16.07.2019

Энергия звуковой волны. Интенсивность звука. Характеристики слухового ощущения и их связь с физическими характеристиками звука В чем измеряется уровень звуковой интенсивности


1. Звук, виды звука.

2. Физические характеристики звука.

3. Характеристики слухового ощущения. Звуковые измерения.

4. Прохождение звука через границу раздела сред.

5. Звуковые методы исследования.

6. Факторы, определяющие профилактику шума. Защита от шума.

7. Основные понятия и формулы. Таблицы.

8. Задачи.

Акустика. В широком смысле - раздел физики, изучающий упругие волны от самых низких частот до самых высоких. В узком смысле - учение о звуке.

3.1. Звук, виды звука

Звук в широком смысле - упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле - явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. Однако с возрастом верхняя граница этого диапазона уменьшается:

Звук с частотой ниже 16-20 Гц называется инфразвуком, выше 20 кГц -ультразвуком, а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц - гиперзвуком.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (ν) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2ν, 3ν, 4ν, ...

Обычно наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука (см. ниже). Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов. На рисунке 3.1 показаны спектры одной и той же ноты (ν = 100 Гц), взятой на рояле и кларнете.

Рис. 3.1. Спектры ноты рояля (а) и кларнета (б)

Акустический спектр шума является сплошным.

3.2. Физические характеристики звука

1. Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде (рис. 3.2).

Рис. 3.2. Изменение давления в среде при распространении звука.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление Ρ) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной (см. формулу 2.5).

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ΔΡ) выражается следующей формулой:

где ρ - плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Для уха среднего человека на частоте 1 кГц порогу слышимости соответствуют следующие значения звукового давления (ΔΡ 0) и интенсивности звука (I 0):

ΔΡ 0 = 3х10 -5 Па (≈ 2х10 -7 мм рт.ст.); I 0 = 10 -12 Вт/м 2 .

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называются порогом болевого ощущения.

Для уха среднего человека на частоте 1 кГц порогу болевого ощущения соответствуют следующие значения звукового давления (ΔΡ m) и интенсивности звука (I m):

4. Уровень интенсивности (L). Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико (I m /I 0 = 10 13), что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику - уровень интенсивности.

Уровнем интенсивности называют десятичный логарифм отношения интенсивности звука к порогу слышимости:

Единицей измерения уровня интенсивности является бел (Б).

Обычно используют более мелкую единицу уровня интенсивности - децибел (дБ): 1 дБ = 0,1 Б. Уровень интенсивности в децибелах вычисляется по следующим формулам:

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 10 дБ.

Характеристики часто встречающихся звуков приведены в табл. 3.1.

Если человек слышит звуки, приходящие с одного направления от нескольких некогерентных источников, то их интенсивности складываются:

Высокий уровень интенсивности звука приводит к необратимым изменениям в слуховом аппарате. Так, звук в 160 дБ может вызвать разрыв барабанной перепонки и смещение слуховых косточек в среднем ухе, что приводит к необратимой глухоте. При 140 дБ человек ощущает сильную боль, а продолжительное действие шума в 90-120 дБ приводит к поражению слухового нерва.

3.3. Характеристики слухового ощущения. Звуковые измерения

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны.

Высота, тембр

Воспринимая звуки, человек различает их по высоте и тембру.

Высота тона обусловлена прежде всего частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности звука (звук большей интенсивности воспринимается более низким).

Тембр - это характеристика звукового ощущения, которая определяется его гармоническим спектром. Тембр звука зависит от числа обертонов и от их относительных интенсивностей.

Закон Вебера-Фехнера. Громкость звука

Использование логарифмической шкалы для оценки уровня интенсивности звука хорошо согласуется с психофизическим законом Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Именно логарифмическая функция обладает такими свойствами.

Громкостью звука называют интенсивность (силу) слуховых ощущений.

Ухо человека имеет различную чувствительность к звукам различных частот. Для учета этого обстоятельства можно выбрать некоторую опорную частоту, а восприятие остальных частот сравнивать с нею. По договоренности опорную частоту приняли равной 1 кГц (по этой причине и порог слышимости I 0 установлен для этой частоты).

