29.09.2019

Серная кислота: химические свойства, характеристики, получение серной кислоты на производстве. Соединения серы(1У). Сернистая кислота


Серная кислота (H2SО4) – это одна из самых едких кислот и опасных реагентов, известных человеку, особенно в концентрированном виде. Химически чистая серная кислота представляет собой тяжелую токсичную жидкость маслянистой консистенции, не имеющую запаха и цвета. Получают ее методом окисления сернистого газа (SO2) контактным способом.

При температуре + 10,5 °C, серная кислота превращается в застывшую стекловидную кристаллическую массу, жадно, подобно губке, поглощающую влагу из окружающей среды. В промышленности и химии серная кислота является одним из основных химических соединений и занимает лидирующие позиции по объему производства в тоннах. Именно поэтому серную кислоту называют «кровью химии». С помощью серной кислоты получают удобрения, лекарственные препараты, другие кислоты, большой , удобрений и много другое.

Основные физические и химические свойства серной кислоты

  1. Серная кислота в чистом виде (формула H2SO4), при концентрации 100% представляет собой бесцветную густую жидкость. Самое важное свойство H2SO4 заключается в высокой гигроскопичности – это способность отнимать из воздуха воду. Данный процесс сопровождается масштабным выделением тепла.
  2. H2SO4 – это сильная кислота.
  3. Серная кислота называется моногидратом – в ней на 1 моль SO3 приходится 1 моль Н2О (воды). Из-за ее внушительных гигроскопических свойств ее используют для извлечения влаги из газов.
  4. Температура кипения – 330 °С. При этом происходит разложение кислоты на SO3 и воду. Плотность – 1,84. Температура плавления – 10,3 °С/.
  5. Концентрированная серная кислота представляет собой мощный окислитель. Чтобы запустить окислительно-восстановительную реакцию кислоту требуется нагреть. Итог реакции – SO2. S+2H2SO4=3SO2+2H2O
  6. В зависимости от концентрации серная кислота по-разному вступает в реакцию с металлами. В разбавленном состоянии серная кислота способна окислять все металлы, которые стоят в ряду напряжений до водорода. Исключение составляют как самые стойкие к окислению. Разбавленная серная кислота взаимодействует с солями, основаниями, амфотерными и основными оксидами. Серная кислота концентрированная способна окислять все металлы, стоящие в ряду напряжений, причем серебро тоже.
  7. Серная кислота образует два вида солей: кислые (это гидросульфаты) и средние (сульфаты)
  8. H2SO4 вступает в активную реакцию с органическими веществами и неметаллами, причем некоторые из них она способна превратить в уголь.
  9. Серный ангидрит отлично растворяется в H2SО4, и при этом образуется олеум – раствор SО3 в серной кислоте. Внешне это выглядит так: дымящаяся серная кислота, выделяющая серный ангидрит.
  10. Серная кислота в водных растворах является сильной двухосновной, и при добавлении ее к воде выделяется огромное количество теплоты. Когда готовят разбавленные растворы H2SО4 из концентрированных, необходимо небольшой струйкой добавлять более тяжелую кислоту к воде, а не наоборот. Это делается во избежание вскипания воды и разбрызгивания кислоты.

Концентрированная и разбавленная серные кислоты

К концентрированным растворам серной кислоты относятся растворы от 40%, способные растворять серебро или палладий.

К разбавленной серной кислоте относятся растворы, концентрация которых составляет менее 40%. Это не такие активные растворы, но они способны вступать в реакцию с латунью и медью.

Получение серной кислоты

Производство серной кислоты в промышленных масштабах было запущено в XV веке, но в то время ее называли “купоросное масло». Если раньше человечество потребляло всего лишь несколько десятков литров серной кислоты, то в современном мире исчисление идет на миллионы тонн в год.

Производство серной кислоты осуществляется промышленным способом, и их существует три:

  1. Контактный способ.
  2. Нитрозный способ
  3. Другие методы

Поговорим подробно о каждом из них.

Контактный способ производства

Контактный способ производства – самый распространенный, и он выполняет следующие задачи:

  • Получается продукт, удовлетворяющий потребности максимального количества потребителей.
  • Во время производства сокращается вред для окружающей среды.

При контактном способе в качестве сырья используются такие вещества:

  • пирит (серный колчедан);
  • сера;
  • оксид ванадия (это вещество вызывает роль катализатора);
  • сероводород;
  • сульфиды различных металлов.

Перед запуском процесса производства сырье предварительно подготавливают. Для начала в специальных дробильных установках колчедан подвергается измельчению, что позволяет, благодаря увеличению площади соприкосновения активных веществ, ускорить реакцию. Пирит подвергается очищению: его опускают в большие емкости с водой, в ходе чего пустая порода и всевозможные примеси всплывают на поверхность. В конце процесса их убирают.

