02.11.2020

Деление клеток мейоз 1 и мейоз 2. Мейоз, отличия от митоза. Мейоз — прямое деление


В два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом - образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом , правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции , дупликации , инверсии или транслокации).

Энциклопедичный YouTube

  • 1 / 5

    Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

    • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
    • Лептотена , или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
    • Зиготена , или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
    • Пахитена , или пахинема - (самая длительная стадия) - в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы . В них происходит кроссинговер - обмен участками между гомологичными хромосомами.
    • Диплотена , или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .
    • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

    К концу профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления , разрушаются ядерная мембрана и ядрышки .

    • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
    • Анафаза I - микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
    • Телофаза I

    Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

    • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
    • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку .
    • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
    • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

    В результате из одной диплоидной клетки образуется четыре гаплоидных клетки . В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии

    Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

    Что такое мейоз?

    Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

    В переводе с древнегреческого языка, мейоз обозначает уменьшение.

    Данный процесс происходит в два этапа:

    • Редукционный ;

    На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

    • Эквационный ;

    В ходе второго деления гаплоидность клеток сохраняется.

    ТОП-4 статьи которые читают вместе с этой

    Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

    Фазы мейоза

    В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

    Первое деление:

    Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

    Стадия

    Признак

    Лептотена

    Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

    Зиготена

    Гомологичные хромосомы соединяются в пары.

    Пахитена

    По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

    Диплотена

    Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

    Диакинез

    Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

    Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

    Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

    Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

    В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

    На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

    Рис. 1. Схема мейоза первого этапа деления

    Второе деление имеет такие признаки:

    • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
    • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
    • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
    • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

    Рис. 2. Схема мейоза второго этапа деления

    В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

    Значение мейоза

    В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

    В природе мейоз имеет огромное значение, а именно:

    • Это один из основных этапов гаметогенеза;

    Рис. 3. Схема гаметогенеза

    • Осуществляет передачу генетического кода при размножении;
    • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

    Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

    Что мы узнали?

    Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.6 . Всего получено оценок: 967.

    Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении.

    Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое.

    Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза.

    В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

    Стадии мейоза

    Как и митозу, мейозу предшествует интерфаза, продолжительность которой зависит от вида организма и бывает различной. Перед делением происходит синтез белка и редупликация ДНК. Клетка увеличивается в размерах за счет удвоения количества органоидов. Каждая хромосома в конце интерфазы состоит из двух молекул ДНК, которые образуют две сестринские хроматиды, сцепленные центромерой, поэтому хромосомный набор клетки сохраняется диплоидным. Таким образом, перед началом деления набор хромосом и ДНК соответственно составляет 2n4c.

    Профаза I. Профаза первого деления мейоза значительно длиннее, чем в митозе, кроме того, она сложнее. Ее подразделяют на пять стадий.

    Лептотена. Хромосомы спирализуются, становятся хорошо заметными. Каждая состоит из двух сестринских хроматид, но они тесно сближены и создают впечатление одной тонкой нити. Отдельные участки хромосом интенсивно окрашены за счет более сильной спирализации и называются хромомерами. Гомологичные хромосомы попарно соединяются и накладываются друг на друга - конъюгируют. В результате образуются биваленты - двойные хромосомы.

    Зиготена. На этой стадии происходит тесное сближение и соединение гомологичных хромосом - конъюгация. Они накладываются друг на друга, причем однотипные участки с одинаковыми генами четко соприкасаются друг с другом. Пары соединенных (конъюгированных) гомологичных хромосом образуют биваленты (от лат. би - двойной). Каждая гомологичная хромосома состоит из двух сестринских хроматид, значит, биваленты фактически состоят из четырех хроматид и представляют собой тетрады (от лат. тетра - четыре).

    Пахитена. Это достаточно длительная стадия, так как именно в этот период между конъюгированными хромосомами может происходить обмен отдельными участками - кроссинговер (рис. 9). Между несестринскими хроматидами двух гомологичных хромосом начинается обмен некоторыми генами, что приводит к рекомбинации генов в хромосомах. Биваленты продолжают укорачиваться и утолщаться.

    Рис. 9. Кроссинговер. Последовательность процесса: А - репликация ДНК и удвоение хромосом; Б - конъюгация; В - кроссинговер

    Диплотена. На этой стадии гомологичные хромосомы начинают отталкиваться друг от друга. Конъюгация заканчивается, однако хромосомы еще связаны друг с другом в точках, в которых происходил кроссинговер. В таком состоянии они могут находиться довольно долго.