Для чистого тона с частотой 1 кГц громкость (Е) принимают равной уровню интенсивности в децибелах:

Для остальных частот громкость определяют путем сравнения интенсивности слуховых ощущений с громкостью звука на опорной частоте.

Громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук.

Единицу громкости звука называют фоном.

Ниже приводится пример зависимости уровня громкости от частоты при уровне интенсивности 60 дБ.

Кривые равной громкости

Детальную связь между частотой, громкостью и уровнем интенсивности изображают графически с помощью кривых равной громкости (рис. 3.3). Эти кривые демонстрируют зависимость уровня интенсивности L дБ от частоты ν звука при заданной громкости звука.

Нижняя кривая соответствует порогу слышимости. Она позволяет найти пороговое значение уровня интенсивности (Е = 0) при заданной частоте тона.

С помощью кривых равной громкости можно найти громкость звука, если известны его частота и уровень интенсивности.

Звуковые измерения

Кривые равной громкости отражают восприятие звука средним человеком. Для оценки слуха конкретного человека применяется метод тональной пороговой аудиометрии.

Аудиометрия - метод измерения остроты слуха. На специальном приборе (аудиометре) определяется порог слухового ощущения, или порог восприятия, L П на разных частотах. Для этого с помощью звукового генератора создают звук заданной частоты и, увеличивая уро-

Рис. 3.3. Кривые равной громкости

вень интенсивности L, фиксируют пороговый уровень интенсивность L п, при котором у испытуемого появляются слуховые ощущения. Меняя частоту звука, получают экспериментальную зависимость L п (v), которую называют аудиограммой (рис. 3.4).

Рис. 3.4. Аудиограммы

Нарушение функции звуковоспринимающего аппарата может привести к тугоухости - стойкому снижению чувствительности к различным тонам и шепотной речи.

Международная классификация степеней тугоухости, основанная на усредненных значениях порогов восприятия на речевых частотах, приведена в табл. 3.2.

Для измерения громкости сложного тона или шума используют специальные приборы - шумомеры. Звук, принимаемый микрофоном, преобразуется в электрический сигнал, который пропускается через систему фильтров. Параметры фильтров подобраны так, что чувствительность шумомера на различных частотах близка к чувствительности человеческого уха.

3.4. Прохождение звука через границу раздела сред

При падении звуковой волны на границу раздела между двумя средами звук частично отражается, а частично проникает во вторую среду. Интенсивности отраженной и прошедшей через границу волн определяются соответствующими коэффициентами.

При нормальном падении звуковой волны на границу раздела сред справедливы следующие формулы:

Из формулы (3.9) видно, что чем сильнее различаются волновые сопротивления сред, тем большая доля энергии отражается на границе раздела. В частности, если величина х близка к нулю, то коэффициент отражения близок к единице. Например, для границы воздух-вода х = 3х10 -4 , а r = 99,88 %. То есть отражение является практически полным.

В таблице 3.3 приведены скорости и волновые сопротивления некоторых сред при 20 °С.

Отметим, что значения коэффициентов отражения и преломления не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

3.5. Звуковые методы исследования

Звук может быть источником информации о состоянии органов человека.

1. Аускультация - непосредственное выслушивание звуков, возникающих внутри организма. По характеру таких звуков можно определить, какие именно процессы протекают в данной области тела, и в некоторых случаях установить диагноз. Приборы, применяемые для выслушивания: стетоскоп, фонендоскоп.

Фонендоскоп состоит из полой капсулы с передающей мембраной, которая прикладывается к телу, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вызывающий усиление звучания и, следовательно, улучшение выслушивания. Выслушиваются дыхательные шумы, хрипы, тоны сердца, шумы в сердце.

В клинике используются установки, в которых выслушивание осуществляется при помощи микрофона и динамика. Широко

применяется запись звуков с помощью магнитофона на магнитную ленту, что дает возможность их воспроизведения.

2. Фонокардиография - графическая регистрация тонов и шумов сердца и их диагностическая интерпретация. Запись осуществляется с помощью фонокардиографа, который состоит из микрофона, усилителя, частотных фильтров, регистрирующего устройства.

3. Перкуссия - исследование внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Постукивание осуществляется либо с помощью специальных молоточков, либо при помощи пальцев.