Производственную часть разделяют на несколько стадий:

  1. После дробления колчедан очищают и отправляют в печь – там при температуре до 800 °C происходит его обжиг. По принципу противотока в камеру снизу идет подача воздуха, и это обеспечивает нахождение пирита в подвешенном состоянии. На сегодняшний день, на этот процесс тратится несколько секунд, а вот раньше на обжиг уходило несколько часов. В процессе обжига появляются отходы в виде оксида железа, которые удаляются, и в дальнейшем передаются на предприятия металлургической промышленности. При обжиге выделяются водные пары, газы O2 и SO2. Когда завершится очистка от паров воды и мельчайших примесей, получается чистый оксид серы и кислород.
  2. На второй стадии под давлением происходит экзотермическая реакция с использованием ванадиевого катализатора. Запуск реакции начинается при достижении температуры 420 °C, но ее могут повысить до 550 °C с целью увеличения эффективности. В процессе реакции идет каталитическое окисление и SO2 становится SO.
  3. Суть третьей стадии производства такова: поглощение SO3 в поглотительной башне, в ходе чего образуется олеум H2SO4. В таком виде H2SO4 разливается в специальные емкости (она не вступает в реакция со сталью) и готова ко встрече с конечным потребителем.

В ходе производства, как мы уже говорили выше, образуется много тепловой энергии, которая используется в отопительных целях. Многие предприятия по производству серной кислоты устанавливают паровые турбины, которые использую выбрасываемый пар для вырабатывая дополнительной электроэнергии.

Нитрозный способ получения серной кислоты

Несмотря на преимущества контактного способа производства, при котором получается более концентрированная и чистая серная кислота и олеум, достаточно много H2SO4 получают нитрозным способом. В частности, на суперфосфатных заводах.

Для производства H2SO4 исходным веществом, как в контактном, так и в нитрозном способе выступает сернистый газ. Его получают специально для этих целей посредством сжигания серы или обжигом сернистых металлов.

Переработка сернистого газа в сернистую кислоту заключается в окислении двуокиси серы и присоединении воды. Формула выглядит так:
SO2 + 1|2 O2 + H2O = H2SO4

Но двуокись серы с кислородом не вступает в непосредственную реакцию, поэтому при нитрозном методе окисление сернистого газа осуществляют при помощи окислов азота. Высшие окислы азота (речь идет о двуокиси азота NO2, трехокиси азота NO3) при данном процессе восстанавливаются до окиси азота NO, которая впоследствии опять окисляется кислородом до высших окислов.

Получение серной кислоты нитрозным способом в техническом плане оформлено в виде двух способов:

  • Камерного.
  • Башенного.

Нитрозный способ имеет ряд достоинств и недостатков.

Недостатки нитрозного способа:

  • Получается 75%-ная серная кислота.
  • Качество продукции низкое.
  • Неполный возврат оксидов азота (добавление HNO3). Их выбросы вредны.
  • В кислоте присутствуют железо, оксиды азота и прочие примеси.

Достоинства нитрозного способа:

  • Себестоимость процесса более низкая.
  • Возможность переработки SO2 на все 100%.
  • Простота аппаратурного оформления.

Основные российские заводы по производству серной кислоты

Годовое производство H2SO4 в нашей стране ведет исчисление шестизначными цифрами – это порядка 10 миллионов тонн. Ведущими производителями серной кислоты в России являются компании, являющиеся, помимо этого, ее основными потребителями. Речь идет о компаниях, сферой деятельности которых является выпуск минеральных удобрений. К примеру, «Балаковские минудобрения», «Аммофос».

В Крыму в Армянске работает крупнейший производитель диоксида титана на территории Восточной Европы «Крымский титан». Вдобавок, завод занимается производством серной кислоты, минеральных удобрений, железного купороса и т.д.

Серную кислоту различных видов производят многие заводы. К примеру, аккумуляторную серную кислоту производят: Карабашмедь, ФКП Бийский олеумный завод,Святогор, Славия, Северхимпром и т.д.

Олеум производят ОХК Щекиноазот, ФКП Бийский олеумный завод, Уральская Горно-Металлургическая Компания, ПО Киришинефтеоргсинтез и т.д.

Серную кислоту особой чистоты производят ОХК Щекиноазот, Компонент-Реактив.

Отработанную серную кислоту можно купить на заводах ЗСС, ГалоПолимер Кирово-Чепецк.

Производителями технической серной кислоты являются Промсинтез, Хипром, Святогор, Апатит, Карабашмедь, Славия, Лукойл-Пермнефтеоргсинтез, Челябинский цинковый завод, Электроцинк и т.д.

По причине, что колчедан является основным сырьем при производстве H2SO4, а это отход обогатительных предприятий, его поставщиками выступают Норильская и Талнахская обогатительные фабрики.

Лидерские мировые позиции по производству H2SO4 занимают США и Китай, на которые приходятся 30 млн. тонн и 60 млн. тонн соответственно.

