20.06.2019

Роль химии в общественном питании. Химия в пищевой промышленности. Задача дисциплины - изучение основных составных веществ пищевых продуктов и их роль в питании человека; ознакомление с основными химическими процессами, протекающими в результате хранения


Три килограмма химических веществ. Вот то количество, которое проглатывается за год среднестатистическим потребителем самых разных, порой абсолютно привычных продуктов: кексов, например, или мармелада. Красители, эмульгаторы, уплотнители, загустители присутствуют теперь буквально во всем. Естественно, возникает вопрос: зачем производители добавляют их в продукты питания и насколько безвредны эти вещества?

Специалисты договорились считать, что «пищевые добавки — это общее название природных или синтетических химических веществ, добавляемых в продукты питания с целью придания им определенных свойств (улучшения вкуса и запаха, повышения питательной ценности, предотвращения порчи продукта и т. д.), которые не употребляются в качестве самостоятельных пищевых продуктов». Формулировка вполне четкая и понятная. Однако далеко не все в этом вопросе просто. Многое зависит от честности и элементарной порядочности производителей, от того, что именно и в каких количествах они используют для придания продуктам товарного вида.

Порядковый номер вкуса

Пищевые добавки — это не изобретение нашего высокотехнологического века. Соль, сода, пряности известны людям с незапамятных времен. Но вот подлинный расцвет их использования начался все-таки в ХХ веке — веке пищевой химии. На добавки были возложены большие надежды. И они оправдали ожидания в полной мере. С их помощью удалось создать большой ассортимент аппетитных, долгохранящихся и при этом менее трудоемких в производстве продуктов. Завоевав признание, «улучшители» были поставлены на поток. Колбасы стали нежно-розовыми, йогурты свежефруктовыми, а кексы пышно-нечерствеющими. «Молодость» и привлекательность продуктов обеспечили именно добавки, которые используют в качестве красителей, эмульгаторов, уплотнителей, загустителей, желеобразователей, глазирователей, усилителей вкуса и запаха, консервантов…

Их наличие в обязательном порядке указывается на упаковке в перечне ингредиентов и обозначаются буквой «Е» (начальная буква в слове «Europe» (Европа). Пугаться их присутствия не следует, большинство наименований при правильном соблюдении рецептуры вреда здоровью не несет, исключения составляют лишь те, которые у отдельных людей могут вызывать индивидуальную непереносимость.

Далее за буквой следует число. Оно позволяет ориентироваться в многообразии добавок, являясь, согласно Единой европейской классификации, кодом конкретного вещества. Например, Е152 — совершенно безобидный активированный уголь, Е1404 — крахмал, а Е500 — сода.

Кодами Е100–Е182 обозначают красители, усиливающие или восстанавливающие цвет продукта. Кодами Е200–Е299 — консерванты, повышающие срок хранения продуктов за счет защиты их от микробов, грибков и бактериофагов. В эту же группу включены химические стерилизующие добавки, используемые при созревании вин, а также дезинфицирующие вещества. Е300–Е399 — антиокислители, защищающие продукты от окисления, например от прогоркания жиров и изменения цвета нарезанных овощей и фруктов. Е400–Е499 — стабилизаторы, загустители, эмульгаторы, назначение которых — сохранять заданную консистенцию продукта, а также повышать его вязкость. Е500–Е599 — регуляторы pH и вещества против слеживания. Е600–Е699 — ароматизаторы, усиливающие вкус и аромат продукта. Е900–Е999 — антифламинги (пеногасители), Е1000–Е1521 — все остальное, а именно — глазирователи, разделители, герметики, улучшители муки и хлеба, текстураторы, упаковочные газы, подсластители. Пищевых добавок под номерами Е700–Е899 пока не существует, эти коды зарезервированы для новых веществ, появление которых не за горами.

Тайна багряных кермесов
История такого пищевого красителя, как кошениль, он же кармин (Е120), напоминает детективный роман. Получать его люди научились в глубокой древности. В библейских легендах упоминается пурпурная краска, полученная из красного червя, которую употребляли потомки Ноя. И действительно, кармин получали из насекомых кошенили, известных также как дубовые червецы, или кермесы. Обитали они в странах Средиземноморья, встречались в Польше и на Украине, однако наибольшую известность получила араратская кошениль. Еще в III веке один из персидских царей подарил римскому императору Аврелиану шерстяную ткань, выкрашенную в багряный цвет, которая стала достопримечательностью Капитолия. Араратская кошениль упоминается и в средневековых арабских хрониках, где говорится о том, что Армения производит краску «кирмиз», используемую для окраски пуховых и шерстяных изделий, написания книжных гравюр. Однако в XVI веке на мировом рынке появился новый тип кошенили — мексиканская. Привез ее из Нового Света знаменитый конкистадор Эрнан Кортес в качестве дара своему королю. Мексиканская кошениль была мельче араратской, зато размножалась пять раз в год, в ее худеньких тельцах практически отсутствовал жир, что упрощало процесс производства краски, да и красящий пигмент был ярче. В считанные годы новый тип кармина завоевал всю Европу, об араратской же кошенили просто забыли на долгие годы. Восстановить рецепты прошлого удалось только в начале XIX века архимандриту Эчмиадзинского монастыря Исааку Тер-Григоряну, он же миниатюрист Саак Цахкарар. В 30-е годы XIX века его открытием заинтересовался академик Российской Императорской академии наук Иосиф Гамель, посвятивший «живым красителям» целую монографию. Кошениль даже попытались разводить в промышленных масштабах. Однако появление в конце XIX века дешевых анилиновых красителей отбило у отечественных предпринимателей охоту возиться с «червяками». Впрочем, очень быстро стало ясно, что необходимость в краске из кошенили отпадет еще очень не скоро, ведь в отличие от химических красителей она абсолютно безвредна для человеческого организма, а значит, может применяться в кулинарии. В 30-е годы ХХ века советское правительство решило сократить ввоз импортных продуктов питания и обязало знаменитого энтомолога Бориса Кузина наладить производство отечественной кошенили. Экспедиция в Армению увенчалась успехом. Ценное насекомое было найдено. Однако его разведению помешала война. Проект по изучению араратской кошенили был возобновлен только в 1971 году, но до разведения ее в промышленных масштабах дело так и не дошло.