Если в замкнутой полости вызвать звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, усиливая тот тон, который соответствует размеру полости и ее положению. Схематично тело человека можно представить суммой разных объемов: газонаполненных (легкие), жидких (внутренние органы), твердых (кости). При ударе по поверхности тела возникают колебания с разными частотами. Часть из них погаснет. Другие совпадут с собственными частотами пустот, следовательно, усилятся и из-за резонанса будут слышны. По тону перкуторных звуков определяют состояние и топографию органа.

3.6. Факторы, определяющие профилактику шума.

Защита от шума

Для профилактики шума необходимо знать основные факторы, определяющие его воздействие на организм человека: близость источника шума, интенсивность шума, длительность воздействия, ограниченность пространства, в котором действует шум.

Длительное воздействие шума вызывает сложный симптоматический комплекс функциональных и органических изменений в организме (и не только органа слуха).

Воздействие длительного шума на ЦНС проявляется в замедлении всех нервных реакций, сокращении времени активного внимания, снижении работоспособности.

После длительного действия шума изменяется ритм дыхания, ритм сердечных сокращений, возникает усиление тонуса сосудистой системы, что приводит к повышению систолического и диастоли-

ческого уровня кровяного давления. Изменяется двигательная и секреторная деятельность желудочно-кишечного тракта, наблюдается гиперсекреция отдельных желез внутренней секреции. Имеет место повышение потливости. Отмечается подавление психических функций, особенно памяти.

Специфическое действие оказывает шум на функции органа слуха. Ухо, как и все органы чувств, способно адаптироваться к шуму. При этом под действием шума порог слышимости повышается на 10-15 дБ. После прекращения шумового воздействия нормальное значение порога слышимости восстанавливается только через 3-5 минут. При высоком уровне интенсивности шума (80-90 дБ) его утомляющее действие резко усиливается. Одной из форм расстройства функции органа слуха, связанной с длительным воздействием шума, является тугоухость (табл. 3.2).

Сильное воздействие как на физическое, так и на психологическое состояние человека оказывает рок-музыка. Современная рок-музыка создает шум в диапазонах от 10 Гц до 80 кГц. Экспериментально установлено, что если основной ритм, задаваемый ударными инструментами, имеет частоту 1,5 Гц и имеет мощное музыкальное сопровождение на частотах 15-30 Гц, то у человека наступает сильное возбуждение. При ритме с частотой 2 Гц при таком же сопровождении человек впадает в состояние, близкое наркотическому опьянению. На рок-концертах интенсивность звука может превышать 120 дБ, хотя человеческое ухо настроено наиболее благоприятно на среднюю интенсивность 55 дБ. При этом могут возникать контузии звуком, звуковые «ожоги», потеря слуха и памяти.

Шум оказывает вредное воздействие и на орган зрения. Так, длительное воздействие производственного шума на человека, находящегося в затемненном помещении, приводит к заметному снижению активности сетчатки глаза, от которой зависит работа глазного нерва, а следовательно, и острота зрения.

Защита от шума достаточно сложна. Это связано с тем, что вследствие сравнительно большой длины волны звук огибает препятствия (дифракция) и звуковая тень не образуется (рис. 3.5).

Кроме того, многие материалы, применяемые в строительстве и технике, имеют недостаточно высокий коэффициент поглощения звука.

Рис. 3.5. Дифракция звуковых волн

Эти особенности требуют специальных средств борьбы с шумами, к которым относятся подавление шумов, возникающих в самом источнике, использование глушителей, применение упругих подвесов, звукоизолирующих материалов, устранение щелей и т.п.

Для борьбы с шумами, проникающими в жилые помещения, большое значение имеют правильное планирование расположения зданий, учет розы ветров, создание защитных зон, в том числе и растительных. Растения - хороший гаситель шума. Деревья и кустарники могут снижать уровень интенсивности на 5-20 дБ. Эффективны зеленые полосы между тротуаром и мостовой. Лучше всего шум гасят липы и ели. Дома, находящиеся позади высокого хвойного заслона, могут быть избавлены от шумов улицы почти полностью.

Борьба с шумом не предполагает создания абсолютной тишины, так как при длительном отсутствии слуховых ощущений у человека могут возникнуть расстройства психики. Абсолютная тишина и длительный повышенный шум одинаково противоестественны для человека.