Сфера применения серной кислоты

В мире ежегодно потребляется порядка 200 миллионов тонн H2SO4, из которой производится широкий спектр продукции. Серная кислота по праву держит пальму первенства среди других кислот по масштабам использования в промышленных целях.

Как вы уже знаете, серная кислота является одним из важнейших продуктов химической промышленности, поэтому область применения серной кислоты довольно широкая. Основные направления использования H2SО4 таковы:

  • Серную кислоту в колоссальных объемах используют для производства минеральных удобрений, и на это уходит около 40% всего тоннажа. По этой причине производящие H2SO4 заводы строят рядом с предприятиями, выпускающими удобрения. Это сульфат аммония, суперфосфат и т.д. При их производстве серная кислота берется в чистом виде (100% концентрация). Чтобы произвести тонну аммофоса или суперфосфата понадобится 600 литров H2SO4. Именно эти удобрения в большинстве случаев применяются в сельском хозяйстве.
  • H2SО4 используется для производства взрывчатых веществ.
  • Очистка нефтепродуктов. Для получения керосина, бензина минеральных масел требуется очистка углеводородов, которая происходит с применением серной кислоты. В процессе переработки нефти на очистку углеводородов данная индустрия «забирает» целых 30% мирового тоннажа H2SO4. Вдобавок, серной кислотой увеличивают октановое число топлива и при добыче нефти обрабатывают скважины.
  • В металлургической промышленности. Серная кислота в металлургии используется для очистки от окалины и ржавчины проволоки, листового металла, а также для восстановления алюминия при производстве цветных металлов. Перед тем как покрывать металлические поверхности медью, хромом или никелем, поверхность протравливается серной кислотой.
  • При производстве лекарственных препаратов.
  • При производстве красок.
  • В химической промышленности. H2SO4 используется при производстве моющих средств, этилового средства, инсектицидов и т.д., и без нее эти процессы невозможны.
  • Для получения других известных кислот, органических и неорганических соединений, используемых в промышленных целях.

Соли серной кислоты и их применение

Самые важные соли серной кислоты:

  • Глауберова соль Na2SO4 · 10H2O (кристаллический сульфат натрия). Сфера ее применения достаточно емкая: производство стекла, соды, в ветеринарии и медицине.
  • Сульфат бария BaSO4 используется в производстве резины, бумаги, белой минеральной краски. Вдобавок, он незаменим в медицине при рентгеноскопии желудка. Из него делают «бариевую кашу» для проведения данной процедуры.
  • Сульфат кальция CaSO4. В природе его можно встретить в виде гипса CaSO4 · 2H2O и ангидрита CaSO4. Гипс CaSO4 · 2H2O и сульфат кальция применяют в медицине и строительстве. С гипсом при нагревании до температуры 150 - 170 °C происходит частичная дегидратизация, вследствие которой получается жженый гипс, известный нам как алебастр. Замешивая алебастр с водой до консистенции жидкого теста, масса быстро затвердевает и превращается в подобие камня. Именно это свойство алебастра активно используется в строительных работах: из него делают слепки и отливочные формы. В штукатурных работах алебастр незаменим в качестве вяжущего материала. Пациентам травматологических отделений накладывают специальные фиксирующие твердые повязки – они делаются на основе алебастра.
  • Железный купорос FeSO4 · 7H2O используют для приготовления чернил, пропитки дерева, а также в сельскохозяйственной деятельности для уничтожения вредителей.
  • Квасцы KCr(SO4)2 · 12H2O , KAl(SO4)2 · 12H2O и др. используют в производстве красок и кожевенной промышленности (дублении кожи).
  • Медный купорос CuSO4 · 5H2O многие из вас знают не понаслышке. Это активный помощник в сельском хозяйстве при борьбе с болезнями растений и вредителями – водным раствором CuSO4 · 5H2O протравливают зерно и опрыскивают растения. Также его применяют для приготовления некоторых минеральных красок. А в быту его используют для выведения плесени со стен.
  • Сульфат алюминия – его используют в целлюлозно-бумажной промышленности.

Серная кислота в разбавленном виде применяется в качестве электролита в свинцовых аккумуляторах. Вдобавок, она используется для производства моющих средств и удобрений. Но в большинстве случаев она идет в виде олеума – это раствор SO3 в H2SO4 (можно встретить и другие формулы олеума).

Удивительный факт! Олеум химически активнее, чем концентрированная серная кислота, но, несмотря на это, он не вступает в реакцию со сталью! Именно по этой причине его проще транспортировать, чем саму серную кислоту.

Сфера использования «королевы кислот» поистине масштабна, и сложно рассказать обо всех способах ее применения в промышленности. Также она применяется в качестве эмульгатора в пищевой промышленности, для очистки воды, при синтезе взрывчатых веществ и множество других целей.

