21.09.2019

Что такое наследственность в биологии определение. Понятие о наследственности и ее роль в развитии личности человека


Наследование (биология)

Наследование - передача генетической информации (генетических признаков) от одного поколения организмов к другому . В основе наследования лежат процессы удвоения, объединения и распределения генетического материала, поэтому закономерности наследования у разных организмов зависят от особенностей этих процессов .

В зависимости от локализации генов в клетке эукариот различают ядерное и цитоплазматическое наследование. В свою очередь ядерное наследование можно подразделить на аутосомное и сцепленное с полом . На основе характера проявления признаков в гетерозиготе выделяют также наследование с полным и неполным доминированием. Различают также зависимое от пола наследование (у признаков, проявляющихся по-разному у особей разного пола), а также ограниченное полом наследование . В последнее время выделяют также эпигенетическое наследование , которое определяет закономерности наследования импринтируемых генов и признаков, определяемых генами инактивируемой Х-хромосомы у особей женского пола.

Хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности.

Цитоплазматическое наследование

Цитоплазматическое наследование отличается от ядерного по нескольким параметрам. Во-первых, цитоплазматические гены присутствуют в сотнях и тысячах копий в каждой клетке, поскольку в клетке может быть множество органелл, каждая из которых содержит несколько молекул ДНК. Во-вторых, гены органелл расходятся при делении клеток по дочерним клеткам совершенно случайно и в смысле числа копий, и в смысле аллельного состава. В-третьих, цитоплазматические гены передаются, как правило, только через женские гаметы. В-четвёртых, цитоплазматические гены крайне редко рекомбинируют , и процесс рекомбинации ДНК органелл описан только для соматических клеток. В-пятых, цитоплазматические гены могут реплицироваться неоднократно за один клеточный цикл .

Цитоплазматическая ДНК может находиться в состоянии гетероплазмии , когда в одной органелле, клетке, органе или организме сосуществуют несколько вариантов цитоплазматических генов, или в состоянии гомоплазмии , когда не наблюдается различий по цитоплазматическим генам.

Явление нехромосомного (внехромосомного, внеядерного, цитоплазматического) наследования было открыто в 1909-1910 году немецкими исследователями Карлом Корренсом и Эрвином Бауром . В 1909 году К. Корренс сообщил, что при изучении декоративного растения Mirabilis jalapa (ночная красавица) он обнаружил, что окраска листьев (зеленая или пёстрая) наследуется не по Менделю и зависит от материнского растения. Независимо от него в том же выпуске журнала Э.Баур опубликовал статью, в которой также описывал неменделевское наследование признаков при скрещивании пёстролистных растений герани Pelargonium , связанным, по предположению Э.Баура, с наследованием пластид по материнской и отцовской линии . В 1910 году Э.Баур опубликовал результаты экспериментов с пестролистными растениями львиного зева Antirrhinum majus , в которых наследование цвета побегов было исключительно материнским. Э.Баур дал правильную интерпретацию явления неменделевского наследования пёстролистности, считая, что хлоропласты, как и ядро, несут наследственные факторы, способные мутировать, а при митозе пластиды распределяются случайным образом .

Митохондриальное наследование

См. также

Примечания

Литература

  • Инге-Вечтомов С.Г. Генетика с основами селекции. - М .: Высшая школа, 1989. - 591 с. - ISBN 5-06-001146-1

Wikimedia Foundation . 2010 .