3.7. Основные понятия и формулы. Таблицы

Продолжение таблицы

Окончание таблицы

Таблица 3.1. Характеристики встречающихся звуков

Таблица 3.2. Международная классификация тугоухости

Таблица 3.3. Скорость звука и удельное акустическое сопротивление для некоторых веществ и тканей человека при t = 25 °С

3.8. Задачи

1. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате так, как звук с уровнем интенсивности L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

2. Уровень громкости звука частотой 5000 Гц равен Е = 50 фон. Найти интенсивность этого звука, воспользовавшись кривыми равной громкости.

Решение

Из рисунка 3.2 находим, что на частоте 5000 Гц громкости Е =50 фон соответствует уровень интенсивности L = 47 дБ = 4,7 Б. Из формулы 3.4 находим: I = 10 4,7 I 0 = 510 -8 Вт/м 2 .

Ответ: I = 5?10 -8 Вт/м 2 .

3. Вентилятор создает звук, уровень интенсивности которого L = 60 дБ. Найти уровень интенсивности звука при работе двух рядом стоящих вентиляторов.

Решение

L 2 = lg(2x10 L) = lg2 + L = 0,3 + 6Б = 63 дБ (см. 3.6). Ответ: L 2 = 63 дБ.

4. Уровень громкости звука реактивного самолета на расстоянии 30 м от него равен 140 дБ. Каков уровень громкости на расстоянии 300 м? Отражением от земли пренебречь.

Решение

Интенсивность убывает пропорционально квадрату расстояния - уменьшается в 10 2 раз. L 1 - L 2 = 10xlg(I 1 /I 2) = 10x2 = 20 дБ. Ответ: L 2 = 120 дБ.

5. Отношение интенсивностей двух источников звука равно: I 2 /I 1 = 2. Чему равна разность уровней интенсивностей этих звуков?

Решение

ΔL = 10xlg(I 2 /I 0) - 10xlg(I 1 /I 0) = 10xlg(I 2 /I 1) = 10xlg2 = 3 дБ. Ответ: 3 дБ.

6. Каков уровень интенсивности звука с частотой 100 Гц, который имеет ту же громкость, что и звук с частотой 3 кГц и интенсивностью

Решение

Используя кривые равной громкости (рис. 3.3), найдем, что 25 дБ на частоте 3 кГц соответствуют громкости 30 фон. На частоте 100 Гц этой громкости соответствует уровень интенсивности 65 дБ.

Ответ: 65 дБ.

7. Амплитуда звуковой волны увеличилась в три раза. а) во сколько раз возросла ее интенсивность? б) на сколько децибел увеличился уровень громкости?

Решение

Интенсивность пропорциональна квадрату амплитуды (см. 3.6):

8. В лабораторном помещении, находящемся в цехе, уровень интенсивности шума достигал 80 дБ. С целью уменьшения шума было решено обить стены лаборатории звукопоглощающим материалом, уменьшающим интенсивность звука в 1500 раз. Какой уровень интенсивности шума станет после этого в лаборатории?

Решение

Уровень интенсивности звука в децибелах: L = 10x lg(I/I 0). При изменении интенсивности звука изменение уровня интенсивности звука будет равно:

9. Импедансы двух сред различаются в 2 раза: R 2 = 2R 1 . Какая часть энергии отражается от границы раздела и какая часть энергии переходит во вторую среду?

Решение

Используя формулы (3.8 и 3.9) найдем:

Ответ: 1/9 часть энергии отражается, а 8/9 переходит во вторую среду.

Для периодич. звука усреднение производится либо за промежуток времени, большой по сравнению с периодом, либо за целое число периодов. Для плоской синусоидальной бегущей волны И. з. I равна:

В сферической бегущей волне И. з. обратно пропорциональна квадрату расстояния от источника. В стоячей волне I=0, т. е. потока звук. энергии в среднем нет.