История появления серной кислоты

Кто из нас хоть раз не слышал о медном купоросе? Так вот, его изучением занимались еще в древности, и в некоторых работах начала новой эры ученые обсуждали происхождение купоросов и их свойства. Купоросы изучали греческий врач Диоскорид, римский исследователь природы Плиний Старший, и в своих трудах они писали о проводимых опытах. В медицинских целях различные вещества-купоросы применял древний лекарь Ибн Сина. Как использовались купоросы в металлургии, говорилось в работах алхимиков Древней Греции Зосимы из Панополиса.

Первейшим способом получения серной кислоты является процесс нагревания алюмокалиевых квасцов, и об этом есть информация в алхимической литературе XIII века. В то время состав квасцов и суть процесса была не известна алхимикам, но уже в XV веке химическим синтезом серной кислоты стали заниматься целенаправленно. Процесс был таковым: алхимики обрабатывали смесь серы и сульфида сурьмы (III) Sb2S3 при нагревании с азотной кислотой.

В средневековые времена в Европе серную кислоту называли «купоросным маслом», но потом название изменилось на купоросную кислоту.

В XVII веке Иоганн Глаубер в результате горения калийной селитры и самородной серы в присутствии водных паров получил серную кислоту. В результате окисления серы селитрой получался оксид серы, вступавший в реакцию с парами воды, и в итоге получалась жидкость маслянистой консистенции. Это было купоросное масло, и это название серной кислоты существует и поныне.

Фармацевт из Лондона Уорд Джошуа в тридцатые годы XVIII века применял данную реакцию для промышленного производства серной кислоты, но в средневековье ее потребление ограничивалось несколькими десятками килограммов. Сфера использования была узкой: для алхимических опытов, очистки драгоценных металлов и в аптекарском деле. Концентрированная серная кислота в небольших объемах использовалась в производстве особых спичек, которые содержали бертолетову соль.

На Руси только лишь в XVII веке появилась купоросная кислота.

В Англии в Бирмингеме Джон Робак в 1746 году адаптировал указанный выше способ получения серной кислоты и запустил производство. При этом он использовал прочные крупные освинцованные камеры, которые были дешевле стеклянных емкостей.

В промышленности этот способ держал позиции почти 200 лет, и в камерах получали 65%-ую серную кислоту.

Через время английский Гловер и французский химик Гей-Люссак усовершенствовали сам процесс, и серная кислота стала получаться с концентрацией 78%. Но для производства, к примеру, красителей такая кислота не подходила.

В начале 19 века были открыты новые способы окисления сернистого газа в серный ангидрид.

Первоначально это делали с применением окислов азота, а потом использовали в качестве катализатора платину. Два этих метода окисления сернистого газа усовершенствовались и дальше. Окисление сернистого газа на платиновых и других катализаторах стало называться контактным способом. А окисление этого газа окислами азота получило название нитрозного способа получения серной кислоты.

Британский торговец уксусной кислотой Перегрин Филипс только лишь в 1831 году запатентовал экономичный процесс для производства оксида серы (VI) и концентрированной серной кислоты, и именно он на сегодняшний день знаком миру как контактный способ ее получения.

Производство суперфосфата началось в 1864 году.

В восьмидесятые годы девятнадцатого века в Европе производство серной кислоты достигло 1 миллиона тонн. Главными производителями стали Германия и Англия, выпускающие 72% от всего объема серной кислоты в мире.

Перевозка серной кислоты является трудоемким и ответственным мероприятием.

Серная кислота относится к классу опасных химических веществ, и при контакте с кожными покровами вызывает мощнейшие ожоги. Вдобавок, она может стать причиной химического отравления человека. Если при транспортировке не будут соблюдены определенные правила, то серная кислота по причине своей взрывоопасности может причинить немало вреда, как людям, так и окружающей среде.

Серной кислоте присвоен 8 класс опасности и перевозку должны осуществлять специально обученные и подготовленные профессионалы. Важное условие доставки серной кислоты – соблюдение специально разработанных Правил перевозки опасных грузов.

Перевозка автомобильным транспортом осуществляется согласно следующим правилам:

  1. Под перевозку изготавливают специальные емкости из особого стального сплава, не вступающего в реакцию с серной кислотой или титана. Такие емкости не окисляются. Опасную серную кислоту перевозят в специальных сернокислотных химических цистернах. Они отличаются по конструкции и при перевозке подбираются в зависимости от вида серной кислоты.
  2. При перевозке дымящейся кислоты берутся специализированные изотермические цистерны-термосы, в которых для сохранения химических свойств кислоты поддерживается необходимый температурный режим.
  3. Если перевозится обычная кислота, то выбирается сернокислотная цистерна.
  4. Перевозка серной кислоты автотранспортом, таких видов как дымящаяся, безводная, концентрированная, для аккумуляторов, гловерная осуществляется в специальной таре: цистернах, бочках, контейнерах.
  5. Перевозкой опасного груза могут заниматься исключительно водители, у которых на руках есть свидетельство АДР.
  6. Время в пути не имеет ограничений, так как при перевозке нужно строго придерживаться допустимой скорости.
  7. При перевозке строится специальный маршрут, который должен пролегать, минуя места большого скопления людей и производственные объекты.
  8. Транспорт должен иметь специальную маркировку и знаки опасности.