    Диакинез. Гомологичные хромосомы продолжают отталкиваться друг от друга и остаются соединенными только в некоторых точках. Они приобретают определенную форму и теперь хорошо заметны. Каждый бивалент состоит из четырех хроматид, сцепленных попарно центромерами. Ядерная мембрана постепенно исчезает, центриоли расходятся к полюсам клетки, и образуются нити веретена деления. Профаза I занимает 90 % от всего времени мейоза (рис. 10).

    Рис. 10. Мейоз: А - профаза I; Б - метафаза I; В - анафаза I; Г - телофаза I; Д - профаза II; Е - метафаза II; Ж - анафаза II; 3 - телофаза II

    Метафаза I. Гомологичные хромосомы попарно в виде бивалентов выстраиваются в экваториальной зоне клетки над и под плоскостью экватора. Образуется метафазная пластинка. Центромеры хромосом соединяются с нитями веретена деления.

    Анафаза I. Гомологичные хромосомы расходятся к полюсам клетки. Это основное отличие мейоза от митоза. Таким образом, у каждого полюса оказывается только одна хромосома из пары, т. е. происходит уменьшение числа хромосом вдвое - редукция. Первое деление мейоза называется редукционным.

    Телофаза /. Первое деление мейоза завершается цитокинезом - делится все остальное содержимое клетки. В цитоплазме образуется перетяжка и возникают две клетки с гаплоидным набором хромосом. Формируется ядерная оболочка и ядро. Хромосомы состоят из двух хроматид, но теперь они не идентичны друг другу вследствие кроссинговера. Число хромосом в каждой клетке равно соответственно n, а ДНК - 2c.

    Образование двух клеток может происходить не всегда. Иногда телофаза завершается только формированием двух гаплоидных ядер.

    Мейоз II. Перед вторым делением мейоза интерфаза очень короткая (у животных), но может и вообще отсутствовать (у растений). В интерфазе II репликации ДНК не происходит, число хромосом и ДНК сохраняются неизменными. Обе клетки или ядра после непродолжительного перерыва одновременно приступают ко второму делению мейоза.

    Мейоз II полностью идентичен митозу и протекает в двух клетках (ядрах) синхронно. Здесь происходят два главных события: расхождение сестринских хроматид и образование гаплоидных клеток.

    Профаза II. Ядерная мембрана исчезает, образуется веретено деления. Хромосомы спирализуются, укорачиваются и утолщаются. Фаза значительно короче профазы I. При отсутствии интерфазы II иногда профаза II также может практически отсутствовать.

    Метафаза II. Хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединены с центромерами. Веретено деления в мейозе II перпендикулярно веретену первого деления.

    Анафаза II. Центромеры делятся. К полюсам клетки расходятся сестринские хроматиды, которые теперь становятся хромосомами. У каждого полюса образуется гаплоидный набор хромосом, где каждая хромосома состоит теперь из одной молекулы ДНК.

    Телофаза II. Хромосомы деспирализуются, становятся плохо различимыми. Нити веретена деления исчезают. Формируется ядерная мембрана. Далее происходит цитокинез, как и в митозе. Образуются 4 гаплоидных ядра или 4 гаплоидные клетки. Число хромосом и ДНК в каждой клетке равно соответственно n и c.

    Биологический смысл мейоза заключается в образовании гаплоидных клеток, которые в результате полового размножения сливаются, и вновь восстанавливается диплоидный набор. Этот процесс обеспечивает постоянный набор хромосом у вновь образующихся организмов.

    Поведение хромосом в мейозе

    Мейоз обеспечивает появление разнообразных по качеству генетической информации гамет. Это связано с особым поведением хромосом в мейозе (рис. 11).

    Рис. 11. Поведение хромосом в мейозе: А - распределение гомологичных хромосом; Б - независимое распределение негомологичных хромосом; В - кроссинговер и нарушение сцепления генов

    В мейозе гомологичные хромосомы всегда попадают в разные гаметы. Так как гомологичные хромосомы могут нести разные по качеству признаки, следовательно, гаметы не идентичны по генному набору.

    Негомологичные хромосомы расходятся в гаметы произвольно, независимо друг от друга. Это связано со случайным расположением бивалентов в мейозе I и их независимым расхождением в анафазе I. Следовательно, отцовские и материнские хромосомы распределяются в гаметах случайным образом. Этот процесс называется независимым распределением, что увеличивает число типов гамет и является основой для генетического разнообразия организмов.