Еда завтрашнего дня

Август 2006 года ознаменовался сразу двумя сенсациями. На Международном конгрессе микологов, проходившем в австралийском городе Каирнсе, доктор Марта Таниваки из Бразильского института пищевых технологий сообщила, что ей удалось раскрыть тайну кофе. Его неповторимый вкус обусловлен деятельностью грибков, попадающих в кофейные зерна во время их роста. При этом, каким будет грибок и насколько он разовьется, зависит от природных условий области, в которой выращен кофе. Именно поэтому разные сорта бодрящего напитка так сильно отличаются друг от друга. У этого открытия, по мнению ученых, большое будущее, ведь если научиться культивировать грибки, можно придать новый вкус не только кофе, а если пойти дальше, то и вину, и сыру.

А вот американская биотехнологическая компания Intralytix предложила использовать в качестве пищевых добавок вирусы. Это ноухау позволит справиться со вспышками такого опасного заболевания, как листериоз, который, несмотря на все усилия санитарных врачей, только в США ежегодно уносит жизни порядка 500 человек. Биологами был создан коктейль из 6 вирусов, губительных для бактерии Listeria monocytogenes, но абсолютно безопасных для человека. Управление по контролю за пищевыми продуктами и медикаментами США (FDA) уже дало добро на обработку им ветчины, хот-догов, сосисок, колбас и других мясных продуктов.

Насыщение же продуктов особыми питательными веществами, практикующееся в последние десятилетия в развитых странах, позволило практически полностью ликвидировать болезни, связанные с недостатком того или иного элемента. Так ушли в прошлое хейлоз, ангулярный стоматит, глоссит, себорейный дерматит, конъюнктивит и кератит, связанные с недостатком витамина В2, рибофлавина (краситель Е101, придающий продуктам красивый желтый цвет); цинга, обусловленная дефицитом витамина С, аскорбиновой кислоты (антиоксидант Е300); малокровие, причиной которого является недостаток витамина Е, токоферола (антиоксидант Е306). Логично предположить, что в будущем достаточно будет выпить специальный витаминноминеральный коктейль или принять соответствующую таблетку, и проблемы с питанием будут решены.

Впрочем, ученые и не думают останавливаться на достигнутом, некоторые даже предрекают, что к концу XXI века наш рацион будет сплошь состоять из пищевых добавок. Звучит фантастически и даже несколько жутковато, однако надо вспомнить, что подобные продукты уже существуют. Так, суперпопулярные в ХХ веке жевательная резинка и Coca Cola получили свой неповторимый вкус именно благодаря пищевым добавкам. Вот только общество подобный энтузиазм не разделяет. Армия противников пищевых добавок увеличивается не по дням, а по часам. Почему?

МНЕНИЕ СПЕЦИАЛИСТА
Ольга Григорян, ведущий научный сотрудник Отделения профилактической и реабилитационной диетологии Клиники лечебного питания ГУ НИИ питания РАМН, кандидат медицинских наук.
— В принципе нет ничего странного в том, что любые химические наполнители, без которых немыслим современный пищепром, чреваты аллергическими реакциями, нарушениями работы желудочно-кишечного тракта. Однако доказать, что причиной болезни стала именно та или иная пищевая добавка, чрезвычайно сложно. Можно, конечно, исключить подозрительный продукт из диеты, потом его ввести и посмотреть, как это воспримет организм, но окончательный вердикт: какое именно вещество вызвало аллергическую реакцию, можно только после серии дорогостоящих тестов. Да и чем это поможет больному, ведь в следующий раз он может купить продукт, на котором это вещество просто не будет указано? Я могу только порекомендовать избегать красивых продуктов неестественного цвета со слишком назойливым вкусом. Производители прекрасно осведомлены о возможных рисках применения пищевых добавок и идут на них вполне сознательно. Аппетитный вид мясных изделий, который обусловлен применением нитрита натрия (консервант Е250), давно стал притчей во языцех. Избыток его негативно сказывается на обменных процессах, угнетающе действует на органы дыхания, имеет онконаправленное действие. С другой стороны, достаточно один раз посмотреть на домашнюю колбасу серого цвета, чтобы понять — в этом случае из двух зол выбрано меньшее. И, чтобы не создавать самому себе проблем и не превышать предельно допустимую концентрацию нитрита натрия, не ешьте каждый день колбасу, особенно копченую, и все будет в порядке.

Страсти разгораются

Проблема в том, что не все пищевые добавки, используемые в промышленности, хорошо изучены. Типичный пример — подсластители, искусственные заменители сахара: сорбит (Е420), аспартам (Е951), сахарин (Е954) и другие. Долгое время медики считали их абсолютно безопасными для здоровья и назначали как больным сахарным диабетом, так и просто желающим похудеть. Однако в последние два десятилетия выяснилось, что сахарин является канцерогеном. Во всяком случае, потреблявшие его лабораторные животные болели раком, правда, только в том случае, если съедали сахарин в объеме, сопоставимом с их собственным весом. Ни один человек на такое не способен, а значит, и рискует гораздо меньше. А вот большое количество сорбита (порядка 10 граммов и более) может вызвать желудочно-кишечную недостаточность и явиться причиной диареи. Кроме того, сорбит способен усугубить синдром раздраженной толстой кишки и нарушение всасывания фруктозы.