Опасные свойства серной кислоты для человека

Серная кислота представляет повышенную опасность для человеческого организма. Ее токсическое действие наступает не только при непосредственном контакте с кожей, но при вдыхании ее паров, когда происходит выделение сернистого газа. Опасное воздействие распространяется на:

  • Дыхательную систему;
  • Кожные покровы;
  • Слизистые оболочки.

Интоксикацию организма может усилить мышьяк , который часто входит в состав серной кислоты.

Важно! Как вы знаете, при соприкосновении кислоты с кожей происходят сильнейшие ожоги. Не меньшую опасность представляет и отравление парами серной кислоты. Безопасная доза содержания серной кислоты в воздухе равняется всего 0,3 мг на 1 квадратный метр.

Если на слизистые покровы или на кожу попадает серная кислота, появляется сильный ожог, плохо заживающий. Если по масштабу ожог внушительный, у пострадавшего развивается ожоговая болезнь, которая может привести даже к смертельному исходу, если своевременно не будет оказана квалифицированная медицинская помощь.

Важно! Для взрослого человека смертельная доза серной кислоты равняется всего 0,18 см на 1 литр.

Безусловно, «испытать на себе» токсическое действие кислоты в обычной жизни проблематично. Чаще всего отравление кислотой происходит из-за пренебрежения техникой безопасности на производстве при работе с раствором.

Может случиться массовое отравление парами серной кислоты вследствие технических неполадок на производстве или неосторожности, и происходит массивный выброс в атмосферу. Для предотвращения таких ситуаций работают специальные службы, задача которых контролировать функционирование производства, где используется опасная кислота.

Какие симптомы наблюдаются при интоксикации серной кислотой

Если кислота была принята внутрь:

  • Боль в области пищеварительных органов.
  • Тошнота и рвота.
  • Нарушение стула, как итог сильных кишечных расстройств.
  • Сильное выделение слюны.
  • Из-за токсического воздействия на почки, моча становится красноватой.
  • Отек гортани и горла. Возникают хрипы, осиплость. Это может привести к летальному исходу от удушья.
  • На деснах появляются бурые пятна.
  • Кожные покровы синеют.

При ожоге кожных покровов могут быть все осложнения, присущие для ожоговой болезни.

При отравлении парами наблюдается такая картина:

  • Ожог слизистой оболочки глаз.
  • Носовое кровотечение.
  • Ожог слизистых оболочек дыхательных путей. При этом пострадавший испытывает сильный болевой симптом.
  • Отек гортани с симптомами удушения (нехватка кислорода, кожа синеет).
  • Если отравление сильное, то может быть тошнота и рвота.

Важно знать! Отравление кислотой после приема внутрь намного опасней, чем интоксикация от вдыхания паров.

Первая помощь и терапевтические процедуры при поражении серной кислотой

Действуйте по следующей схеме при контакте с серной кислотой:

  • Первым делом вызовите скорую помощь. Если жидкость попала внутрь, то сделайте промывание желудка теплой водой. После этого мелкими глотками понадобится выпить 100 граммов подсолнечного или оливкового масла. Вдобавок, следует проглотить кусочек льда, выпить молоко или жженую магнезию. Это нужно сделать для снижения концентрации серной кислоты и облегчения состояния человека.
  • Если кислота попала в глаза, нужно промыть их проточной водой, а затем закапать раствором дикаина и новокаина.
  • При попадании кислоты на кожу, обожженное место нужно хорошо промыть под проточной водой и наложить повязку с содой. Промывать нужно около 10-15 минут.
  • При отравлении парами нужно выйти на свежий воздух, а также промыть по мере доступности пострадавшие слизистые водой.

В условиях стационара лечение будет зависеть от площади ожога и степени отравления. Обезболивание осуществляют только новокаином. Во избежание развития в области поражения инфекции, пациенту подбирают курс антибиотикотерапии.

При желудочном кровотечении вводится плазма или переливается кровь. Источник кровотечения могут устранять оперативным путем.

  1. Серная кислота в чистом 100%-ом виде встречается в природе. К примеру, в Италии на Сицилии в Мертвом море можно увидеть уникальное явление – серная кислота просачивается прямо из дна! А происходит вот что: пирит из земной коры служит в этом случае сырьем для ее образования. Это место еще называют Озером смерти, и к нему боятся подлетать даже насекомые!
  2. После больших извержений вулканов в земной атмосфере часто можно обнаружить капли серной кислоты, и в таких случаях «виновница» может принести негативные последствия для окружающей среды и стать причиной серьезных изменений климата.
  3. Серная кислота является активным поглотителем воды, поэтому ее используют в качестве осушителя газов. В былые времена, чтобы в помещениях не запотевали окна, эту кислоту наливали в баночки и ставили между стеклами оконных проемов.
  4. Именно серная кислота – основная причина выпадения кислотных дождей. Главная причина образования кислотного дождя – загрязнение воздуха диоксидом серы, и он при растворении в воде образует серную кислоту. В свою очередь двуокись серы выделяется при сжигании ископаемого топлива. В кислотных дождях, исследуемых за последние годы, возросло содержание азотной кислоты. Причина такого явления – снижение выбросов двуокиси серы. Несмотря на этот факт, основной причиной появления кислотных дождей так и остается серная кислота.