    Число типов гамет у диплоидных организмов можно определить по формуле:

    где N - число типов гамет, n - число пар хромосом организма.

    Например, у дрозофилы кариотип равен 8, число пар хромосом - 4.

    У человека кариотип составляет 46 хромосом, т. е. 23 пары.

    N= 2 23 = 8 388 608

    Конъюгация и кроссинговер способствуют рекомбинации генов, изменяется сочетание генов в хромосоме, что увеличивает разнообразие гамет и сочетание признаков в организме.

    Мейоз в жизненном цикле организмов

    Мейоз в жизненном цикле организма от одного полового размножения до другого происходит один раз. У многоклеточных животных и высших растений диплоидная фаза длительная и сложная. Она соответствует взрослому организму. Фаза гаплоидных клеток непродолжительна и проста. Это чаще всего половые клетки или группа клеток, в которых они образуются. Однако у некоторых организмов гаплоидная фаза соответствует взрослому состоянию, а диплоидной является лишь оплодотворенная яйцеклетка - зигота (рис. 12).

    Рис. 12. Схема жизненных циклов организмов: А - жизненный цикл низших растений водорослей, грибов; мейоз происходит сразу после образования зиготы, взрослое поколение гаплоидное; Б - жизненный цикл животных; В - жизненный цикл высших растений, чередование гаплоидного и диплоидного поколения

    У животных мейоз происходит при образовании гамет. Гаплоидными являются только гаметы. После оплодотворения диплоидный набор хромосом восстанавливается, поэтому зигота и взрослый организм диплоидные.

    У высших растений мейоз происходит при образовании спор, из которых потом развивается гаплоидный организм - гаметофит. Он может представлять собой взрослый организм (у мхов) или только несколько клеток на основном растении - спорофите. В обоих случаях на нем в процессе митоза образуются гаметы, а после оплодотворении - диплоидная зигота. Она дает начало спорофиту.

    У некоторых низших растений, одноклеточных животных, грибов мейоз происходит сразу же после образования зиготы. Взрослый организм существует только в гаплоидной форме.

    Вопросы для самоконтроля

    1. Какой тип деления клетки лежит в основе полового размножения?

    2. Какие клетки образуются в результате мейотического деления?

    3. Охарактеризуйте фазы мейоза.

    4. Объясните биологический смысл мейоза.

    5. Почему редукционное деление имеет место только при половом размножении?

    6. В чем основное отличие мейоза от митоза? Сравните деление мейоза I, мейоза II и митоза. В чем их сходство и отличие?

    7. Как распределяются гомологичные и негомологичные хромосомы в мейозе?

    8. Объясните, почему при мейозе происходит образование значительного числа типов гамет.

    9. Определите, сколько и какие типы гамет образуются из клетки с набором хромосом AaBbCc.

    10. Как циклы развития организмов связаны с мейозом?

    Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

    Из книги Удивительная генетика автора Левитин Вадим

    Мейоз и митоз Митоз – это деление клетки. Как известно, почти все клетки нашего организма время от времени делятся, но это не банальное деление пополам, а сложный многофазный процесс. Однако прежде чем говорить о митозе (и о другом варианте клеточного деления – мейозе),

    Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

    20. Образование половых клеток. Мейоз Вспомните!Где в организме человека происходит образование половых клеток?Какой набор хромосом содержат гаметы? Почему?Для осуществления полового размножения необходимы специализированные клетки – гаметы, содержащие одинарный

    Из книги Генетика человека с основами общей генетики [Учебное пособие] автора

    3.5. Мейоз Современные представления о цитологических основах наследственности сформировались только после выяснения генетического смысла процесса мейотического деления клеток.Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор

    Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

    Мейоз Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор хромосом. Примером гаплоидных клеток являются гаметы (половые клетки) и споры.Гамета – это клетка, способная объединяться с себе подобной клеткой с образованием зиготы –

    Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

    Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

    Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

    Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

    Синтетический период (2n 4c ) — репликация ДНК.

    Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

    Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

    Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

    Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

    Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

    1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

    Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

    — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

    Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

    Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

    Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

    Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

    1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
    9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

    Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

    Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

    Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

    Второе мейотическое деление (мейоз 2) называется эквационным .

    Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

    Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

    Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

    Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

    Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

    Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

    Амитоз

    Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

    Клеточный цикл

    Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

      Перейти к лекции №12 «Фотосинтез. Хемосинтез»

      Перейти к лекции №14 «Размножение организмов»

    Образовательные задачи:

    • продолжить формирование знаний о размножении, охарактеризовать мейоз,
    • сформировать знания об изменении молекул ДНК и хромосом на протяжении мейоза, раскрыть биологическое значение мейоза.

    Воспитательные задачи:

    • продолжить нравственное, гигиеническое воспитание, доказывая опасность наркотиков, алкоголя и курения на формирование веретена деления.

    Развивающие задачи:

    • обсуждая проблемные вопросы, применяя сравнение,
    • анализ, синтез при самостоятельной работе с учебником и заполнении таблицы, развивать у учащихся логическое мышление и интеллектуальные, творческие способности.

    Оборудование урока:

    • динамическое пособие “Перекрест хромосом”, “Деление клетки”,
    • таблицы, иллюстрирующие стадии мейоза,
    • презентация, посвященная стадиям мейоза.

    Этапы урока

    I. Актуализация знаний учащихся (стадия вызова).

    Проверка знаний о непрямом делении клетки в процессе беседы на следующие вопросы:

    1.Что такое диплоидный набор хромосом? (Двойной набор хромосом, характерен для соматических клеток).

    2. Что такое гаплоидный набор хромосом? (Одинарный набор хромосом, характерен для половых клеток).

    3. Какой набор хромосом и ДНК в пресинтетический период интерфазы? (2п2с).

    4. Какой набор хромосом и ДНК в постсинтетический период интерфазы? (2п4с).

    5. Какой набор хромосом и ДНК в профазе и метафазе митоза? (2п4с).

    6. Какой набор хромосом и ДНК в анафазе митоза? (4п4с).

    7. Какой набор хромосом и ДНК в телофазе митоза? (2п2с).

    8. Сколько молекул ДНК в ядре соматической клетки человека перед митозом? (92 молекулы).

    9. Сколько молекул ДНК в ядре соматической клетки после митоза? (46).

    10. Как называются хромосомы в интерфазный период? (Хроматин).

    II. Изучение нового материала. Стадия осмысления.

    1. Рассказ учителя о мейозе – особом виде деления клеток, результатом которого является уменьшение в два раза числа хромосом в новых образующихся специальных клетках.

    2.Беседа о сложном механизме мейоза и особенностях двух его этапов, о превращении хромосом в хроматиды, о конъюгации и кроссинговере.

    Особенности первого мейотического деления

    Интерфаза 1.

    Предсинтетический период (G1-период).

    Особенности:

    а) дочерние клетки, начинающие жизненный цикл, по объему и общему содержанию белков и РНК вдвое меньше, чем исходная родительская клетка;

    б) в начале периода возобновляется синтез РНК;

    в) наступает активный синтез белка, ферментов метаболизма РНК и ферментов, необходимых для образования предшественников ДНК;

    г) синтез пуриновых и пиримидиновых нуклеотидов и четырех нуклеозидтрифосфатов, входящих в состав молекулы ДНК;

    д) идет рост клетки, необходимый для достижения определенной “критической массы” цитоплазмы, определяющий начало синтеза ДНК;

    е) накопление АТФ в виде резервуара энергии, обеспечивающей механическую и химическую работу митотического аппарата;

    ж) в этом периоде клетки имеют диплоидное содержание ДНК (2п2с)

    Синтетический период (S-период). Это отрезок времени, в течение которого происходит редупликация ДНК (2п4с).

    Особенности:

    а) продолжает возрастать уровень синтеза РНК в соответствии с увеличением количества ДНК;

    б) параллельно синтезу ДНК в клетке идет интенсивный синтез гистонов в цитоплазме и происходит их миграция в ядро, где они связываются с ДНК.

    Постсинтетический период (G-период,2п4с). Это отрезок времени, характеризующийся процессами, направленными на подготовку клетки к делению.

    Особенности:

    а) интенсивный синтез белка, который идет на цитоплазматический белки дочерних клеток;

    б) образование митотического аппарата;

    в) усиленный синтез общего белка,РНК, синтез белков, которые определяют деление клетки;

    г) масса цитоплазмы удваивается;

    д) резко возрастает объем ядра.

    Профаза 1. Самаяпродолжительная фаза, поэтому ее делят на пятьстадий.

    1 .Лептотена.

    Происходит спирализация хромосом, они укорачиваются и становятся видимыми как обособленные структуры.

    2. Зиготена .