И. з. измеряется в СИ в Вт/м2 (в системе ед. СГС - в эрг/(с см)2) И. з. оценивается также уровнем интенсивности по шкале ; число децибел N=10lg(I/I0), где I - интенсивность данного звука, I0=10-12 Вт/м2.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ИНТЕНСИВНОСТЬ ЗВУКА

(сила звука) - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодич. звука усреднение производится либо за промежуток времени, больший по сравнению с периодом, либо за целое число периодов. I=pv/2=p 2 /2rc = v 2 rc/2, где р - амплитуда звукового давления, v - амплитуда колебат. скорости частиц, r - плотность среды, с - звука в ней. В сферич. бегущей волне И. з. обратно пропорц. квадратурасстояния от источника. В стоячей волне I=0, т. е. потока звуковой энергии в среднем нет. И. з. в гармонич. плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. мощность излучателя, т. е. излучаемую , отнесённую к единице площади излучающей поверхности. В. А. Красилъников.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ИНТЕНСИВНОСТЬ ЗВУКА" в других словарях:

    - (абсолютная) величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности: Единица измерения ватт на квадратный метр (Вт/м2). Для плоской волны… … Википедия

    - (от лат. intensio напряжение усиление), средняя по времени энергия, которую звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность звука… … Большой Энциклопедический словарь

    - (от лат. intensio напряжение, усиление), средняя по времени энергия, которую звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность звука… … Энциклопедический словарь

    интенсивность звука - Количество звуковой энергии, переносимое звуковой волной в единицу времени через единичную площадку, перпендикулярную к направлению распространения звука [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики… … Справочник технического переводчика

    - (от латинского intetisio напряжение, усиление), сила звука, поток энергии через единичную площадку, перпендикулярную направлению распространения звуковой волны. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П.… … Энциклопедия техники

    интенсивность звука - 3.3 интенсивность звука, Вт/м2 (sound intensity): Усредненное по времени значение мгновенной интенсивности в стационарном во времени звуковом поле. Примечания 1 Интенсивность звука вычисляют по формуле (2) где T интервал интегрирования, с; 2… … Словарь-справочник терминов нормативно-технической документации

    интенсивность звука - сила звука отношение падающей на поверхность звуковой мощности к площади этой поверхности. Определяется как амплитудами всех частотных составляющих, так и числом источников, звучащих одновременно. Интенсивность звука измеряется в Вт/м2 или… … Русский индекс к Англо-русскому словарь по музыкальной терминологии

    интенсивность звука - rus интенсивность (ж) звука, интенсивность (ж) шума eng noise intensity fra intensité (f) du bruit deu Lärmintensität (f) spa intensidad (f) del ruido rus интенсивность (ж) (сила) звука, громкость (ж) звука eng sound intensity fra intensité (f)… … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени. Для периодического звука усреднение производится либо за промежуток… … Большая советская энциклопедия

    - [СИЛА ЗВУКА] количество звуковой энергии, переносимое звуковой волной в единицу времени через единичную площадку, перпендикулярную к направлению распространения звука (Болгарский язык; Български) интензивност на звука (Чешский язык; Čeština)… … Строительный словарь

Интенсивность звуковой волны определяется как средний поток энергии через единицу площади волнового фронта в единицу времени. Иначе говоря, если взять единичную площадку (например, 1 см 2), которая полностью поглощала бы звук , и расположить ее перпендикулярно направлению распространения волны, то интенсивность звука равна акустической энергии, поглощаемой за одну секунду. Интенсивность обычно выражается в Вт/см 2 (или в Вт/м 2 ).

Приведем значение этой величины для некоторых привычных звуков . Амплитуда избыточного давления , возникающего при обычном разговоре, составляет примерно одну миллионную атмосферного давления , что соответствует акустической интенсивности звука порядка 10 -9 Вт/см 2 . Полная же мощность звука , издаваемого при обычном разговоре, - порядка всего лишь 0,00001 Вт. Способность человеческого уха воспринимать столь малые энергии свидетельствует о его поразительной чувствительности.

Диапазон интенсивностей звука, воспринимаемых нашим ухом, очень широк. Интенсивность самого громкого звука, который может вынести ухо, примерно в 10 14 раз больше минимальной, которую оно способно услышать. Полная мощность источников звука охватывает столь же широкий диапазон. Так, мощность , излучаемая при очень тихом шепоте, может быть порядка 10 -9 Вт, тогда как мощность , излучаемая реактивным двигателем, достигает 10 5 Вт. Опять-таки интенсивности различаются в 10 14 раз.