История пищевых добавок XXI века также ознаменовалось скандалом. В июле 2000 года представители американского Общества по защите прав потребителей, заручившись поддержкой прокурора штата Коннектикут Ричарда Блюменталя, обратились в Управление по контролю за пищевыми продуктами и медикаментами США (FDA) с требованием приостановить продажу продуктов питания, обогащенных теми или иными веществами. Речь, в частности, шла об апельсиновом соке с кальцием, печенье с антиоксидантами, маргарине, понижающем уровень «плохого» холестерина, пирогах с пищевыми волокнами, а также напитках, сухих завтраках и чипсах с добавками на основе растительного сырья. Аргументируя свое требование, Ричард Блюменталь заявил, основываясь на некоторых данных, что «отдельные добавки могут мешать действию лекарственных препаратов. Очевидно, что существуют и другие побочные эффекты, которые пока еще не обнаружены». Как в воду смотрел. Тремя месяцами позже группа французских исследователей, изучавших свойства пищевых волокон, заявила, что они не только не защищают от рака кишечника, но и могут его спровоцировать. В течение трех лет они наблюдали за 552 добровольцами с предраковыми изменениями в кишечнике. Половина испытуемых питалась, как обычно, второй половине в пищу ввели добавку на основе шелухи исфагулы. И что же? В первой группе заболело всего 20%, во второй — 29%. В августе 2002 года масла в огонь подлила министр здравоохранения Бельгии Магда Элвоэрт, обратившаяся к руководству Евросоюза с призывом запретить на территории ЕС жевательную резинку и таблетки с фтором, которые, конечно, защищают от кариеса, но, с другой стороны, провоцируют остеопороз.

В январе 2003 года в центре внимания общественности оказались пищевые красители, точнее, один из них — кантаксантин. Люди его в пищу не используют, а вот лососю, форели, а также курам в корм его добавляют с тем, чтобы их мясо приобрело красивый цвет. Специальная комиссия ЕС установила, что «существует неопровержимая связь между повышенным потреблением кантаксантина животными и проблемами со зрением у людей».

Однако настоящий фурор произвел доклад британского профессора Джима Стивенсона, обнародованный весной 2003 года. Объектом исследования ученых из Университета Саутгемптона (Великобритания) стали пятилетние близнецы Майкл и Кристофер Паркеры. В течение двух недель Майклу не разрешали употреблять в пищу конфеты Smarties и Sunny Delight, напитки красного цвета Irn Bru и Tizer, а также газированные напитки и другие продукты с химическими добавками. Мама близнецов Линн Паркер так охарактеризовала результаты эксперимента: «Уже на второй день я увидела перемены в поведении Майкла. Он стал намного послушнее, у него развилось чувство юмора, он охотно разговаривает. В доме снизился уровень стресса, в отношениях между мальчиками меньше агрессивности, они почти не дерутся и не ссорятся». О влиянии пищевых добавок на поведение подростков сообщили и ученые из Австралии. Они определили, что пропионат кальция (Е282), добавляемый в хлеб, как консервирующее вещество, может приводить к сильным колебаниям настроения, нарушениям сна и концентрации внимания у детей.

В апреле 2005 году международная группа исследователей под руководством Малкольма Гривса заявила, что пищевые добавки (красители, приправы и консерванты) являются причиной 0,6–0,8% случаев хронической крапивницы.

Черный список
Пищевые добавки, запрещенные к применению в пищевой промышленности РФ
Е121
— Цитрусовый красный 2
Е123 — Красный амарант
Е216 — Парагидроксибензойной кислоты пропиловый эфир
Е217 — Парагидроксибензойной кислоты пропилового эфира натриевая соль
Е240 — Формальдегид

Всего несколько лет назад запрещенные добавки, несущие в себе явную угрозу для жизни, использовались очень активно. Красители Е121 и Е123 содержались в сладкой газированной воде, леденцах, цветном мороженом, а консервант Е240 — в различных консервах (компоты, варенья, соки, грибы и т. д.), а также практически во всех широко рекламируемых импортных шоколадных батончиках. В 2005 году под запрет попали консерванты Е216 и Е217 , которые широко использовались в производстве конфет, шоколада с начинкой, мясных продуктов, паштетов, супов и бульонов. Как показали исследования, все эти добавки могут способствовать образованию злокачественных опухолей.

Пищевые добавки, запрещенные к применению в пищевой промышленности ЕC, но допустимые в РФ
Е425 — Конжак (Конжаковая мука):
(I) Конжаковая камедь,
(II) Конжаковый глюкоманнан
Е425 применяются для ускорения процесса соединения плохо смешиваемых веществ. Они включены во многие продукты, особенно типа Light, например шоколад, в котором растительный жир заменяется водой. Сделать это без подобных добавок просто нельзя.
Е425 не вызывает серьезных заболеваний, но в странах Евросоюза конжаковая мука не используется. Ее изъяли из производства после того, как было зафиксировано несколько случаев удушья маленьких детей, в дыхательные пути которых попадал плохо растворяемый слюной жевательный мармелад, высокая плотность которого достигалась посредством этой добавки.

Правда жизни

Надо принимать во внимание и то, что в силу своей психологии человек зачастую не может отказаться от того, что вредно, но вкусно. Показательна в этой связи история с усилителем вкуса глутаматом натрия (Е621). В 1907 году сотрудник Императорского университета Токио (Япония) Кикунае Икэда впервые получил белый кристаллический порошок, который усиливал вкусовые ощущения за счет увеличения чувствительности сосочков языка. В 1909-м он запатентовал свое изобретение, и глутамат натрия начал победное шествие по миру. В настоящее время жители Земли ежегодно потребляют его в количестве свыше 200 тысяч тонн, не задумываясь о последствиях. Между тем в специальной медицинской литературе появляется все больше данных о том, что глутамат натрия негативно влияет на головной мозг, ухудшает состояние больных бронхиальной астмой, приводит к разрушению сетчатки глаза и глаукоме. Именно на глутамат натрия некоторые исследователи возлагают вину за распространение «синдрома китайского ресторана». Вот уже несколько десятков лет в различных уголках мира фиксируют загадочное заболевание, природа которого до сих пор неясна. У абсолютно здоровых людей ни с того ни с сего повышается температура, краснеет лицо, появляются боли в груди. Единственное, что объединяет пострадавших, — все они незадолго до болезни посещали китайские рестораны, повара которых склонны злоупотреблять «вкусным» веществом. Между тем, по данным ВОЗ, прием более 3 граммов глутамата натрия в день «является очень опасным для здоровья».

