ходьбе, экзоскелеты eLEGS, Esko Rex, HULC от производителя Ekso Bionics , ReWalk от компании ARGO , Mindwalker от компании Space Applications Services , помогающие парализованным людям, а также уникальный мозг-машинный интерфейс (BMI) или просто экзоскелет для мозга MAHI-EXO II для восстановления двигательных функций методом считывания мозговых волн.

Широкое применение экзоскелетов помогает многим людям во всем мире почувствовать себя полноценными. Даже полностью парализованные люди уже сегодня имеют возможность ходить. Ярким примером служат роботизированные ноги физика Амита Гоффера , которые управляются с помощью специальных костылей и могут автоматически определять, когда нужно сделать шаг, распознавать речевые сигналы "вперед", "сидеть", "стоять".

Экзоскелет для ходьбы Walking Assist

Экзоскелет HAL от Cyberdyne

Экзоскелет Parker Hannifin

Экзоскелет NASA Х1

Экзоскелет Kickstart от Cadence Biomedical

Экзоскелет HULC от Ekso Bionics

Экзоскелет ReWalk от ARGO

Экзоскелет Mindwalker от Space Applications Services


Экзоскелет для мозга MAHI-EXO II

Экзоскелет от Амит Гоффера

Но что же делать, когда конечности отсутствуют? Это касается в основном ветеранов войны, а также жертв случайных обстоятельств. В связи с этим такие компании, как компания Quantum International Corp (QUAN) и их экзопротезы и Defense Advanced Research Projects Agency (DARPA) совместно с Департаментом помощи ветеранам, Центром реабилитации и Службой развития США вкладывают огромные средства в исследование и разработку роботизированных протезов (бионических рук или ног), которые обладают искусственным интеллектом, способные чувствовать окружающую среду и распознавать намерения пользователя. Эти устройства с точностью имитируют поведение природных конечностей, а также управляются с помощью собственного мозга (микроэлектроды, имплантированные в мозг, или датчики считывают нейросигналы и передают их в виде электрических сигналов в микроконтроллер). Обладатель самой популярной бионической руки стоимостью в 15000 долларов США - британец Найджел Экланд, который ездит по миру и пропагандирует использование искусственных роботизированных протезов.

Одним из важных научных разработок стали искусственные роботизированные лодыжки iWalk BiOM , разработанные профессором Массачусетского технологического института Хью Херром (Hugh Herr) и его группой биомехатроники в лаборатории MIT Media Lab. iWalk получает финансирование от американского Департамента по делам ветеранов и Министерства обороны, и поэтому многие инвалиды-ветераны, служившие в Ираке и Афганистане, уже получили свои бионические лодыжки.

Роботизированные лодыжки iWalk BiOM

Ученые со всего мира стремятся не только улучшить функциональные особенности роботизированных протезов, а придать им реалистичный вид. Американские исследователи во главе с Женан Бао (Zhenan Bao) из Стэнфордского университета (Stanford University) в Калифорнии, создали нанокожу для медицинских протезных устройств . Это полимерный материал обладает высокой гибкостью, прочностью, электропроводностью и чувствительностью к давлению (считывание сигналов по типу сенсорных панелей).

Нанокожа из Stanford University

Роботы для медицинских учреждений и роботы-помощники:

Больница будущего - больница с минимальным человеческим персоналом. С каждым днем в медицинские учреждение все больше внедряются роботы-медсестры, роботы-медбратья и роботы телеприсутствия для контакта с лечащим врачом. Например, в Японии уже давно работают роботы-санитары от Panasonic , роботы-помощники Human Support Robot (HSR) от компании Toyota , ирландский робот-медбрат RP7 от разработчика InTouch Health, корейский робот KIRO-M5 и многие другие. Такие устройства представляют собой платформу на колесах и способны измерять пульс, температуру, контролировать время приема пищи и медикаментов, своевременно оповещать о проблемных ситуациях и необходимых действиях, поддерживать связь с живым медицинским персоналом, собирать разбросанные или упавшие вещи и т.д.