Децибел

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать ее как логарифмическую величину и измерять в децибелах. Логарифмическая величина интенсивности представляет собой логарифм отношения рассматриваемого значения величины к ее значению, принимаемому за исходное. Уровень интенсивности J по отношению к некоторой условно выбранной интенсивности J 0 равен

Уровень интенсивности звука = 10 lg (J/J 0) дБ

Эти кривые используются для определения фона - единицы уровня громкости, которая тоже измеряется в децибелах. Фон - это уровень громкости звука , для которого уровень звукового давления равногромкого стандартного чистого тона (1000 Гц) равен 1 дБ. Так, звук частотой 200 Гц при уровне 60 дБ имеет уровень громкости в 50 фонов.

Звуком называют механические колебания частиц упругой среды (воздух, вода, металл и т. п.), субъективно воспринимаемые органом слуха. Звуковые ощущения вызываются колебаниями среды, происходящими в диапазоне частот от 16 до 20 000 гц. Звуки с частотами, лежащими ниже этого диапазона, называются инфразвуком, а выше - ультразвуком.

Звуковое давление - переменное давление в среде, обусловленное распространением в ней звуковых волн. Величина звукового давления оценивается силой действия звуковой волны на единицу площади и выражается в ньютонах на квадратный метр (1 н/метр квадартный=10 бар).

Уровень звукового давления - отношение величины звукового давления к нулевому уровню, за который принято звуковое давление н/квадратный метр:

Скорость звука зависит от физических свойств среды, в которой распространяются механические колебания. Так, скорость звука в воздухе равна 344 м/сек при T=20°С, в воде 1 481 м/сек (при T=21,5°С), в дереве 3 320 м/сек и в стали 5 000 м/сек.

Сила звука (или интенсивность) - количество звуковой энергии, проходящей за единицу времени через единицу площади; измеряется в ваттах на квадратный метр (вт/м2).

Следует отметить, что звуковое давление и сила звука связаны между собой квадратичной зависимостью, т. е. при увеличении звукового давления в 2 раза сила звука возрастает в 4 раза.

Уровень силы звука - отношение силы данного звука к нулевому (стандартному) уровню, за который принята сила звука вт/м2, выраженное в децибелах:

Уровни звукового давления и силы звука, выраженные в децибелах, совпадают по величине.

Порог слышимости - наиболее тихий звук, который еще способен слышать человек на частоте 1000 гц, что соответствует звуковому давлению н/м2.

Громкость звука - интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом Громкость зависит от силы звука и его частоты, изменяется пропорционально логарифму силы звука и выражается количеством децибел, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости - фон.

Порог болевого ощущения - звуковое давление или сила звука, воспринимаемые как болевое ощущение. Порог болевого ощущения мало зависит от частоты и наступает при звуковом давлении порядка 50 н/м2.

Динамический диапазон - диапазон громкостей звука, или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в децибелах.

Дифракция - отклонение от прямолинейного распространения звуковых волн.

Рефракция - изменение направления распространения звуковых волн, вызванное различиями в скорости на разных участках пути.

Интерференция - сложение волн одинаковой длины, приходящих в данную точку пространства по нескольким различным путям, вследствие чего амплитуда результирующей волны в разных точках оказывается различной, причем максимумы и минимумы этой амплитуды чередуются между собой.

Биения - интерференция двух звуковых колебаний, мало отличающихся по частоте. Амплитуда возникающих при этом колебаний периодически увеличивается или уменьшается во времени с частотой, равной разности интерферирующих колебаний.

Реверберация - остаточное «после-звучание» в закрытых помещениях. Образуется вследствие многократного отражения от поверхностей и одновременного поглощения звуковых волн. Реверберация характеризуется промежутком времени (в секундах), в течение которого сила звука уменьшается на 60 дб.

Тон - синусоидальное звуковое колебание. Высота тона определяется частотой звуковых колебаний и растет с увеличением частоты.

Основной тон - наиболее низкий тон, создаваемый источником звука.

Обертоны - все тоны, кроме основного, создаваемые источником звука. Если частоты обертонов в целое число раз больше частоты основного тона, то их называют гармоническими обертонами (гармониками).