Смотреть что такое "Наследование (биология)" в других словарях:

    Это процесс передачи имущества (наследства, наследственного имущества) умершего к другим лицам. Наследование: Наследование (биология) Наследование (право) Наследование (программирование) Множественное наследование и его виды: Ромбовидное… … Википедия

    У этого термина существуют и другие значения, см. Старение. Старая женщина. Анн Поудер 8 апреля 1917 года в свой 110 й день рождения. Сморщенная и сухая кожа типичный признак старения человека … Википедия

    Изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь

    Гибрид лошади и зебры Гибрид (от лат. hibrida, hybrida помесь) организм (клетка), полученный вследствие скрещивания генетически различающихся форм. Понятие гибрид особенно распространено в ботанике, но применяется и в зоологии. В … Википедия

НАСЛЕДСТВЕННОСТЬ
присущее всем живым существам свойство быть похожим на своих родителей. Однако особи каждого вида, будучи в целом схожими, все же различны и имеют свои, индивидуальные особенности (признаки). Но и эти признаки наследуются - передаются от родителей к детям. Генетические основы наследственности и есть предмет настоящей статьи.
НОСИТЕЛИ НАСЛЕДСТВЕННОСТИ
ДНК. Многоклеточные организмы, как здания, сложены из миллионов кирпичиков - клеток. Основным "строительным" материалом клетки являются белки. У каждого типа белка - своя функция: одни входят в состав клеточной оболочки, другие - создают защитный "чехол" для ДНК, третьи передают "инструкции" о том, как производить белки, четвертые регулируют работу клеток и органов, и т.д. Каждая молекула белка представляет собой цепочку из многих десятков, даже сотен звеньев - аминокислот; такую цепь называют полипептидной. Сложные белки могут состоять из нескольких полипептидных цепей. В процессе жизнедеятельности белки расходуются, и потому регулярно воспроизводятся в клетке. Их полипептидные цепи строятся последовательно - звено за звеном, и эта последовательность закодирована в ДНК. ДНК - длинная двухцепочечная молекула; состоит из отдельных звеньев - нуклеотидов. Всего имеется четыре типа нуклеотидов, обозначаемых как А (аденин), Г (гуанин), Т (тимин), Ц (цитозин). Тройка нуклеотидов (триплет) кодирует одну аминокислоту согласно т.н. генетическому коду. ДНК хранится в ядре клетки в виде нескольких "упаковок" - хромосом.
Гены. Участок ДНК, в котором закодирована определенная полипептидная цепь, называется геном. Скажем, его фрагмент "TЦT ТГГ" кодирует аминокислотное звено: "серин-триптофан". Основная функция генов - поддержание жизнедеятельности организма путем производства белков в клетке, координация деления и взаимодействия клеток между собой. Гены у разных индивидов даже одного вида могут различаться - в пределах, не нарушающих их функцию. Каждый ген может быть представлен одной или большим числом форм, называемых аллелями. Все клетки организма, кроме половых клеток, содержат по два аллеля каждого гена; такие клетки называют диплоидными. Если два аллеля идентичны, то организм называют гомозиготным по этому гену; если аллели разные, то - гетерозиготным. Аллели эволюционно возникли и возникают как мутации - сбои в передаче ДНК от родителей к детям. Например, если бы в указанной выше нуклеотидной последовательности "TЦT ТГГ" третий нуклеотид, Т, ошибочно передался бы ребенку как Ц, то вместо родительского "серин-триптофан" он бы имел фрагмент белка "аланин-триптофан", поскольку триплет TЦЦ кодирует аминокислоту аланин. Аллели, прошедшие апробацию отбором
(см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА), и образуют то наследственное разнообразие, которое мы сейчас наблюдаем, - от цвета кожи, глаз и волос до физиологических и эмоциональных реакций.
Хромосомы. ДНК защищена от внешних воздействий "упаковкой" из белков и организована в хромосомы, находящиеся в ядре клетки. В хромосоме регулируется активность генов, их восстановление при радиационном, химическом или ином типе повреждений, а также их репликация (копирование) в ходе клеточных делений - митоза и мейоза (см. КЛЕТКА). Каждый вид растений и животных имеет определенное число хромосом. У диплоидных организмов оно парное, две хромосомы каждой пары называются гомологичными. Среди них различают половые (см. ниже) и неполовые хромосомы, или аутосомы. Человек имеет 46 хромосом: 22 пары аутосом и одну пару половых хромосом; при этом одна из хромосом каждой пары приходит от матери, а другая - от отца. Число хромосом у разных видов неодинаково. Например, у классического генетического объекта - плодовой мушки дрозофилы - их четыре пары. У некоторых видов хромосомные наборы состоят из сотен пар хромосом; однако количество хромосом в наборе не имеет прямой связи ни со сложностью строения организма, ни с его эволюционным положением. Помимо ядра, ДНК содержится в митохондриях, а у растений - еще и в хлоропластах. Поэтому те гены, которые находятся в ядерной ДНК, называют ядерными, а внеядерные, соответственно, митохондриальными и хлоропластными. Внеядерные гены контролируют часть энергетической системы клеток: гены митохондрий отвечают в основном за синтез ферментов реакций окисления, а гены хлоропластов - реакций фотосинтеза. Все остальные многочисленные функции и признаки организма определяются генами, находящимися в хромосомах.
Передача генов потомству. Виды поддерживают свое существование сменой одних поколений другими. При этом возможны различные формы размножения: простое деление, как у одноклеточных организмов, вегетативное воспроизводство, как у многих растений, половое размножение, свойственное высшим животным и растениям (см. РАЗМНОЖЕНИЕ). Половое размножение осуществляется с помощью половых клеток - гамет (сперматозоидов и яйцеклеток). Каждая гамета несет одинарный, или гаплоидный, набор хромосом, содержащий только по одному гомологу; у человека это 23 хромосомы. Соответственно, каждая гамета содержит только один аллель каждого гена. Половина гамет, производимых особью, несет один аллель, а половина - другой. При слиянии яйцеклетки со сперматозоидом - оплодотворении, - образуется одна диплоидная клетка, называемая зиготой. Из клеток, получающихся в результате митотических делений зиготы в процессе индивидуального развития (онтогенезе), формируется новый организм. В зависимости от того, какие аллели несет данная особь, у нее развиваются те или иные признаки. Отметим, что равновероятное распределение аллелей по гаметам было открыто Грегором Менделем в 1865 и известно как Первое правило Менделя. См. далее
НАСЛЕДОВАНИЕ АУТОСОМНЫХ ПРИЗНАКОВ

