19.06.2020

Фагоцитоз и определение фагоцитарной активности. Исследователи разрабатывают макрофаги для поглощения раковых клеток в твердых опухолях Инъекции вызывают макрофаги клетки


Макрофаги – это клетки, которые играют ключевую роль в воспалении. Новые исследования – под руководством Тринити-колледжа в Дублине в Ирландии – обнаружили ранее неизвестный процесс, который может отключить синтез воспалительных факторов в макрофагах.

Ученые предполагают, что новое открытие улучшит наше понимание воспаления и инфекции.

Они надеются, что это приведет к новым методам лечения воспалительных патологий, таких как сердечные заболевания, ревматоидный артрит и воспалительные заболевания кишечника.

Их недавнее открытие относится к молекуле, известной как итаконат , которую макрофаги производят из глюкозы. Предыдущие исследования уже показали, что итаконат помогает регулировать функцию макрофагов, но механизмы в то время были неизвестны.

Давно известно, что макрофаги вызывают воспаление, но только что мы обнаружили, что их можно “остановить” при помощи итаконата.

Используя человеческие клетки и мышиные модели, Luke O’Neill и его коллеги обнаружили, что производство итаконата было похоже на активацию “выключенного переключателя” на макрофаге, которая приводила к снижению воспаления.

Исследователи сообщают о своих выводах в статье, опубликованной в журнале Nature .

Воспаление и макрофаги

Воспаление – это серия биохимических реакций, запускаемых иммунной системой, когда она обнаруживает то, что может нанести вред нашему организму. Мы можем видеть и чувствовать воспаление, когда, например, пораним палец: область раны набухает, краснеет, прореживается и становится болезненной.

По мере развития процесса воспаления группы разных клеток выделяют вещества, которые, в свою очередь, вызывают ряд реакций. Например, они заставляют кровеносные сосуды расширяться и становиться проницаемыми, так что большее количество клеток крови может достигать места повреждения. При этом происходит раздражение нервных окончаний, чтобы сообщения о боли транслировались в мозг.

Однако эта мощная система защиты также может срабатывать, когда иммунитет ошибочно атакует здоровые клетки и ткани (явление, известное как аутоагрессия иммунной системы ). Это приводит к хроническим воспалительным заболеваниям, которые могут длиться много лет, а иногда даже всю жизнь.

Макрофаги представляют собой разнообразные клетки, которые участвуют во многих важных процессах в организме, включая воспаление.

Итаконат и интерфероны типа I (ИФН I)

Как и многие клетки, макрофаги в качестве энергии используют глюкозу. Однако, они также могут использовать глюкозу для производства итаконата. Ученые знали, что итаконат помогает регулировать многие клеточные процессы в макрофагах, но связанная с этим биохимия была неясна.

В новом исследовании профессор Luke O’Neill со своей командой впервые показали, что итаконат необходим для активации противовоспалительного фактора транскрипции в макрофагах мыши и человека.

Nrf2 – это белок в организме млекопитающего, который играет решающую роль в восстановлении поврежденных тканей и препятствует возникновению злокачественных новообразований. Обнаруживая проблему, белок Nrf2 может активировать до двухсот генов, с помощью которых будет произведен “ремонт” клетки.

Ученые продемонстрировали, как, изменяя производство нескольких воспалительных белков, итаконат защищал мышей от смертельного воспаления, которое может возникнуть во время инфекции.

Одним из эффектов производства итаконата было ограничение воспалительной реакции, включающей интерфероны I типа.

Интерфероны I типа (ИФН I) представляют собой группу белков, которые влияют на иммунные реакции, возникающие при заражении вирусами, бактериями, грибами и другими патогенами.

Известно, что белки особенно важны для защиты от вирусов. Однако они могут также вызывать нежелательные реакции при некоторых типах инфекций.

Итаконат является критическим противовоспалительным метаболитом, который действует через Nrf2, чтобы ограничить воспаление и модулировать интерфероны I типа.

Будучи первым, кто описывает химические реакции, связанные с противовоспалительными эффектами итаконата, исследование представляет собой новаторскую работу в области изучения воспаления.

Теперь ученые планируют выяснить, как использовать полученные результаты для создания новых противовоспалительных препаратов.

Мы надеемся, что наша работа сможет помочь многим людям с аутоиммунными заболевания.

В дополнение к исследователям из Тринити-колледжа в Дублине, участие в работе принимали ученые из Гарвардской медицинской школе в Бостоне, Университета Джонса Хопкинса в Балтиморе, Университета Кембриджа, Оксфордского университета, Университета Данди и фармацевтической компании GlaxoSmithKline.