    Гомологичные хромосомы сближаются по длине и образуют пары. Эти хромосомы имеют одинаковую длину, их центромеры занимают одинаковое положение, и они обычно содержат одинаковое число генов, расположенных в одной и той же линейной последовательности. Начинается синапс (конъюгация) хромосом.

    Конъюгация начинается в нескольких точках хромосом, а затем хромосомы соединяются по всей длине. Пару конъюгировавших гомологичных хромосом называют бивалентами. При этом происходит как более плотная упаковка на молекулярном уровне, так и внешне заметное скручивание (спирализация). Так как каждая из гомологичных хромосом обладает своей центромерой, то в биваленте имеются две центромеры.

    3 . Пахитена.

    Каждая гомологичная хромосома на стадии пахитены продольно расщепляется в плоскости, перпендикулярной плоскости конъюгации. Таким образом, каждый элемент теперь уже состоит из четырех хроматид. Эти точки называются хиазмами (перекрест). В результате гены из одной хромосомы оказываются связанными с генами из другой хромосомы, что приводит к новым генным комбинациям в образующихся хроматидах. Этот процесс называют кроссинговером.

    4. Диплотена.

    Гомологичные хромосомычастично деспирализуются и несколько отходят друг от друга. Вместе с тем они сохраняют взаимосвязь с помощью мостиков – хиазм, которые служат структурным выражением кроссинговера, имеющего место в предыдущую стадию.

    5. Диакинез.

    На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышко исчезают. Центриоли, если они есть, мигрируют к полюсам и затем образуют нити веретена.

    Метафаза1.

    Гомологичные хромосомы (биваленты) выстраиваются в экваториальной плоскости. Их центромеры выглядят двойными, но ведут себя как единые структуры.

    Анафаза 1 .

    По нитям веретена расходятся к полюсам центромеры, каждая из которых связана с двумя хроматидами. Таким образом, в анафазе первого деления расходятся не дочерние хроматиды гомологичных хромосом , как при митозе, а непосредственно гомологичные хромосомы и на каждом полюсе имеется гаплоидный набор п2с, а во всей клетке 2п4с.

    Телофаза 1.

    Расхождение гомологичных хромосом к противоположным полюсам означает завершение первого мейотического деления. Число хромосом в наборе стало вдвое меньше, но каждая хромосома состоит из двух хроматид. У животных и у некоторых растений хроматиды деспирализуются.

    Особенности второго мейотического деления.

    Интерфаза 2.

    Эта стадия наблюдается только в животных клетках. Синтетический период отсутствует и дальнейшей репликации ДНК не происходит. После короткой интерфазы 2 наступает профаза 2.

    Профаза 2.

    В клетках, где выпадает интерфаза 2, эта стадия тоже отсутствует, В профазе 2 ядрышки и ядерные мембраны разрушаются, а хроматиды укорачиваются и утолщаются, Происходит образование веретена, которое знаменует начало метафазы 2.

    Метафаза 2.

    На этой стадии число хромосом меньше, чем в соматических клетках. Хромосомы выстраиваются в плоскости экватора, а центромеры ведут себя как двойные структуры.

    Анафаза 2.

    Центромеры делятся, и две сестринские хроматиды направляются к противоположным полюсам. Отделившиеся друг о друга хроматиды называются хромосомами и на каждом полюсе клетки формируется гаплоидный набор (пс).

    Телофаза 2.

    Эта стадия схожа с телофазой митоза. Хромосомы деспирализуются. Нити веретена исчезают, а центриоли реплицируются, Вокруг каждого ядра, которое содержит теперь гаплоидное число хромосом исходной родительской клетки, вновь образуется ядерная мембрана. Таким образом, из исходной родительской клетки получается четыре дочерние клетки.

    III. Стадия рефлексии.

    Подведение итогов урока с обсуждением результата мейоза, образования особых гаплоидных клеток с уменьшенным вдвое набором хромосом и стихийно обмененными участками гомологичных хромосом, просмотр презентации, посвященной стадиям мейоза, заполнение таблицы. Сообщение ученика об отклонениях, обусловленных не расхождением хромосом у человека.

    Сравнительная диаграмма.

    МИТОЗ СХОДСТВО МЕЙОЗ
    1.Одно деление. 1. Энергия и вещества, необходимые для деления накапливаются во время интерфазы. 1. Два деления.
    2.При делении материнской клетки получается две дочерние клетки с таким же набором хромосом. 2. Стадии деления:

    1. кариокинез:

    Профаза

    Метафаза

    Анафаза

    Телофаза;

    2. цитокинез.