И все-таки надо смотреть правде в глаза. На сегодняшний день без пищевых добавок (консервантов и т. д.) человечеству не обойтись, поскольку именно они, а не сельское хозяйство, способны обеспечить 10% ежегодного прироста продовольствия, без которого население Земли просто окажется на грани голодной смерти. Другой вопрос, что они должны быть максимально безопасными для здоровья. Санитарные врачи, конечно, об этом заботятся, но и всем остальным не стоит терять бдительность, внимательно читая то, что написано на упаковке.

Все отрасли пищевой промышленности неразрывно связа-ны с развитием химии. Уровень развития биохимии в большинстве отраслей пищевой промышленности характе-ризует и уровень развития отрасли. Как мы уже сказали, основные технологические процессы винодельческой, хлебопекарной, пивоваренной, табачной, пищекислотной, соковой, квасоваренной, спиртовой про-мышленности построены на биохимических процессах. Вот почему совершенствование биохимических процессов и в соответствии с этим осуществление мер по совершенствованию всей технологии производства — главная задача ученых и работников промышленности. Работники ряда производств постоянно заняты селекци-ей — подбором высокоактивных рас и штаммов дрожжей. Ведь от этого зависят выход и качество вина, пива; выход, пористость и вкусовые качества хлеба. На этом участке достигнуты серьезные результаты: наши отечественные дрожжи по своей «работоспособности» отвечают возрос-шим требованиям технологии.

Примером могут служить выведенные работниками Киев-ского завода шампанских вин в содружестве с Академией наук УССР дрожжи расы К-Р, которые хорошо осуществляют функции сбраживания в условиях непрерывного процесса шампанизации вина; благодаря этому процесс производства шампанского сократился на 96 часов.

Для нужд народного хозяйства расходуются десятки и сот- ти тысяч тонн пищевых жиров, в том числе значительная доля для производства моющих средств и олифы. Между тем в производстве моющих средств значительное количе-ство пищевых жиров (при существующем уровне техни-ки— до 30 процентов) можно заменить синтетическими жирными кислотами и спиртами. Это высвободило бы весьма значительное количество ценных жиров для продо-вольственных целей.

На технические цели, например на производство клеящих средств, также расходуется большое количество (многие тысячи тонн!) пищевого крахмала и декстрина. И тут на помощь приходит химия! Еще в 1962 году некоторые за-воды начали применять для наклейки этикеток взамен крахмала и декстрина синтетический материал — полиа-криламид. . В настоящее время большинство заводов — винодельческих, пиво-безалкогольных, шампанских вин, консервных и т. п. — переходят на синтетические клеящие средства. Так, синтетический клей АТ-1, состоящий из смо-лы МФ-17 (мочевина с формальдегидом) с добавлением КМЦ (карбоксиметилцеллюлозы), находит все более ши-рокое применение.Пищевая промышленность перерабатывает значительное количество пищевых жидкостей (виноматериалы, вина, пи-во, пивное сусло, квасное сусло, плодово-ягодные соки), которые по природе своей обладают агрессивными свойст-вами по отношению к металлу. Эти жидкости иногда в про-цессе технологической обработки содержатся в неприспо-собленной или малоприспособленной таре (металлические, железобетонные и другие емкости), что ухудшает качество готового продукта. Сегодня химия представила пищевой промышленности мно-жество различных средств для покрытия внутренних по-верхностей различных емкостей — резервуаров, баков, ап-паратов, цистерн. Это эпросин, лак ХС-76, ХВЛ и другие, которые целиком предохраняют поверхность от любого воз-действия и совершенно нейтральны и безвредны.Широкое применение в пищевой промышленности нахо-дят синтетические пленки, изделия из пластмасс, синтети-ческие укупорочные материалы.В кондитерской, консервной, пищенонцентратной, хлебо-пекарной промышленности для расфасовки различных из-делий успешно используется целлофан.В полиэтиленовую пленку заворачивают хлебобулочные из-делиями они лучше и дольше сохраняют свежесть, медлен-нее черствеют.

Пластмассы, ацетшгцеллюлозная пленка и полистирол, на-ходят с каждым днем все большее применение для изготов-ления тары под расфасовку кондитерских изделий, для рас-фасовки пОвидла, джема, варенья и для приготовления раз-личных коробок и других видов упаковки.

Дорогостоящее импортное сырье — прокладки из коркового дерева для укупорки вина, пива, безалкогольных напитков, минеральных вод — прекрасно заменяют различные виды прокладок из полиэтилена, полиизобутилена и других син-тетических масс.

Химия активно служит и продовольственному машиностро-ению. Капрон применяется для изготовления быстроизна- шивающихея деталей, карамелештампующих машин, втулок, прихватов, бесшумных шестерен, капроновых се-ток, фильтровальной ткани; в винодельческой, ликеро-во-дочной и пиво-безалкогольной отраслях капрон идет для деталей к этикетировочным, бракеражным и разливочным автоматам.

С каждым днем все щире «внедряются» в пищевое машино-строение пластические массы — для изготовления различ-ных транспортерных столов, бункеров, приемников, эле-ваторных ковшей, труб, кассет для расстойки хлеба и многих других деталей и узлов.

Неуклонно растет вклад большой химии в индустрию пи-тания.В 1866 году немецкий химий Риттгаузен получил из продуктов рас-щепления пшеничного белка органическую кислоту, которую он назвал глютаминовой.Это открытие не имело большого практического значения в тече-ние почти полувека. В последующем, однако, выяснилось, что глю-таминовая кислота, хотя и не относится к незаменимым аминокис-лотам, содержится все же в сравнительно больших количествах в таких жизненно важных органах и тканях, как мозг, сердечная мышца, плазма крови. К примеру, в 100 граммах вещества мозга содержится 150 миллиграммов глютаминовой кислоты.