Активированные макрофаги могут находится в нескольких различных состояниях, которые обуславливают выполнение ими той или иной функции. В связи с этим выделяют классический и альтернативной пути активации макрофагов.

1. Классический путь активации.

По классическому пути активация макрофагов происходит при взаимодействии с бактериями, низкими концентрациями бактериальными полисахаридов, пептидогликанов, а также при взаимодействии цитокинов I-го типа: IFN-?, TNF-б, IL-1в, GM-CSF, IL-12, IL-18, IL-23. Классическими активаторами этого пути считаются IFN-? и TNF-б. При этом процесс носит дискетный характер: IFN-? примирует макрофаги, TNF-б активирует их. Эффект других цитокинов может быть опосредован усилением синтеза IFN-?.

IFN-? продуцируется врожденными или адаптивными иммунными клетками, такими как Th1 или NK. NK клетки вырабатывают IFN-? в ответ на стресс или действие патогенов. Однако продукция IFN-? нормальными киллерными клетками скоротечна и не может долго поддерживать популяцию макрофагов в активном состоянии. Их долговременная активация в адаптивном иммунном ответе обычно обеспечивается постоянной продукцией IFN-? Th1 клетками.

В результате перехода макрофага в состояние М1 изменяется экспрессия около 25% определяемых генов. Значительно повышается микробицидный потенциал этих клеток за счет продукции ими активных форм кислорода и азота. В макрофаге происходит оксидативный взрыв - синтезируется большое количество реакционно способных метаболитов кислорода, активируется NO синтаза.

В ходе активации макрофагов при классическом пути усиливается продукция провоспалительным цитокинов (TNF-б, IL-1, IL-6, IL-12) и провоспалительных липидных медиаторов, которые могут включаться в аутокринную регуляцию. При этом ответ клетки на воздействие усиливается, но делается менее специфичным. В результате клетки отвечают на разные действующие стимулы однонаправленным изменениям функциональных показателей, что необходимо для теплового патологического процесса - воспаления.

Фагоцитоз апоптозных полиморфно-ядерных лейкоцитов макрофагов во время воспаления связан с продукцией трансформирующего фактора роста - бета, который ингибирует синтез противовоспалительных цитокинов.

2. Альтернативный путь активации

По альтернативному пути активация макрофагов (переход в состояние М2) происходит под влиянием цитокинов II типа: IL-4, IL-13. Альтернативную активация может индуцировать и ряд других цитокинов: IL-5, IL-21, действуя на макрофаги либо опосредованно, либо непосредственно.

Другой цитокин, играющий важную роль в прямой и/или опосредованной активации по альтернативному пути является тимический стромальный лимфопоэтин, который поляризует дендритные клетки.

Альтернативный путь активации может буть запущен также глюкокортикоидами, иммунными комплексами и лигандами TPL, в связи с чем выделяет по меньшей мере три состояния макрофагов: M2a - вызывается IL-4 или IL-13.

Альтернативно активированные макрофаги отличаются молекулярными и биологическими характеристиками от классических макрофагов и характеризуются низкой экспрессией IL-12, и повышенной выработкой IL-10.

При альтернативной активации макрофаги проявляют повышенную эндоцитарную и фагоцитарную активность, однако их микробицидная активность во многих случаях снижается, повышается синтез противовоспалительных цитокинам, рецепторных антагонистов и хемокином.

Велика роль макрофагов и в регенерации. В ответ на разрушение тканей мастоциты, базофилы, гранулоциты выделяют IL-4, который трансформирует резидентные макрофаги в популяцию клеток, запрограммированных на регенерацию.

Трансформацию макрофагов в активное состояние называют трансформацией. При этом активация в том или ином направлении является обратимым процессов и клетки могут переходить из одного состояния в другое.

Различия между альтернативным и классическими путями активации макрофагов реализуются и на уровне экспрессии клеточных паттернраспознающих рецепторов. При классической активации экспрессия этих рецепторов снижается, а при альтернативной активации - существенно возрастает.

Макрофаги, экспрессирующие манозный рецептор, не вырабатывают оксид азота и характеризуются низким микробным киллингом. Хотя эти клетки имеют на своей поверхности MHCII, но практически не участвуют в презентации антигенов и во многих случаях ингибируют пролиферацию Т-лимфоцитов. Супрессирующее действие этих макрофагов было направленно на митогенактивированные Т-клетки, которые в свою очередь показали значительное снижение пролиферативного и секреторного ответа в присутствии альтернативно активированных макрофагов.