    2.При делении диплоидном материнской клетки получается четыре гаплоидные клетки.
    3. Митоз необходим для нормального роста и развития многоклеточного организма. Митоз лежит в основе процессов заживления повреждений и бесполого размножения. 3. Интерфаза 2 практически отсутствует.

    В профазе 1 деления происходит конъюгация и кроссинговер.

    4. Мейоз увеличивает генетическое разнообразие половых клеток, так как в результате этого процесса образуются хромосомы, несущие гены и отца и матери.

    5. У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом новом поколении.

    Отклонения, обусловленные не расхождением хромосом у человека.

    СИНДРОМ ГЕНОТИП СИМПТОМЫ
    Клайнефельтера 44+хху=47 Мужчина, женоподобный,

    умственная отсталость,бесплоден.

    Шерешевского-Тернера 44+хо=45 Женщина, низкий рост,

    незначительная умственная отсталость, вторичные половые признаки слабо выражены, бесплодна.

    Трисомия по половым признакам 44+ххх=47 Женщина, норма, плодовита, умственно слаборазвита.

    Мужчина, высокий рост, повышена агрессивность.

    Синдром Дауна 47 (в 21 паре трисомия) Умственная отсталость, пониженная жизнеспособность, монголовидные глаза, опущенные уголки губ.
    “Волчья пасть” 47 (в 15 паре трисомия) Незарастание твердого неба, уродства на лице.

    Пониженная жизнеспособность

    Трисомия в других парах 47 Летальность гамет или эмбриона.

    Заключительная беседа по теме “Мейоз”.

    1. Какой набор хромосом и ДНК перед первым делением мейоза? (2п4с).

    2. Какой набор хромосом и ДНК перед вторым делением мейоза? (п2с).

    3. Какие хромосомы называют гомологичными? (Парные одинаковые хромосомы, несущие одинаковые гены.)

    4. Какие важнейшие процессы происходят в профазу I мейоза? (Конъюгация и кроссинговер.)

    5. Что характерно для интерфазы между первым и вторым делениями мейоза? (Отсутствует S – период.)

    6. Какой набор хромосом и ДНК в профазу II и метафазу II? (п2с.)

    7. Какой набор хромосом и ДНК в конце второго мейотического деления? (пс.)

    Тест “Митотический цикл”. “Мейоз”

    1. В интерфазе митотического цикла ДНК удваивается:

    б) в синтетический период;

    в) в постсинтетический период;

    г) в метафазе.

    2. Активный рост клетки происходит:

    а) в предсинтетический период;

    б) в синтетический период;

    в) в постсинтетический период

    г) в метафазе.

    3. Клетка имеет набор хромосом и ДНК 2п4с и готовится к делению:

    а) в предсинтетический период;

    б) в синтетический период;

    в) в постсинтетический период

    г) в метафазе.

    4. Начинается спирализация хромосом, растворяется ядерная оболочка:

    а) в профазе;

    б) в анафазе;

    в) в телофазе;

    г) в метафазе.

    5. Хромосомы выстраиваются по экватору клетки:

    а) в профазе;

    б) в анафазе;

    в) в телофазе;

    г) в метафазе.

    6. Хроматиды отходят друг от друга и становятся самостоятельными хромосомами:

    а) в профазе;

    б) в анафазе;

    в) в телофазе;

    г) в метафазе.

    7. Конъюгация гомологичных хромосом происходит в период:

    а) профазы 1;

    б) метафазы 1;

    в) анафазы 1;

    г) телофазы 1;

    д) профазы 2;

    е) метафазы 2;

    ж) анафазы 2;

    з) телофазы 2.

    8. Кроссинговер в мейозе происходит во время периода:

    а) профазы 1;

    б) метафазы 1;

    в) анафазы 1;

    г) телофазы 1;

    д) профазы 2;

    е) метафазы 2;

    ж) анафазы 2;

    з) телофазы 2.

    9. Какой набор хромосом получается при митотическом делении диплоидного ядра?

    а) гаплоидный;

    б) диплоидный.

    10. Какой набор хромосом будет в клетках после деления митозом, если в материнской было 6 хромосом?

    11. Какой набор хромосом будет в клетках после деления мейозом, если в материнской было 6 хромосом?

    1V. Домашнее задание: изучить параграф 30.




© 2024
womanizers.ru - Журнал современной женщины