Роботы-санитары от Panasonic

Робот-помощник HSR от Toyota

Робот медбрат RP7 от InTouch Health

Робот-медсестра KIRO-M5

Зачастую, в условиях непрерывного медицинского обслуживания, врачи физически не могут уделить достаточно внимания пациентам, особенно если они находятся на большом расстоянии друг от друга. Разработчики роботизированной медицинской техники постарались и создали роботов-телеприсутствия (например, LifeBot 5 , или RP-VITA от компании iRobot и InTouch Health). Автоматизированные системы позволяют передавать аудио и видео сигнал через сети 4G, 3G, LTE, WiMAX, Wi-Fi, спутниковую или радиосвязь, измерять сердцебиение пациента, кровяное давление и температуру тела. Некоторые устройства могут выполнять электрокардиографию и УЗИ, имеют электронный стетоскоп и отоскоп, перемещаются в больничных коридорах и палатах, огибая препятствия. Такие медицинские помощники обеспечивают своевременный уход и обрабатывают клинические данные в режиме реального времени.

Робот телепристутсвия LifeBot 5

Робот телепристутсвия RP-VITA

Для безопасной транспортировки образцов, лекарств, оборудования и расходных материалов в больницах, лабораториях и аптеках с большим успехом используются роботы-курьеры. Помощники имеют современную навигационную систему и бортовые датчики, позволяющие с легкостью передвигаться в помещениях со сложной планировкой. К яркими представителям подобных устройств можно отнести американские RoboCouriers от компании Adept Technology и Aethon из Медицинскомго центра University of Maryland , японские Hospi-R от Panasonic и Terapio от компании Adtex .

Робот курьер RoboCouriers от Adept Technology

Робот курьер Aethon

Робот курьер Hospi-R от Panasonic

Робот курьер Terapio от Adtex


Отдельным направлением развития роботизированной медицинской техники является создание колясок-трансформеров, автоматизированных кроватей и специальных транспортных средств для инвалидов. Вспомним о таких разработках, как кресло с резиновыми гусеницами Unimo от японской компании Nano-Optonics , (Chiba Institute of Technology) под руководством доцента Шуро Накаджима (Shuro Nakajima), использующая ноги-колеса для преодоления лестниц или канав, робоколяска Tek Robotic Mobilisation Device от компании Action Trackchair. Компания Panasonic готова решить проблему переноса больного с кресла на кровать, требующую больших физических усилий медицинского персонала. Это устройство самостоятельно превращается из кровати в кресло и наоборот, когда это необходимо. Компания Murata Manufacturing Co объединилась с Kowa, что бы сделать инновационное медицинское транспортное средство Electric Walking Assist Car , представляющее собой автономный велосипед с маятниковой системой управления и гироскопом. Эта разработка в основном предназначена для престарелых и людей, которые имеют проблемы с ходьбой. Отдельно отметим серию японских роботов RoboHelper от Muscle Actuator Motor Company , которые являются незаменимыми помощниками медсестрам по уходу за лежачими пациентами. Аппараты способны поднять человека с кровати в сидячее положение или забрать физические отходы лежачего человека, исключая использование горшков и уток.

Нанороботы:

Нанороботы или наноботы - роботы размером с молекулу (менее 10 нм), способные двигаться, считывать и обрабатывать информацию, а также программироваться и выполнять определенные задачи. Это совершенно новое направление в развитии робототехники. Сферы использования таких устройств: ранняя диагностика рака и целенаправленная доставка лекарств в раковые клетки, биомедицинский инструментарий, хирургия, фармакокинетика, мониторинг больных диабетом, производство посредством молекулярной сборки нанороботами устройства из отдельных молекул по его чертежам, военное применение в качестве средств наблюдения и шпионажа, а также в качестве оружия, космические исследования и разработки и др.

На данный момент известны разработки медицинских микроскопических роботов для выявления и лечения рака от южнокорейских ученых , биороботы от ученых из университета штата Иллинойс , которые могут перемещаться в вязких жидкостях и биологических средах самостоятельно, прототип морской миноги - наноробот Cyberplasm , который будет передвигаться в организме человека, выявляя заболевания на ранней стадии, нанороботы инженера Адо Пуна , которые могут путешевствовать по кровеносной системе, доставлять лекарства, брать анализы и удалять сгустки крови, магнитный наноробот Spermbot - разработка ученого Oliver Schmidt и его коллег из Института интегративной нанонаук в Дрездене (Германия) для достаки спермы и лекарств, наноботы для замены белков в организме от ученых из Венского университета (University of Vienna) совместно с исследователями из Университета природных ресурсов и наук о жизни Вены (University of Natural Resources and Life Sciences Vienna).