Мы предлагаем вам видеоподборку интересных опытов с серной кислотой.

Рассмотрим реакцию серной кислоты при ее заливании в сахар. На первых секундах попадания серной кислоты в колбу с сахаром происходит потемнение смеси. После нескольких секунд субстанция приобретает черный цвет. Далее происходит самое интересное. Масса начинает стремительно расти и вылазить за пределы колбы. На выходе получаем гордое вещество, похоже на пористый древесный уголь, превышающий первоначальный объем в 3-4 раза.

Автор видео предлагает сравнить реакцию кока-колы с соляной кислотой и серной кислотой. При смешивании Кока-колы с соляной кислотой никаких визуальных изменений не наблюдается, а вот при смешивании с серной кислотой Кока-кола начинает закипать.

Интересное взаимодействие можно наблюдать при попадании серной кислоты на туалетную бумагу. Туалетная бумага состоит из целлюлозы. При попадании кислоты молекулы целлюлозы мгновенно разрушайся с выделением свободного углерода. Подобное обугливание можно наблюдать при попадании кислоты на древесину.

В колбу с концентрированной кислотой добавляю маленький кусочек калия. На первой секунде происходит выделение дыма, после чего металл мгновенно вспыхивает, загорается и взрывается, разделаясь на кусочки.

В следующем опыте при попадании серной кислоты на спичку происходит ее вспыхивание. Во второй части опыта погружают алюминиевую фольгу с ацетоном и спичкой внутри. Происходит мгновенное нагревание фольги с выделением огромного количества дыма и полное ее растворение.

Интересный эффект наблюдается при добавлении пищевой соды в серную кислоту. Сода мгновенно окрашивается в желтый цвет. Реакция протекает с бурным кипением и увеличением объема.

Все вышеприведенные опыты мы категорически не советует проводить в домашних условиях. Серная кислота очень агрессивное и токсичное вещество. Подобные опыты необходимо проводить в специальных помещениях, которые оборудованы принудительной вентиляцией. Газы, выделяемые в реакциях с серной кислотой, очень токсичны и могут вызвать поражение дыхательных путей и отравление организма. Кроме того, подобные опыты проводятся в средствах индивидуальной защиты кожных покровов и органов дыхания. Берегите себя!

При растворении в воде диоксида серы (SO 2) получается химическое соединение, известное как сернистая кислота. Формула этого вещества записывается так: H 2 SO 3 . По правде говоря, данное соединение является крайне нестабильным, с определенным допущением даже можно утверждать, что его на самом деле не существует. Тем не менее данную формулу часто используют для удобства написания уравнений химических реакций.

Сернистая кислота: основные свойства

Для водного раствора двуокиси серы характерна кислая среда. Сам он обладает всеми свойствами, которые присущи кислотам, в том числе и реакцией нейтрализации. Сернистая кислота способна образовывать два вида солей: гидросульфиты и обычные сульфиты. Оба относятся к группе восстановителей. Первый вид обычно получается, когда сернистая кислота присутствует в довольно большом количестве: Н 2 SO 3 + KOH -> KHSO 3 + Н 2 O. В противном случае получается обычный сульфит: Н 2 SO 3 + 2КОН -> К 2 SO 3 + 2Н 2 O. Качественной реакцией на данные соли является их взаимодействие с сильной кислотой. В результате выделяется газ SO 2 , который легко отличить по характерному резкому запаху.

Сернистая кислота способна оказывать отбеливающее воздействие. Не секрет, что подобный эффект также дает и хлорная вода. Однако рассматриваемое соединение имеет одно важное преимущество: в отличие от хлора сернистая кислота не приводит к разрушению красителей, сернистый газ формирует с ними бесцветные химические соединения. Данное свойство нередко применяется для беления тканей из шелка, шерсти, растительного материала, а также всего, что разрушается от окислителей, содержащих в своем составе Cl. В старину данное соединение даже применяли для возвращения первоначального вида дамским соломенным шляпкам. H 2 SO 3 представляет собой достаточно сильный восстановитель. При доступе кислорода ее растворы постепенно превращаются в серную кислоту. В тех же случаях, когда она взаимодействует с более сильным восстановителем (к примеру, с сероводородом), серная кислота, наоборот, проявляет окислительные свойства. Диссоциация данного вещества проходит в два этапа. Вначале формируется гидросульфит-анион, а затем наступает вторая ступень, и он превращается в анион-сульфит.