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "НАСЛЕДСТВЕННОСТЬ" в других словарях:

    Свойство организмов обеспечивать материальную и функциональную преемственность между поколениями. Н. реализуется в процессе наследования или воспроизведения в ряду поколений специфич. характера обмена веществ и индивидуального развития в определ … Биологический энциклопедический словарь

    НАСЛЕДСТВЕННОСТЬ - НАСЛЕДСТВЕННОСТЬ, явление передачи потомству материальных факторов, определяющих развитие признаков организма в конкретных условиях среды. Задачей изучения Н. является установление закономерностей в возникновении, свойствах, передаче и… … Большая медицинская энциклопедия

    НАСЛЕДСТВЕННОСТЬ, наследственности, мн. нет, жен. (книжн.). 1. Способность живых существ передавать свои физические или психические особенности потомству. Явления наследственности. Теория наследственности. 2. Качества здоровья, особенности… … Толковый словарь Ушакова

    Передача прямым потомкам родительских свойств. Осуществляется благодаря непрерывности зародышевой плазмы: в то время как из одной части ее образуется тело нового индивида, др. часть продолжает свое существование в зародышевых клетках (яйцеклетках … Философская энциклопедия

    Порода сильнее пастбища. Джордж Элиот Родители одновременно наследственность и среда. В наследственность тверже всего верят отцы, у которых красивые дети. У наших детей умные родители. Юзеф Булатович Все хорошее было у него от родителей, все… … Сводная энциклопедия афоризмов

    наследственность - Категория. Эволюционный опыт предыдущих поколений живых организмов, запечатленный в генетическом аппарате. Специфика. Хранение, воспроизведение и передача наследственной информации происходит посредством дезоксирибонуклеиновой (ДНК) и… … Большая психологическая энциклопедия