Микророботы Cyberplasm

Нанороботы Адо Пуна

Магнитный наноробот Spermbot

Нанороботы для замены белков


Другие специализированные медицинские роботы:

Существует огромное количество специализированных роботов, выполняющих отдельные задачи, без которых невозможно представить себе эффективное и качественное лечение. Одними из таких устройств являются роботизированный кварцевый аппарат Xenex и робот-дезинфектор TRU-D SmartUVC от Philips Healthcare . Несомненно, такие аппараты просто незаменимые помощники в борьбе с внутрибольничными инфекциями и вирусами, которые служат одной из самых серьезных проблем в медицинских учреждениях.

Роботизированный кварцевый аппарат Xenex

Робот-дезинфектор TRU-D SmartUVC от Philips Healthcare

Сбор анализа крови - наиболее распространенная медицинская процедура. Качество при выполнении процедуры зависит от квалификации и физического состояния медицинского работника. Зачастую попытка взять кровь с первого раза заканчивается неудачей. Поэтому для решения этой проблемы был разработан робот Veebot , имеющий компьютерное зрение, с помощью которого он определяет местоположение вены и аккуратно направляет туда иглу.

Робот для забора крови Veebot

Робот для изучения рвотного процесса Vomiting Larry позволяет исследовать норовирусы, приводящие к 21 миллиону заболеваний, включающие симптомы тошноты, водянистой диареи, боли в животе, потери вкуса, общей вялости, слабости, боли в мышцах, головнуюой боли, кашля, субфебрильной температуры, и, конечно, сильной рвоты.

Робот для изучения рвотного процесса Vomiting Larry

Самым популярным роботом для детей остается PARO - пушистая детская игрушка в виде гренландского тюленя. Терапевтический робот может шевелить головой и лапами, распознавать голос, интонацию, прикосновения, измерять температуру и освещенность в комнате. Его конкурентом является огромный обнимающийся плюшевый робот-медведь HugBot , который замеряет пульс и кровяное давление.

Терапевтический робот PARO

Робот-медведь HugBot

Отдельная ветка медицины, занимающаяся диагностикой, лечением болезней, травм и расстройств у животных - это ветеринария. Для обучения квалифицированных специалистов в этой области Колледж ветеринарной медицины в разработке роботов-домашних животных создает уникальных роботов-тренажеров в виде собак и кошек . Для приближения к точной модели поведения животного программное обеспечение разрабатывается отдельно в Центре перспективных вычислительных систем при Корнельском университете (САС).

Роботы-тренажеры в виде собак и кошек

Эффективность роботов в медицине:

Очевидно, что применение роботов в медицине носит ряд преимуществ перед традиционным лечением с участием человеческого фактора. Использование механических рук в хирургии предотвращает многие осложнения и ошибки при операциях, сокращают послеоперационный восстановительный период, уменьшают риск заражения и инфицирования больного и персонала, исключают большую потерю крови, снижают болевые ощущения, способствуют лучшему косметическому эффекту (небольшие рубцы и шрамы). Роботизированные медицинские помощники и реабилитационные роботы позволяют уделить пристальное внимание к пациенту во время лечения, контролировать процесс выздоровления, ограничить живой персонал от трудоемкой и неприятной работы, позволить больному чувствовать себя полноценным человеком. Инновационные методы лечения и оборудование с каждым днем приближают нас к более здоровой, безопасной и долгой жизни.

С каждым годом мировой рынок медицинских роботов пополняется новыми устройствами и, несомненно, растет. По данным исследовательской компании Research and Markets, к 2020 году рынок только одних реабилитационных роботов, биопротезов и экзоскелетов вырастит до 1,8 млрд. долларов США. Главным бумом медицинских роботов ожидается после принятия единого стандарта ISO 13482 , который станет сводом правил для элементов конструкции, материалов и программного обеспечения, применяемого в устройствах.

Заключение:

Без сомнения можно сказать, что медицинские роботы- это будущее медицины. Применение автоматизированных систем значительно сокращает врачебные ошибки, уменьшает дефицит медицинского персонала. Наноробототехника помогает преодолеть тяжелые заболевания и предотвратить осложнения на ранней стадии, широко применять эффективные нанолекарства. В течении ближайших 10-15 лет медицина ступит на новый уровень с использованием роботизированного обслуживания. К сожалению, Украина находится в плачевном состоянии в отношении этой отрасли развития. К примеру, в России в Екатеринбурге знаменитый робот-хирург "Da Vinci" провел свою первую операцию еще в 2007 году. А в 2012 году президент Дмитрий Анатольевич Медведев поручил Минздраву России вместе с Минпромторгом проработать вопрос по развитию новых медицинских технологий с применением робототехники. Эту инициативу поддержала Российская академия наук. Реалия такова, что при отсутствии реальной поддержки власти Украины в развитии области медицинской робототехники, наше государство с каждым годом отстает от других цивилизованных стран. Отсюда следует показатель уровня развития страны в целом, ведь забота о здоровье и жизни гражданина, упомянутая в главном законе - Конституции Украины, является "наивысшей социальной ценностью".