Где используется сернистая кислота

Получение данного вещества играет большую роль в производстве всевозможных виноматериалов в качестве антисептика, в частности с его помощью удается предотвратить процесс брожения продукта в бочках и тем самым обеспечить его сохранность. Также его применяют для того, чтобы воспрепятствовать ферментации зерна в ходе извлечения из него крахмала. Сернистая кислота и препараты на ее основе обладают широким антимикробным свойством, и поэтому их часто применяют в плодоовощной промышленности при консервировании. Гидросульфит кальция, его еще называют сульфитный щелок, используют для того, чтобы переработать древесину в сульфитную целлюлозу, из которой впоследствии изготавливают бумагу. Осталось добавить, что для человека это соединение является ядовитым, а потому любые лабораторные работы и эксперименты с ним требуют осторожности и повышенного внимания.

Серная кислота H 2 SO 4 - одна из сильных двухосновных кислот. В разбавленном состоянии она окисляет почти все металлы, кроме золота и платины. Интенсивно реагирует с неметаллами и органическими веществами, превращая некоторые из них в уголь. При приготовлении раствора серной кислоты всегда надо её приливать к воде, а не наоборот, во избежание разбрызгивания кислоты и вскипания воды. При 10 °С затвердевает, образуя прозрачную стекловидную массу. При нагревании 100-процентная серная кислота легко теряет серный ангидрид (триокись серы SO 3) до тех пор, пока её концентрация не составит 98 %. Именно в таком состоянии её обычно и используют в лабораториях. В концентрированном (безводном) состоянии серная кислота - бесцветная, дымящаяся на воздухе (из-за паров), маслянистая жидкость с характерным запахом (Т кипения=338 °С). Она является очень сильным окислителем. Это вещество обладает всеми свойствами кислот:

Химические свойства серной кислоты

H 2 SO 4 + Fe → FeSO 4 + H 2 ;

2H 2 SO 4 + Cu → CuSO 4 + SO 2 +2H 2 O - в этом случае кислота является концентрированной.

H 2 SO 4 + CuO → CuSO 4 + H 2 O

Получающийся раствор синего цвета - CuSO 4 - раствор медного купороса. Серную кислоту еще называют купоросным маслом , так как при реакциях с металлами и их оксидами образуются купоросы. Например, при химической реакции с железом (Fe) - образуется светло-зелёный раствор железного купороса.

Химическая реакция с основаниями и щелочами (или реакция нейтрализации)

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O

Сернистая кислота (или правильнее сказать - раствор сернистого газа в воде) образует два вида солей: сульфиты и гидросульфиты . Эти соли являются восстановителями.

Н 2 SO 4 + NaOH → NaНSO 3 + Н 2 O - такая реакция протекает при избытке сернистой кислоты

Н 2 SO 4 + 2NaOH → Na 2 SO 3 + 2Н 2 O - а эта реакция протекает при избытке едкого натра

Сернистая кислота обладает отбеливающим действием. Всем известно, что подобным действием обладает и хлорная вода. Но отличие заключается в том, что в отличии от хлора сернистый газ не разрушает красители, а образует с ними неокрашенные химические соединения!

Кроме основных свойств кислот сернистая кислота способна обесцвечивать раствор марганцовки по следующему уравнению:

5Н 2 SO 3 +2KMnO 4 → 2 Н 2 SO 4 +2MnSO 4 +K 2 SO 4 +Н 2 O

В этой реакции образуется бледно-розовый раствор, состоящий из сульфатов калия, марганца. Окраска обусловлена именно сульфатом марганца.

Сернистая кислота способна обесцветить бром

Н 2 SO 3 + Br 2 + Н 2 O → Н 2 SO 4 + 2HBr

В этой реакции образуется раствор, состоящий сразу из 2-х сильных кислот: серной и бромной.

Если хранить сернистую кислоту при доступе воздуха, то этот раствор окисляется и превращается в серную кислоту

2Н 2 SO 3 + O 2 → 2Н 2 SO 2

В окислительно-восстановительных процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом в этом соединении имеет промежуточную степень окисления +4.

Как окислитель SO 2 реагирует с более сильными восстановителями, например с :

SO 2 + 2H 2 S = 3S↓ + 2H 2 O

Как восстановитель SO 2 реагирует с более сильными окислителями, например с в присутствии катализатора, с и т.д.:

2SO 2 + O 2 = 2SO 3

SO 2 + Cl 2 + 2H 2 O = H 2 SO 3 + 2HCl

Получение

1) Сернистый газ образуется при горении серы:

2) В промышленности его получают при обжиге пирита:

3) В лаборатории сернистый газ можно получить:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

Применение

Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO 2 идет на получение серной кислоты.

Оксид серы (VI ) – SO 3 (серный ангидрид)

Серный ангидрид SO 3 – это бесцветная жидкость, которая при температуре ниже 17 о С превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).