    НАСЛЕДСТВЕННОСТЬ, свойство организмов повторять в ряду поколений признаки и особенности развития. Обеспечивается самовоспроизведением материальных единиц наследственности генов, локализованных в специфических структурах ядра клетки (хромосомах) и … Современная энциклопедия

    Гомозиготность, преемственность Словарь русских синонимов. наследственность сущ., кол во синонимов: 2 гомозиготность (1) … Словарь синонимов

    1) способность организмов передавать посредством генетического материала особенности строения, функций, развития своему потомству. Наследственность одна из главных характеристик живого вещества; 2) признак и (или) свойство, полученное от… … Экологический словарь

    Наследственность - НАСЛЕДСТВЕННОСТЬ, свойство организмов повторять в ряду поколений признаки и особенности развития. Обеспечивается самовоспроизведением материальных единиц наследственности – генов, локализованных в специфических структурах ядра клетки (хромосомах) … Иллюстрированный энциклопедический словарь

    Свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивается самовоспроизведением материальных единиц наследственности генов, локализованных в специфических структурах ядра клетки… … Большой Энциклопедический словарь


Наследственность, свойство (способность) живых организмов повторять в ряду поколений внешний облик, тип обмена веществ, особенности развития и другие признаки, характерные для каждого биологического вида.

Наследственность осуществляется благодаря процессу наследования – повторяющегося в поколениях определённого способа передачи «вещества наследственности», или генетического материала.

Начиная с Гиппократа, Аристотеля и других учёных античности, развитие биологии в значительной мере было связано с попытками найти ответы на вопросы о материальном носителе наследственных задатков, о механизмах их образования и передачи и, главное, о способах раскрытия, реализации наследственных задатков в те или иные признаки и свойства организма. Несмотря на издревле существовавший интерес к проблеме сходства и отличий между «родителями» и «детьми» у всех живых существ, наука о наследственности и изменчивости – генетика – сравнительно молода. Она родилась в нач. 20 в., когда были переоткрыты и стали широко известными сформулированные Г. Менделем закономерности наследования. К этому времени уже были в главных чертах выяснены цитологические, или клеточные, основы наследственности: установлены механизмы митоза, мейоза и оплодотворения, изучено поведение хромосом в этих процессах, выдвинута и затем подтверждена ядерная гипотеза наследственности, связавшая наследование признаков с клеточным ядром. Сразу после переоткрытия законов Менделя был сделан следующий шаг в познании наследственности – менделевские «наследственные факторы» были помещены в хромосомы. Так, перейдя на более глубокий (субклеточный) уровень, начала формироваться хромосомная теория наследственности.

Наконец, в 1950-1960-х гг. были раскрыты химические, или молекулярные, основы наследственности. «Веществом наследственности» оказались сложные биополимеры – нуклеиновые кислоты (ДНК и РНК). Раскрытие пространственной структуры ДНК позволило объяснить, как гены (участки ДНК) осуществляют свою функцию по хранению, воспроизведению и реализации наследственности. Процесс наследования стали рассматривать как процесс передачи генетической информации, которая заключена в химическом строении ДНК. Стали понятными также и такие фундаментальные качества наследственности, как её консервативность, устойчивость, с одной стороны, и способность претерпевать передающиеся в поколениях изменения – с другой. Первое свойство обеспечивает точность, постоянство воспроизведения и реализации генетического материала, а следовательно, и постоянство видовых признаков; второе свойство даёт возможность биологическим видам, изменяясь, приспосабливаться к условиям среды, эволюционировать. Таким образом, наследственность и изменчивость неразрывно связаны, т. к. в их основании лежат одни и те же материальные (клеточные и молекулярные) структуры.

Наследственность всегда реализуется во взаимодействии генетических факторов и условий существования. При индивидуальном развитии организмов (их онтогенезе) наследственность определяет границы (норму реакции) изменчивости организма, т. е. набор тех возможных вариантов (фенотипов), которые допускает данный генотип при изменениях среды (модификационная, онтогенетическая изменчивость). При историческом развитии организмов (их филогенезе) наследственность, закрепляя изменения генетического материала (генотипическая изменчивость), создаёт предпосылки для эволюции организмов.