"Научными исследованиями установлено, что глютаминовая кислота активно участвует в биохимических процессах, протекающих в центральной нервной системе, участвует во внутриклеточном бел-ковом и углеводном обмене, стимулирует окислительные процессы. Из всех аминокислот только глютаминовая кифгота интенсивно окисляется тканью мозга, при этом освобождается значительное количество энергии, необходимой для процессов, протекающих в мозговых тканях.

Отсюда и важнейшая область применения глютаминовой кисло-ты—в медицинской практике, для лечения заболеваний централь-ной нервной системы.

В начале XX века японский ученый Кикунае Икеда, занимаясь изучением состава соевого соуса, морской капусты (ламинарии) и других пищевых продуктов, характерных для Восточной Азии, решил найти ответ на вопрос, почему пища, сдобренная сушеными водорослями (например, ламинарией), становится более вкусной и аппетитной. Неожиданно выяснилось, что ламинария «облагора-живает» пищу потому, » что в ней содержится глютаминовая кислота.

В 1909 году Икеде был выдан британский патент на способ произ-водства вкусовых препаратов. По этому способу Икеда путем электролиза выделял из белкового гидролизата мононатриевый глютамат, то есть натриевую соль глютаминовой кислоты. Оказа-лось, что глютамат натрия обладает способностью улуч-шать вкус продуктов питания.

Глютамат натрия— желтоватый мелкокристаллический порошок; в настоящее время он вырабатывается во все возрастающих количе-ствах и у нас и за рубежом — особенно в странах Восточной Азии. Основное применение находит в пищевой промышленности как восстановитель вкуса продуктов, который утрачивается в процес-се приготовления тех или иных изделий. Глютамат натрия приме-няется при промышленном производстве супов, соусов, мясных и колбасных продуктов, овощных консервов и т. п.

Для продуктов питания рекомендуется такая дозировка глютама-та натрия: 10 граммов препарата достаточно в качестве приправы для 3—4 килограммов мяса или мясных блюд, а также блюд, при-готовленных из рыбы и птицы, для 4—5 килограммов овощных про-дуктов, для 2 килограммов бобовых и рисовых, а также приготов-ленных из теста, для 6—7 литров супа, соусов, мясного оульопа. Особенно велико значение глютамата натрия при изготовлении консервов, так как при термической обработке продукты в большей или меньшей степени теряют свой вкус. В этих случаях дают обычно 2 грамма препарата на 1 килограмм консервов.

Если вкус какого-либо продукта ухудшается в результате хранения или варки, то глютамат восстанавливает его. Глютамат натрия повышает чувствительность вкусовых нервов — делает их более восприимчивыми к вкусу пищи. В некоторых случаях он даже улучшает вкус, например перекрывает нежелательные оттенки горечи и земляного вкуса различных овощей. Приятный вкус блюд из свежих овощей обусловлен высоким содержанием в них глюта-миновой кислоты. Стоит только добавить к прееному вегетарианскому супу малень-кую щеаоточку глютамата— ж, о чудо, блюдо приобретает полно-ту вкуса, возникает ощущение, будто ешь душистый мясной бульон. И еще одним «волшебным» действием обладает глютамат натрия. Дело в том, что при длительном хранении мясных и рыбных про-дуктов утрачивается их свежесть, ухудшается вкус и внешний вид. Если же эти продукты перед хранением смочить раствором глюта-мата натрия, они останутся свежими, в то время как контрольные цробы теряют первоначальный вкус, прогоркают.

В Японии глютамат натрия выпускают в продажу под названием «адзи-но-мото», что означает «сущность вкуса». Иногда это слово переводят иначе — «душа вкуса». В Китае этот препарат называют «вей-сю», то есть «гастрономический порошок», французы называют его «сывороткой ума», явно намекая на роль глютаминовой кисло-ты в мозговых процессах.

А из чего делают глютамат натрия и глютаминовую кислоту? Каж-дая страна выбирает наиболее выгодное для себя сырье. Например, в США более 50 процентов глютамата натрия вырабатывают из отходов свеклосахарного производства, около 30 процентов — из клейковины пшеницы и около 20 процентов — из кукурузного глю-тена. В Китае глютамат натрия вырабатывают из соевого белка, в Германии — из пшеничного белка. В Японии разработан метод биохи-мического синтеза глютаминовой кислоты из глюкозы и минераль-ных солей с помощью особой расы микроорганизмов (микрококкус глутамикус), о чем докладывал в Москве на V Международном биохимическом конгрессе японский ученый Киносита.

В нашей стране за последние годы организован ряд новых цехов по производству глютаминовой кислоты и глютамата натрия. Ос-новным сырьем для этих целей служат отходы кукурузо-крахмального производства, отходы сахарного производства (свекловпчпая патока) и отходы,спиртового производства (барда).

В настоящее время во всем мире ежегодно производят уже десят-ки тысяч тонн глютаминовой кислоты и глютамата натрия, и с каждым днем все расширяется сфера их применения.

Замечательные ускорители — ферменты

Большинство химических реакций, происходящих в орга-низме, протекает с участием ферментов, Ферменты — это специфические белки, вырабатываемые живой клеткой и обладающие способностью ускорять химические реакции. Свое название ферменты получили от латинского слова, что означает «брожение». Спиртовое брожение — один из старейших примеров действия фер-ментов.Все проявления жизни обусловлены наличием ферментов;

И. П. Павлов, сделавший исключительно большой вклад в развитие учения о ферментах, считал их возбудителями жизни: «Все эти вещества играют огромную роль, они обу-словливают собою те процессы, благодаря которым прояв-ляется жизнь, они и есть в полном смысле возбудители жизни».Опыт изменений, протекающих в живых организмах, чело-век научился переносить в промышленную сферу — для технической обработки сырья в пищевой и других отрас-лях промышленности.Применение ферментов и ферментных препаратов в техни-ке основано на их способности ускорять превращения мно-жества отдельных органических и минеральных веществ, ускорять таким образом разнообразнейшие технологичен ские процессы.