  • >>
  • Последняя

Медицинские роботы сегодня и завтра

Медицина всегда была сложна, сегодня о ней говорят, как об одной из сложнейших областей, которой овладело человечество. Тем не менее медицинские роботы могут ставить точные диагнозы и проводить лечение, и совсем скоро овладеют они и прочими медицинскими направлениями.

Мы рождены, мы живем, и в конце - мы умираем. Это правда. Однако качество нашей жизни часто коррелирует с нашим здоровьем. Вообще, чем здоровее, тем больше мы можем достичь - таким образом, мы счастливее.

Вот почему здоровье всегда было проблемой. В настоящее время медицина прошла очень долгий путь по сравнению со временем Гиппократа Кос. Теперь люди могут делать очень сложные операции, изобретать лекарства для различных болезней и так далее. Возникает вопрос: может ли медицина идти дальше и каким образом?

Ответ на первую часть вопроса «определенно». Однако ответы на вторую часть могут отличаться. Есть много заметных полей, которые могли бы изменить ход истории болезни, например, стволовые клетки. Тем не менее, я уверен, что поле робототехники и связанных с роботикой областей, таких как медицинская бионика и биомехатроника, будет играть большую роль в медицине в ближайшем будущем.

На самом деле, сейчас в этих областях происходит много интересных вещей. Итак, в этом разделе моего сайта я попытаюсь пролить свет на вопросы о медицинских роботах и областях, связанных с роботикой в медицине, сейчас и в будущем.

Операции с помощью робота

Медицинские роботы, которые могут делать операции, звучат чудесно, не так ли? Все существующие хирургические роботы в этот день на самом деле хитроумно сделаны манипуляторами, контролируемыми компетентными врачами. Есть некоторые проблемы с уровнем искусственного интеллекта, необходимые для самостоятельной работы, но это может быть достигнуто в один прекрасный день.

В настоящее время существует два поля, в которых разрабатываются и тестируются хирургические роботы. Одним из них является телеробота, позволяющая врачу делать операцию на расстоянии. Другое поле - минимально инвазивная хирургия - операция проводится без больших сокращений.

Система хирургии робота da Vinci - один из ярких примеров использования робототехники в хирургических целях. Более тысячи единиц используются во всем мире. Подробнее о роботизированной хирургии в целом.

Роботы новые сотрудники больниц

Больницы - это немного похоже на фабрики. Есть много мирских задач. Например - перенос вещей, перемещение образцов с одного аппарата на другой, очистка. Есть также задачи, требующие некоторой силы. Например, подъем и перемещение пациентов.

Я полагаю, вы поняли, что есть много задач, которые могут выполнять медицинские роботы. В этой области были некоторые разработки - есть роботы, предназначенные для лабораторного использования, есть AGV (Automated Guided Vehicle), предназначенные для использования в больницах.

Насколько я знаю, большинство из них находятся на стадии тестирования. Тем не менее, это, безусловно, выполнимая задача.

Терапевтические роботы

Медицинские роботы, используемые в терапии. Идея этого довольно похожа на терапию с животными, только роботы более предсказуемы. Подробнее о терапевтических роботах.

Биологическое протезирование

Это поле, связанное с роботикой. Результат не может считаться роботом, но включенные в него дисциплины весьма схожи - AI, электроника, механика и многое другое.

Великий сон заключается в том, что в один прекрасный день будут бионные руки и бионные ноги, столь же хорошие и функциональные (или даже лучше), как наши естественные конечности. Недавняя разработка в этой области довольно поразительна. Несколько компаний работают в этой области - Ossur , Otto Bock и Touch Bionics являются одними из тех, кого я знаю.

Применение и использование роботов в медицине в будущем

Возможно, это будет возможно в будущем. Идея состоит в том, чтобы разработать устройства размером до нескольких нанометров, отсюда и название - нано-роботы. Эти маленькие устройства могут затем использоваться разными способами. Например, для исправления сломанной кости или для доставки лекарства в нужное место или для уничтожения раковых клеток.

Возможности ограничены только воображением. К настоящему времени нанороботы находятся в стадии исследований и разработок, поэтому на самом деле это фантазия.




© 2024
womanizers.ru - Журнал современной женщины