Химические свойства

Кислотно-основные свойства

Как типичный кислотный оксид серный ангидрид взаимодействует:

SO 3 + CaO = CaSO 4

в) с водой:

SO 3 + H 2 O = H 2 SO 4

Особым свойством SO 3 является его способность хорошо растворяться в серной кислоте. Раствор SO 3 в серной кислоте имеет название олеум.

Образование олеума: H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Окислительно-восстановительные свойства

Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO 2):

3SO 3 + H 2 S = 4SO 2 + H 2 O

Получение и применение

Серный ангидрид образуется при окислении сернистого газа:

2SO 2 + O 2 = 2SO 3

В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.

H 2 SO 4

Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков. Ее получали, прокаливая на воздухе железный купорос (FeSO 4 ∙7H 2 O): 2FeSO 4 = Fe 2 O 3 + SO 3 + SO 2 либо смесь с : 6KNO 3 + 5S = 3K 2 SO 4 + 2SO 3 + 3N 2 , а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум. В зависимости от способа приготовления H 2 SO 4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.

Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя. Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух. Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.

В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт ). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.

Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.

Раствор серной кислоты в воде с содержанием H 2 SO 4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.

Химические свойства

Кислотно-основные свойства

Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:

H 2 SO 4 + NaOH = Na 2 SO 4 + 2H 2 O

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

Процесс взаимодействия ионов Ва 2+ с сульфат-ионами SO 4 2+ приводит к образованию белого нерастворимого осадка BaSO 4 . Это качественная реакция на сульфат-ион .

Окислительно – восстановительные свойства

В разбавленной H 2 SO 4 окислителями являются ионы Н + , а в концентрированной – сульфат-ионы SO 4 2+ . Ионы SO 4 2+ являются более сильными окислителями, чем ионы Н + (см.схему).

В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода . При этом образуются сульфаты металлов и выделяется :

Zn + H 2 SO 4 = ZnSO 4 + H 2

Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:

Cu + H 2 SO 4 ≠

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие , и некоторые органические вещества.

При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO 2 .

Реакция серной кислоты с цинком

Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной . Например, при взаимодействии серной кислоты с , в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO 2 , S, H 2 S:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O

На холоде концентрированная серная кислота пассивирует некоторые металлы, например и , поэтому ее перевозят в железных цистернах:

Fe + H 2 SO 4 ≠

Концентрированная серная кислота окисляет некоторые неметаллы ( , и др.), восстанавливаясь до оксида серы (IV) SO 2:

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O

C + 2H 2 SO 4 = 2SO 2 + CO 2 + 2H 2 O

Получение и применение

В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:

  1. Получение SO 2 путем обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

  1. Окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия (V):

2SO 2 + O 2 = 2SO 3

  1. Растворение SO 3 в серной кислоте:

H 2 SO 4 + n SO 3 = H 2 SO 4 ∙ n SO 3

Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:

H 2 SO 4 ∙ n SO 3 + H 2 O = H 2 SO 4

Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.

Соли серной кислоты


Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO 4 , еще менее PbSO 4 и практически нерастворим BaSO 4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:

CuSO 4 ∙ 5H 2 O медный купорос

FeSO 4 ∙ 7H 2 O железный купорос

Соли серной кислоты имеют все . Особенным является их отношение к нагреванию.

Сульфаты активных металлов ( , ) не разлагаются даже при 1000 о С, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO 3:

CuSO 4 = CuO + SO 3

Скачать:

Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом»

Скачать рефераты по другим темам можно

*на изображении записи фотография медного купороса

    H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли сернистой кислоты сульфиты … Большой Энциклопедический словарь

    СЕРНИСТАЯ КИСЛОТА - (H2SO3) слабая двухосновная кислота. Существует лишь в водных растворах. Соли С. к. сульфиты. Применяют в целлюлозно бумажной и пищевой промышленности. См. также Кислоты и ангидриды … Российская энциклопедия по охране труда

    сернистая кислота - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN sulfurous acid … Справочник технического переводчика

    Н2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли серной кислоты сульфиты. * * * СЕРНИСТАЯ КИСЛОТА СЕРНИСТАЯ КИСЛОТА, H2SO3, слабая двухосновная кислота. В свободном виде не выделена,… … Энциклопедический словарь

    сернистая кислота - sulfito rūgštis statusas T sritis chemija formulė H₂SO₃ atitikmenys: angl. sulfurous acid rus. сернистая кислота ryšiai: sinonimas – vandenilio trioksosulfatas (2–) … Chemijos terminų aiškinamasis žodynas

    H2SO3, слабая двухосновная кислота, отвечающая степени окисления серы +4. Известна только в разбавленных водных растворах. Константы диссоциации: K1 = 1,6 · 10 2, K2 = 1,0 · 10 7 (18°C). Даёт два ряда солей: нормальные Сульфиты и кислые… … Большая советская энциклопедия

    H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в вод. р рах. Соли С. к. сульфиты … Естествознание. Энциклопедический словарь

    См. Сера … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона




© 2024
womanizers.ru - Журнал современной женщины