В настоящее время уже известно 800 различных фермен-тов.

Действие различных ферментов весьма специфично. Тот или иной фермент действует толькб на определенное ве- * щество или на определенный тип химической связи в мо- * лекуле.

В зависимости от действия ферментов их делят на шесть классов.

Ферменты способны расщеплять различные углеводы, бел- : ковые вещества, осуществлять гидролиз жиров, расщеплять другие органические вещества, катализировать окисли- , тельно-восстановительные реакции, переносить разнообраз-ные химические группы молекул одних органических сое-динений на молекулы других. Очень важным является тот факт, что ферменты могут ускорять процессы не только в прямом, но и в обратном направлении, то есть ферменты могут осуществлять не только реакции распада сложных органических молекул, но и их синтез. Интересно и то, что ферменты действуют в чрезвычайно малых дозах на громадное количество веществ. При этом ферменты действуют очень быстро, Одна молекула катализатора превращает тысячи частиц субстрата, в одну се-кунду.Так, 1 грамм пепсина способен расщепить 50 килограммов коагулированного яичного белка; амилаза слюны, осахари- вающая крахмал, проявляет свое действие при разбавле-нии один к миллиону, а 1 грамм кристаллического реннина заставляет свернуться-12 тонны молока!

Все ферменты природного происхождения не токсичны. Это преимущество весьма ценно почти для всех отраслей пищевой промышленности.

Как получают ферменты

Ферменты широко распространены в природе и содержат-ся во всех тканях и органах животных, в растениях, а также в микроорганизмах — в грибах, бактериях, дрожжах. Поэтому их можно получить из самых разнообразных ис-точников.Ученые нашли ответ на интереснейшие вопросы: как полу-чить эти чудодейственные вещества искусственно, как их можно применять в быту и в производстве?Если поджелудочную железу разных животных справедли-во называют «заводом ферментов», то плесневые грибы, как оказалось, — поистине «сокровищница» различных био-логических катализаторов. Препараты ферментов, получен-ные из микроорганизмов, стали постепенно вытеснять в большинстве производств препараты животного и расти-тельного происхождения.

К преимуществам этого вида сырья следует отнести в первую очередь высокую скорость размножения микроорга-низмов. В течение года при определенных условиях можно снять 600—800 «урожаев» искусственно выращенных плес-невых грибов или иных микроорганизмов. На определенной среде (пшеничные отруби, виноградные или фруктовые выжимки, то есть остатки после отжима сока) производят посев и в искусственно созданных усло-виях (необходимая влажность и температура) выращивают микроорганизмы, богатые определенными ферментами или содержащие фермент специфического свойства. Чтобы сти-мулировать выработку повышенного количества фермента, к смеси прибавляют дополнительно различные соли, кисло-ты и другие ингредиенты. Затем из биомассы выделяют комплекс ферментов или отдельные ферменты,

Ферменты и пища

Направленное использование активности ферментов, со-держащихся в сырье или добавляемых в нужных количе-ствах, является основой производства многих пищевых продуктов.Созревание мяса, мясного колбасного фар-ша, созревание сельди после посола, созре-вание чая, табака, вин, после чего появляется в каждом из этих продуктов изумительный, свойственный только им вкус и аромат, — есть результат «работы» фер-ментов. Процесс проращивания солода, когда крах-мал, не растворимый в воде, превращается в растворимый, а зерно приобретает специфический аромат и вкус — это тоже работа ферментов!В сегодняшнем представлении дальнейшее развитие пищевой промышленности немыслимо без применения ферментов и ферментных препаратов (комплекс фермен-тов различного действия).Взять к примеру хлеб — наиболее массовый продукт пи-тания. В обычных условиях производство хлеба, вернее процесс тестоприготовления, также происходит с участием ферментов, находящихся в муке. А что если добавить всего лишь 20 граммов препарата фермента амилазы на 1 тонну муки? Тогда мы получим хлеб с улучшенным; вкусом, ароматом, с красивой коркой, более пористый, более объемный и даже более сладкий! Фермент, расщепив в определенной степени крахмал, содержащийся в муке, увеличивает в муке содержание сахара; процессы брожения, газообразо-вания и другие происходят интенсивнее — и качество хле-ба становится лучше.

Этот же фермент — амилаза — применяется в пивоварен-ной промышленности. При его содействии часть солода, применяемого для изготовления пивного сусла, заменяют обыкновенным зерном. Получается ароматное, пенистое, вкусное пиво. При помощи фермента амилазы можно полу-чить растворимую в воде форму крахмала, сладкую патоку и глюкозу из кукурузной муки.

Свежеприготовленные шоколадные изделия, мягкие кон-феты с начинкой, мармелад и другие — лакомство не толь-ко для малышей, но и для взрослых. Но, пролежав некото-рое время в магазине или же дома, эти изделия теряют свой прелестный вкус и вид — начинают затвердевать, сахар кристаллизуется, теряется аромат. Как продлить жизнь этим изделиям? Ферментом инвертаза! Оказывается, инвертаза предотвращает «черствение» кон-дитерских изделий, грубую кристаллизацию саха-ра; изделия остаются долгое время совершенно «свежими». А мороженое с кремом? С применением фермента лактазы оно никогда не будет зернистым или «песчаным», ибо кри-сталлизации молочного сахара не произойдет.

Чтобы купленное в магазине мясо не оказалось жестким, необходима работа ферментов. После убоя животного свой-ства мяса изменяются: вначале мясо жесткое и невкусное, у парного мяса слабо выраженный аромат и вкус, со време-нем мясо делается мягким, интенсивность аромата варено-го мяса и бульона усиливается, вкус становится более вы-раженным и приобретает новые оттенки. Мясо созре-вает.