Тембр - «окраска» звука, которая определяется количеством, частотой и интенсивностью обертонов.

Комбинационные тоны - дополнительные тоны, возникающие вследствие нелинейности амплитудной характеристики усилителей и источников звука. Комбинационные тоны появляются при воздействии на систему двух или большего числа колебаний с различными частотами. Частота комбинационных тонов равна сумме и разности частот основных тонов и их гармоник.

Интервал - отношение частот двух сравниваемых звуков. Наименьший различимый интервал между двумя соседними по частоте музыкальными звуками (каждый музыкальный звук имеет строго определенную частоту) называется полутоном, а интервал частот с отношением 2:1 - октавой (музыкальная октава состоит из 12 полутонов); интервал с отношением 10: 1 называют декадой.

По определению, звуком называются упругие колебания, воспринимаемые ухом . Отсюда ясно, что и принципиально, и практически никакие измерения звука невозможны без учёта особенностей органа слуха. Самый простой пример: колебания с частотой 30 кГц могут быть очень громкими для летучей мыши, в то время как для человека их громкость равна нулю. Поэтому, говоря о параметрах звука, приходится различать два ряда величин:

А. Физические характеристики звука, не зависящие от органа слуха

Б. Психофизические (субъективные) характеристики, учитывающие свойства органа слуха.

Набор этих величин и связь между ними удобно представить в виде такой таблицы:

Физические характеристики Психофизические характеристики 1. Частота колебаний [Гц] 1. Высота тона

2. Гармонический спектр 2. Тембр звука

3. Интенсивность звука I [Вт.м -2 ] 3. Громкость звука [сон]

Уровень интенсивности L [дБ] Уровень громкости [фон]

Первые две позиции не нуждаются в особых пояснениях. Надо только заметить, что высота тона связана с частотой тоже логарифмическим соотношением; по-другому можно выразиться так: при росте частоты в геометрической прогрессии высота тона увеличивается в арифметической прогрессии.

Для сложных звуков высота звука определяется, в основном, частотой первой гармоники. В этом случае субъективное ощущение высоты звука может зависеть и от соотношения интенсивностей разных гармоник

По спектру все звуки разделяются на тоны и шумы. Тонами называют звуки, имеющие линейчатый спектр, то есть достаточно строго периодические. Звуки со сплошным спектром, не имеющие определённого периода, называют шумами . К тонам, в частности, относятся гласные звуки речи и звуки музыкальных инструментов; к шумам – согласные и звуки ударных инструментов.

Интенсивности звука в субъективном восприятии соответствует громкость . Однако, непосредственно установить соотношение между интенсивностью и громкостью не удаётся; приходится вводить вспомогательные величины – уровень интенсивности и уровень громкости , как показано в таблице.

Понятие уровня интенсивности учитывает сформулированный выше закон Вебера-Фехнера о логарифмической зависимости между частотой нервной импульсации и интенсивностью звука. Уровнем интенсивности называется величина L, определяемая по формуле

где I – интенсивность данного звука, I о – пороговая интенсивность. На самом деле I 0 у разных людей имеет различное значение, но при вычислениях по этой формуле пользуются так называемым абсолютным или средним порогом I 0 = 10 –12 Вт.м -2 . Единицей уровня интенсивности является децибел [дБ] ; (приставка “деци” напоминает о значении коэффициента, то есть 10).

Например, интенсивность шума на улице с оживлённым движением составляет примерно 10 –5 Вт.м -2 . Этому соответствует уровень интенсивности:

Уровень интенсивности можно выразить и через звуковое давление, учитывая, что интенсивность пропорциональна квадрату давления:

где Δр 0 – пороговое звуковое давление, равное (в среднем) 2.10 – 5 Па. Например, если звуковое давление для какого-то звука равно 1 Па, то

L = 20.lg
= 20·lg (5.10 4)= 20.4,7 = 94 дБ

Это очень громкий звук!