Наследственность - способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Типы наследственности

Нехромосомная

Явление нехромосомной (внехромосомной, внеядерной) наследственности было открыто в 1909 г. немецкими исследователями К. Корренсом и Э. Бауром при изучении наследования пестролистности у растений. В опытах с ночной красавицей (Mirabilis jalapa) К. Корренс обнаружил, что окраска листьев (зеленая или пестрая) зависит от материнского растения (материнская наследственность). Если пестролистное растение (материнское, опыляемое) скрещивалось с зеленым (отцовским, от которого брали пыльцу), то в первом поколение среди потомков присутствовали пестролистные, зеленые и бесцветные (гибнущие на стадии проростка) потомки, причем их количественные соотношения не подчинялись менделевским закономерностям. Если же в качестве материнского использовали растение с зелеными листьями, то потомки первого поколения были зелеными. Позднее явление материнской наследственности было обнаружено у кукурузы, львиного зева, хлопчатника, что свидетельствует об универсальности данного явления. Многими исследованиями было показано, что явление материнской наследственности обуславливается мутациями генетического материала ДНК, локализованной не в ядре, а в других клеточных органеллах (пластидах и митохондриях) или в цитоплазме клеток (плазмиды, вирусы и др.). Наиболее полно изучены две формы нехромосомной наследственности: пластидная и митохондриальная.

Пластидная наследственность

Пластицидная наследственность, внехромосомный способ наследования пластидных признаков, осуществляемый посредством самих пластид.

В зависимости от условий оплодотворения припластицидной наследственности пластидные признаки наследуются или только по материнской линии, или от обеих родительских форм. О первых фактах пластицидной наследственности и генетических свойствах пластид сообщили еще на заре развития генетики (1908) немецкие ботаники и генетики Э. Баур и К. Корренс изучившие наследование пестролистности у некоторых растений (герань, ночная красавица, хмель и др.). Отдельные авторы считают, что генетическими информация пластид заключена в их дезоксирибонуклеиновой кислоте. Совокупность пластид клетки как структур, способных передавать наследственную информацию, названа пластидомом. Из всех структурных элементов цитоплазмы растений, с которыми можно связать передачу некоторых свойств и признаков материнского организма потомству, пластиды наиболее удобны для анализа, т.к. в большинстве случаев они четко различимы в цитоплазме благодаря целому ряду морфологические особенностей. Кроме того, они способны к скачкообразным изменениям - пластидным мутациям, которые впоследствии четко воспроизводятся.

Митохондриальная наследственность

Митохондрии передаются с цитоплазмой яйцеклеток. Спермии не имеют митохондрий, поскольку цитоплазма элиминируется при созревании мужских половых клеток. В каждой яйцеклетке содержится около 25 000 митохондрий. Каждая митохондрия имеет кольцевую хромосому. Описаны мутации различных генов митохондрий. Генные мутации в митохондриальной ДНК обнаружены при атрофии зрительного нерва Лебера, митохондриальных миопатиях, доброкачественной опухоли (онкоцитоме), при прогрессирующих офтальмоплегиях. Для митохондриальной наследственности характерны следующие признаки. Болезнь передаётся только от матери. Больны и девочки, и мальчики. Больные отцы не передают болезни ни дочерям, ни сыновьям.

Методы изучения наследственности человека

Генеалогический метод - составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков.

Цитогенетический метод - изучение хромосомных наборов здоровых и больных людей. Результат изучения - определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений.

Биохимический метод - изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения - определение нарушений в составе крови, в околоплодной жидкости и т. д. Близнецовый метод - изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения - определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма. Популяционный метод - изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения - определение распространения мутаций и естественного отбора в популяциях человека.