Изменение жесткости мяса в процессе созревания связано с изменением белков мышечной и соединительной тканей. Характерный вкус мяса и мясного бульона зависит от со-держания в составе мышечной ткани глютаминовой кисло-ты, которая, так же как и ее соли — глютаматы, обладает специфическим вкусом мясного бульона. Поэтому слабо выраженный вкус парного мяса объясняется отчасти тем, что глютамин в этот период связан с каким-то компонен-том, освобождаясь по мере созревания мяса.

Изменение аромата и вкуса мяса в процессе созревания связано также с накоплением низкомолекулярных летучих жирных кислот, образующихся в результате гидролитиче-ского распада липидов мышечного волокна под действием липазы.

Различие в жирокислотном составе липидов мышечного волокна различных животных придает специфичность от-тенкам аромата и вкуса различных видов мяса.

Вследствие ферментативной природы изменений мяса ре-шающее влияние на их скорость имеет температура. Дея-тельность ферментов резко замедляется, но не приостанав-ливается даже при очень низких температурах: они не разрушаются при минус 79 градусов. Ферменты в заморо-женном состоянии могут сохраниться много месяцев, не теряя активности. В некоторых случаях их активность пос-ле размораживания возрастает.

С каждым днем расширяется сфера применения фермен-тов и их препаратов.

Наша промышленность увеличивает из года в год перера-ботку винограда, фруктов и ягод для производства вина, соков, консервов. В этом производстве трудности заключат ются порой в том, что исходное сырье — плоды и ягоды — не «отдает» весь содержащийся в нем сок в процессе прессования. Добавление ничтожного количества (0,03— 0,05 процента) ферментного препарата пектиназы к вино-, граду, яблокам, сливам, различным ягодам при их дробле-нии или раздавливании дает весьма чувствительное повы-шение выхода сока — на 6—20 процентов.Пектиназу можно использовать также для осветления со-ков, в производстве фруктовых желе, фруктовых пюре. Большой практический интерес для защиты продуктов от окисляющего действия кислорода — жиров, пищевых конт центратов и других жирсодержащих продуктов — пред-ставляет фермент глюкозооксидаза. Решается вопрос о дли-тельном хранении продуктов, которые сейчас имеют корот-кий «срок жизни» вследствие прогоркания или иных окислительных изменений. Удаление кислорода или защи-. та от него очень важны в сыродельной, безалкогольной, пивоваренной, винодельческой, жировой промышленности, при производстве таких продуктов, как сухое молоко, май-онезы, пищевые концентраты и ароматизирующие продук-ты. Во всех случаях применение глюкозооксидазно-каталазной системы оказывается простым и весьма эффективным средством, улучшающим качество и сроки хранения продукции.

Будущее пищевой промышленности, да и вообще науки о питании немыслимо без глубокого изучения и широкого применения ферментов. Вопросами совершенствования производства и применения ферментных препаратов зани-маются многие наши научно-исследовательские институ-ты. В ближайшие годы намечено резко увеличить выработ-ку этих замечательных веществ.

Пожалуйста, оформите её согласно правилам оформления статей.

Пищевая химия - раздел экспериментальной химии, занимающийся созданием качественных продуктов питания и методов анализа в химии пищевых производств.

Химия пищевых добавок контролирует ввод их в продукты питания для улучшения технологии производства, а также структуры и органолептических свойств продукта, увеличения его сроков хранения , повышения биологической ценности. К числу таких добавок принадлежат:

  • стабилизаторы
  • вкусовые вещества и ароматизаторы
  • интенсификаторы вкуса и запаха
  • пряности

Создание искусственной пищи также является предмет пищевой химии. Это продукты, которые получают из белков, аминокислот, липидов и углеводов , предварительно выделенных из природного сырья или полученных направленным синтезом из минерального сырья . К ним добавляют пищевые добавки, а также витамины, минеральные кислоты, микроэлементы и прочие вещества, которые придают продукту не только питательность, но так же цвет, запах и необходимую структуру. В качестве природного сырья используют вторичное сырье мясной и молочной промышленности , семена, зеленую массу растений, гидробионты , биомассу микроорганизмов, например, дрожжей . Из них методами химии выделяют высокомолекулярные вещества (белки, полисахариды) и низкомолекулярные (липиды , сахара , аминокислоты и другие). Низкомолекулярные пищевые вещества получают также микробиологическим синтезом из сахарозы , уксусной кислоты , метанола , углеводородов , ферментативным синтезом из предшественников и органическим синтезом (включая асимметрический синтез для оптически активных соединений). Различают синтетическую пищу, получаемую из синтезируемых веществ, например, диеты для лечебного питания, комбинированные продукты из натуральных продуктов с искусственными пищевыми добавками, например, колбасно-сосисочные изделия, фарш, паштеты , и аналоги пищевых продуктов, имитирующие какие-либо натуральные продукты, например, черную икру.

Литература

  1. Несмеянов А. Н. Пища будущего. М.: Педагогика, 1985. - 128 с.
  2. Толстогузов В. Б. Новые формы белковой пищи. М.: Агропромиздат, 1987. - 303 с.
  3. Аблесимов Н. Е. Синопсис химии: Справочно-учебное пособие по общей химии - Хабаровск: Изд-во ДВГУПС, 2005. - 84 с. - http://www.neablesimov.narod.ru/pub04c.html
  4. Аблесимов Н. Е. Сколько химий на свете? ч. 2. // Химия и жизнь - XXI век. - 2009. - № 6. - С. 34-37.

Wikimedia Foundation . 2010 .