В определении понятия уровня интенсивности в какой-то мере отражены биофизические закономерности. Однако сам по себе уровень интенсивности ещё не соответствует тому субъективному ощущению, которое вызывает тот или иной звук, так как это ощущение в значительной мере зависит и от частоты звука . Например, для большинства людей одинаково громкими будут ощущаться тоны с частотой 30 Гц и интенсивностью 65 дБ и 1000 Гц, 20 дБ, несмотря на то, что уровни интенсивности у них резко различны. Поэтому было введено второе понятие - уровень громкости , единицей которого является фон (фоны иногда называют децибелами громкости ). При определении этого понятия исходят именно из субъективного восприятия звука . При этом измеряемый звук сравнивают со «стандартным» звуком с частотой 1000 Гц (её называют «стандартной частотой»).

Практически это делается таким образом. Надо иметь генератор звука с частотой 1000 Гц; уровень интенсивности этого звука можно менять. Чтобы определить уровень громкости измеряемого звука, сравнивают этот звук со звуком генератора. Изменяя уровень интенсивности «стандартного» звука, добиваются, чтобы оба звука «на слух» ощущались одинаково громкими. Пусть, например, это имеет место при уровне интенсивности «стандартного» звука 55 дБ. Тогда можно сказать, что уровень громкости измеряемого звука равен 55 фон.

Исходя из описанной процедуры, можно дать такое определение: уровнем громкости некоторого звука (в фонах) называется величина, равная уровню интенсивности такого звука со «стандартной» частотой 1000 Гц, который воспринимается одинаково громким с данным звуком .

Из этого определения видно, что уровень громкости – субъективная величина, то есть одному и тому же звуку разные люди могут приписать разные значения уровня громкости, поскольку нет двух людей с абсолютно одинаковым слухом. Чтобы уменьшить степень субъективности и облегчить расчёты, были определены так называемые кривые равной громкости (изофоны). Для этого большой группе людей предъявляли звуки разной частоты и интенсивности, и полученные значения уровня громкости усреднялись по всем испытуемым. В результате был построен график, пользуясь которым по заданному уровню интенсивности в дБ можно определить уровень громкости звука. Кривые равной громкости приведены на таблице.

Чаще всего для оценки звука пользуются именно понятием уровня громкости. Однако, иногда предпочитают использовать другую величину – громкость, измеренную в единицах, называемых “сон”. Принято, что уровню громкости 40 фон соответствует громкость 1 сон. При изменении уровня громкости на 10 фон громкость изменяется в 2 раза:

Уровень громкости, фон 10 20 30 40 50 60 70 80 90 100

Громкость, сон 1/8 ¼ ½ 1 2 4 8 16 32 64

Приведём для примера значения громкости и уровня громкости некоторых звуков:

Уровень Громкость,

Вид звука громкости, фон сон

Тихий шепот 10 1/8

Обычная речь 40 1

Громкая речь 60 4

Уличный шум 70 – 80 8 – 16

Шум в танке, в моторном

отсеке подлодки 90 – 100 30 – 60

Шум поблизости от ре-

активного самолёта 120 250

Шум при запуске бал-

листической ракеты > 130 > 600

Разумеется, все эти числа имеют грубо ориентировочный характер.

Длительное воздействие шума с уровнем громкости выше 70 фон может вызвать нарушения как в органе слуха, так и во всём организме (в первую очередь – в нервной системе). При уровнях громкости выше 120 фон вредным оказывается даже кратковременное воздействие.

Для диагностики состояния органа слуха используют специальный прибор - аудиометр. С помощью этого прибора фактически определяют кривые равной громкости в соответствии с процедурой, рассмотренной выше. Однако, большинство аудиометров устроены таким образом, что они показывают не саму величину уровня громкости подаваемого звука у данного пациента, а отклонение этой величины от «стандартного» значения (то есть от соответствующего значения по кривым равной громкости для здоровых людей). Поэтому для человека с «абсолютно нормальным» слухом кривая, полученная на аудиометре, (аудиограмма ) будет прямой линией. Практически абсолютно нормального слуха не бывает; у всех людей наблюдаются те или иные отклонения. Если эти отклонения не превышают 10-15 фон (децибел громкости), их обычно считают несущественными. Более значительные отклонения могут указывать на заболевание органа слуха. Важно выявить, на каких частотах наблюдаются эти отклонения. При одних заболеваниях понижается слух (повышается порог слухового восприятия) на всех частотах, при других – преимущественно на низких, при третьих – на высоких. Эти данные имеют большое диагностическое значение.




© 2024
womanizers.ru - Журнал современной женщины