Наследственностью занимается наука генетика. Зачатки ее прослеживаются ещё в доисторические времена. Уже тогда люди понимали, что некоторые признаки могут передаваться от поколения к поколению. Но основы современных представлений о наследственности были заложены в середине XIX века благодаря открытию Г. Менделя. Он изучил дискретность наследственных факторов и разработал скрещивания и учета признаков у потомства. Менделевские законы наследственности заложили основу для величайшего открытия естествознания XX века - генной теории. Генетика превратилась в бурно развивающуюся отрасль биологии. В 1953 году Ф. Криком и Дж. Уотсоном была создана структурная ДНК в виде двойной спирали. Недавно возникло новое направление в генетике - генная инженерия. Это система приемов, позволяющих конструировать генетические системы.

Носителями наследственной информации являются гены. Ге­ны состоят из молекул ДНК. Благодаря наследственности все живые организмы сохраняют в своих потомках определенные характерные черты вида. Внутри ядра каждой клетки находятся хромосомы. Они могут со­держать тысячи и сотни тысяч пар генов. Каждый признак контролирует определенная генная пара. Во всех клетках человека, кроме половых, двойной набор хромосом. Хромосомы, определяющие пол человека, назвали X и Y. В яйцеклетке две X-хромосомы, а в мужском сперматозоиде - или Х-, или Y-хромосома. При оплодотворении пол плода определяется набором половых хромосом XX, мужской - набором XY.

Некоторые гены несут доминирующие признаки, а дру­гие - рецессивные. К примеру, гены кудрявых волос доминируют над генами прямых. Ученые изучили такие признаки, как цвет глаз, кожи, волос и могут сказать, как они унаследуются людьми. Ребенок, кроме внешних признаков, также наследует особенности центральной нервной системы, степень подвижности или уравновешенности, задатки способностей и одаренность.

К сожалению, многие заболевания тоже связанны с определенными генами. Вероятность заболевания особенно высока, когда наследуется от обоих родителей. Традиционно генетические заболевания делятся на 3 группы. Первая - это хромосомные болезни, обусловленные изменением структуры или числа хромосом. При этом изменены несколько генов. Наиболее известный пример - гемофилия. Этим заболеванием страдают, в основном, мужчины, но наследуется оно вместе с Х-хромосомой.

Болезни, вызванные мутацией одного гена, относятся ко второй группе. Это болезнь Альцгеймера, некоторые типы атеросклероза, фенилкетонурия. И третья группа представляет заболевания, вызванные мультифакторным наследованием. Они обусловлены изменением нескольких генов и факторами окружающей среды. Таким образом наследуется большая часть психических заболеваний.

Определить возможность наследования определенной болезни помогают генетические исследования. Благодаря им можно избежать наследственных заболеваний.

Человек получает половину генетического кода от каждого из родителей, то есть две составные каждого гена. Каждый ген представлен в аналогичной хромосоме и размещен в определенном месте, называемом локусом. Тем не менее следует подчеркнуть, что существуют гены, отвечающие за одну и ту же наследственную информацию, но имеющие различные формы - они называются аллелями . Например, ген, определяющий цвет глаз, имеет несколько аллелей, определяющих цвет радужной оболочки: голубой или коричневый.


Иногда информация, заключенная в аллель одного гена, перекрывается аллелью другого гена - такой ген называется доминантным , а перекрывающийся - рецессивным .

Но не все гены обязательно должны проявляться: присутствие доминантных генов всего в одной хромосоме в гомологичной паре достаточно для того, чтобы они проявили свои свойства; рецессивные гены проявляют свои свойства только тогда, когда гены с аналогичными свойствами присутствуют у обеих хромосом в гомологичной паре. Например, аллель, отвечающая за коричневый цвет радужной оболочки глаз, присутствует в доминантном гене, и его свойства проявятся, если он находится хотя бы в одной хромосоме, а ген с аллелью, несущей информацию о голубом цвете радужной оболочки, является рецессивным и проявится, только если в обоих генах гомологичных хромосом представлена такая аллель.