Смотреть что такое "Пищевая химия" в других словарях:

    ХИМИЯ - ХИМИЯ, наука о веществах, их превращениях, взаимодействии и о происходящих при этом явлениях. Выяснением основных понятий, к рыми оперирует X., как напр, атом, молекула, элемент, простое тело, реакция и др., учением о молекулярных, атомных и… … Большая медицинская энциклопедия

    Это промышленность Украины, главные задачи которой производство продуктов питания. Содержание 1 О промышленности 2 Отрасли 3 География … Википедия

    Динамика индекса производства пищевых продуктов и табака в России в 1991 2009 годах, в процентах от уровня 1991 года Пищевая промышленность России отрасль российской промышленности. Объём продукции в производстве пищевых продуктов и… … Википедия

    Упакованные продукты питания в американском супермаркете Fred Meyer Пищевая промышленность совокупность производств пищевых продуктов в готовом виде или в виде полуф … Википедия

    Пищевые добавки вещества, добавляемые в продукты питания для придания им желаемых свойств, например определённого аромата (ароматизаторы), цвета (красители), длительности хранения (консерванты), вкуса, консистенции. Содержание 1 Классификация по … Википедия

    Одесская национальная академия пищевых технологий (ОНАПТ) это один из крупнейших ВУЗов Одессы и Украины, которому присвоен IV уровень аккредитации. За более 100 летнию деятельность подготовил свыше 60 тысяч специалистов, среди которых около 2… … Википедия

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

    - [[Изображение:]] Год основания 2010 год Расположение … Википедия

    Активность воды это отношение давления паров воды над данным материалом к давлению паров над чистой водой при одной и той же температуре. Термин «активность воды» (англ. water activity Aw) впервые был введен в 1952 году.… … Википедия

Книги

  • Пищевая химия , . В книге рассматривается химический состав пищевых систем, его полноценность и безопасность. Приводятся основные превращения макро- и микронутриентов в технологическом потоке, фракционирование…

Все отрасли пищевой промышленности неразрывно связаны с развитием химии. Уровень развития биохимии в большинстве отраслей пищевой промышленности характеризует и уровень развития отрасли.

Как мы уже сказали, основные технологические процессы винодельческой, хлебопекарной, пивоваренной, табачной, пищекислотной, соковой, квасоваренной, спиртовой промышленности построены на биохимических процессах. Вот почему совершенствование биохимических процессов и в соответствии с этим осуществление мер по совершенствованию всей технологии производства - главная задача ученых и работников промышленности. Работники ряда производств постоянно заняты селекцией - подбором высокоактивных рас и штаммов дрожжей. Ведь от этого зависят выход и качество вина, пива; выход, пористость и вкусовые качества хлеба. На этом участке достигнуты серьезные результаты: наши отечественные дрожжи по своей «работоспособности» отвечают возросшим требованиям технологии.

Примером могут служить выведенные работниками Киевского завода шампанских вин в содружестве с Академией наук УССР дрожжи расы К-Р, которые хорошо осуществляют функции сбраживания в условиях непрерывного процесса шампанизации вина; благодаря этому процесс производства шампанского сократился на 96 часов. Для нужд народного хозяйства расходуются десятки и сотни тысяч тонн пищевых жиров, в том числе значительная доля для производства моющих средств и олифы. Между тем в производстве моющих средств значительное количество пищевых жиров (при существующем уровне техники - до 30 процентов) можно заменить синтетическими жирными кислотами и спиртами. Это высвободило бы весьма значительное количество ценных жиров для продовольственных целей.

На технические цели, например на производство клеящих средств, также расходуется большое количество (многие тысячи тонн!) пищевого крахмала и декстрина. И тут на помощь приходит химия! Еще в 1962 году некоторые заводы начали применять для наклейки этикеток взамен крахмала и декстрина синтетический материал - полиакриламид. В настоящее время большинство заводов - винодельческих, пиво-безалкогольных, шампанских вин, консервных и т. п. - переходят на синтетические клеящие средства. Так, синтетический клей АТ-1, состоящий из смолы МФ-17 (мочевина с формальдегидом) с добавлением КМЦ (карбоксиметилцеллюлозы), находит все более широкое применение.

Пищевая промышленность перерабатывает значительное количество пищевых жидкостей (виноматериалы, вина, пиво, пивное сусло, квасное сусло, плодово-ягодные соки), которые по природе своей обладают агрессивными свойствами по отношению к металлу. Эти жидкости иногда в процессе технологической обработки содержатся в неприспособленной или малоприспособленной таре (металлические, железобетонные и другие емкости), что ухудшает качество готового продукта.

Сегодня химия представила пищевой промышленности множество различных средств для покрытия внутренних поверхностей различных емкостей - резервуаров, баков, аппаратов, цистерн. Это эпросин, лак ХС-76, ХВЛ и другие, которые целиком предохраняют поверхность от любого воздействия и совершенно нейтральны и безвредны. Широкое применение в пищевой промышленности находят синтетические пленки, изделия из пластмасс, синтетические укупорочные материалы.

В кондитерской, консервной, пищеконцентратной, хлебопекарной промышленности для расфасовки различных изделий успешно используется целлофан. В полиэтиленовую пленку заворачивают хлебобулочные изделия, и они лучше и дольше сохраняют свежесть, медленнее черствеют.

Пластмассы, ацетилцеллюлозная пленка и полистирол находят с каждым днем все большее применение для изготовления тары под расфасовку кондитерских изделий, для расфасовки повидла, джема, варенья и для приготовления различных коробок и других видов упаковка Дорогостоящее импортное сырье - прокладки из коркового дерева для укупорки вина, пива, безалкогольных напитков, минеральных вод - прекрасно заменяют различные виды прокладок из полиэтилена, полиизобутилена и других синтетических масс.

Химия активно служит и продовольственному машиностроению. Капрон применяется для изготовления быстроизнашивающихся деталей, карамелештампующих машин, втулок, прихватов, бесшумных шестерен, капроновых сеток, фильтровальной ткани; в винодельческой, ликеро-водочной и пиво-безалкогольной отраслях капрон идет для деталей к этикетировочным, бракеражным и разливочным автоматам.

С каждым днем все шире «внедряются» в пищевое машиностроение пластические массы - для изготовления различных транспортерных столов, бункеров, приемников, элеваторных ковшей, труб, кассет для расстойки хлеба и многих других деталей и узлов.

Неуклонно растет вклад большой химии в индустрию питания,




© 2024
womanizers.ru - Журнал современной женщины