Гены содержат информацию, необходимую для синтеза белков, а те, в свою очередь, строятся благодаря особой комбинации аминокислот. Все изменчивые компоненты, а их тысячи, формируются на основе двадцати аминокислот, информация о кодах которых содержится в генах. Хотя на первый взгляд это кажется сложным, в действительности механизм создания генетического кода прост: он основывается на последовательности азотистых оснований, составляющих фрагменты ДНК и относящихся к различным генам.

Четыре типа азотистых оснований образуют подобие алфавита, буквы которого читаются по три: каждый триплет или кодон содержит закодированную аминокислоту, а последовательность триплетов является набором полипептидной цепи. Такой генетический код идентичен и универсален для всех живых существ.

Гены - функциональные единицы хромосом, отвечают за передачу потомству всей необходимой для развития новых организмов информации, отвечающей за наследственность, передающейся от поколения к поколению и обеспечивающей непрерывность существования видов и в то же время отвечающей за то, что каждый индивид имеет свойственные только ему исключительные, уникальные особенности.

Все клетки человеческого организма насчитывают, за исключением гамет - яйцеклетки и сперматозоида, которые состоят из 23 хромосом. Мы говорим о 23 парах гомологичных хромосом, которые также называют подобными или эквивалентными. 22 пары гомологичных хромосом называют аутосомами, они одинаковые у мужских и женских организмов. Хромосомы же, образующие последнюю пару, которая называется половыми
хромосомами, отличаются: в женских организмах эта пара состоит из двух одинаковых Х-хромосом, а в мужских - из X- и Y-хромосом. Передача анатомических и физиологических характеристик от родителей к детям, а также передача по наследству патологий, как и обычных черт, происходит по четким законам расположения генов и в зависимости от того, являются ли они доминантными или рецессивными.


АУТОСОМНАЯ ДОМИНАНТНАЯ НАСЛЕДСТВЕННОСТЬ

АУТОСОМНАЯ РЕЦЕССИВНАЯ НАСЛЕДСТВЕННОСТЬ

Признаки проявляются Признаки у детей не проявляются

При доминантной аутосомной наследственности проявление определенной черты или заболевания зависит от присутствия доминантного гена в хромосоме или аутосоме. Чтобы такой ген проявился, достаточно, чтобы он был хотя бы у кого-то из родителей, поскольку рецессивный ген перекрывается доминантным. И наоборот, при аутосомной рецессивной наследственности проявление определенной черты или заболевания зависит от присутствия рецессивного гена в обеих хромосомах, составляющих пару: чтобы проявиться, он должен присутствовать как в материнских, так и в отцовских генах.




Признаки не проявляются Признаки проявляются Признаки не проявляются Признаки проявляются

При наследственности, связанной с Y-хромосомой, признак или болезнь проявляется исключительно у мужчины, поскольку эта половая хромосома отсутствует в хромосомном наборе женщины.


ДОМИНАНТНАЯ НАСЛЕДСТВЕННОСТЬ, СВЯЗАННАЯ С Х-ХРОМОСОМОЙ


Признаки проявляются Признаки не проявляются


Геномом называют совокупность всех генов организма. Благодаря титаническим усилиям ученых стало возможно расшифровать геном человека после анализа 3,5 млн пар азотистых оснований, содержащихся в 46 хромосомах. Обработка позволила идентифицировать около 35 000 генов, ответственных за кодировку белков, что составляет ограниченную часть хромосомной ДНК; остальные гены отвечают за недостаточно изученные механизмы, такие как синтез некоторых азотистых оснований. Например, в клетке задействованы определенные гены, в то время как другие бездействуют; это наблюдается в самых различных клетках организма, и хотя клетки содержат одинаковый генетический набор, они выполняют различные функции и отличаются по строению. Несомненно, уже многое известно о геноме человека, но за что отвечают остальные гены, часто называемые некодирующей ДНК, до сих пор остается загадкой.




© 2024
womanizers.ru - Журнал современной женщины