В настоящее время считается, что альтернативно активированные макрофаги участвуют в защите организма против гельминтов и нематод. Велика их роль в ремоделировании тканей и агиогенезе, поскольку этот тип макрофагов синтезирует фибронектин и матрикс-ассоциированный белок, усиливающий фибриногенез в фибробластах.

Из представленных данных можно сделать два принципиальных вывода. Во-первых, вряд ли корректно говорить о классическом и альтернативном путях активирования макрофагов. Скорее всего, это два равнозначных пути. Первый активирует, главным образом, иммунологические (антибактериальные) функции макрофагов, а второй - преимущественно неиммунологические. Тем более, что и сегодня термин «классическая активация макрофагов» для обозначения макрофагов, образующихся в процессе иммунного ответа. Во-вторых, макрофаг, будучи настроен на какую-то конкретно функцию, ограничивает реализацию остальных.

1 иммунитет. Виды иммунитета.

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма.

1.Врожденный, иммунитет - это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену,обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.(пр: чума крупного рога­того скота)

врожденный иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела.

Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего пер­вый этап взаимодействия данного антигена с клетками или молекулами-мишенями, опре­деляющими запуск патологического процесса или активацию иммунной системы. Не исклю­чены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловле­но генетическими особенностями вида, в час­тности отсутствием генов иммунного ответа к данному антигену.

2.Приобретенный иммунитет - это невос­приимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вак­цинации.

Примером естественного приобретенного иммунитета у человека может служить не­восприимчивость к инфекции, возникающая после перенесенного заболевания, так назы­ваемый постинфекционный

Приобретенный иммунитет может быть ак­тивным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный им­мунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам отно­сятся антитела, т. е. специфические иммуног­лобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммуни­зации.

различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточный иммунитет.

Примером клеточного иммунитета может служить противоопухолевый, а также транс­плантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при инфекциях (столбняк, боту­лизм, дифтерия) обусловлен в основном ан­тителами; при туберкулезе ведущую роль играют иммунокомпетентные клетки (лимфоциты, фагоциты) с участием специфических антител; при некоторых ви­русных инфекциях (натуральная оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы.

В инфекционной и неинфекционной пато­логии и иммунологии для уточнения харак­тера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противо­вирусный, противогрибковый, противобактериальный, противопротозойный, трансплан­тационный, противоопухолевый и другие ви­ды иммунитета.

Наконец, иммунное состояние, т. е. актив­ный иммунитет, может поддерживаться, со­храняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фак­тора, а иммунитет называют стерильным. Во втором случае иммунитет трактуют как не­стерильный. Примером стерильного иммуни­тета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильно­го - иммунитет при туберкулезе, который со­храняется только в присутствии в организме микобактерий туберкулеза.

Иммунитет (резистентность к антигену) может быть системным, т. е. генерализован­ным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верх­них дыхательных путей (поэтому иногда его называют мукозальным).

2 Антигены ..

Антигены представляют собой чужеродные вещества или структуры, которые способны вызывать иммунный ответ.

Характеристики антигена:

Иммуногенность - это свойство антигена вызывать иммунный ответ.

Специфичность антигена - это способность антигена избирательно реагировать с антителами или сенсибилизированными лимфоцитами, которые появились в результате иммунизации. За специфичность антигена ответственны определенные участки его молекулы, называемые детерминантами (или эпитопами). Специфичность антигена определяется набором детерминант.

КЛАССИФИКАЦИЯ АНТИГЕНОВ:

Название

Антигены

Корпускулярные антигены

Различные клетки и крупные частицы: бактерии, грибки, простейшие, эритроциты

Растворимые антигены

Белки различной степени сложности, полисахариды

Трансплантационные антигены

Антигены клеточной поверхности, контролируемые ГКГС

Ксеноантигены (гетерологичные)

Антигены тканей и клеток, отличающиеся от реципиента на видовом уровне (донор и реципиент разных видов)

Аллоантигены (гомологичные)

Антигены тканей и клеток, отличающиеся от реципиента на внутривидовом уровне (донор и реципиент принадлежат к генетически неидентичным индивидам одного и того же вида)

Сингенные

Донор и реципиент принадлежат к одной и той же инбредной линии животных

Изогенные (изологичные)

Генетическая идентичность индивидов (н-р, однояйцевые близнецы)

Аутоантигены

Антигены собственных клеток организма

Аллергены

Антигены пищи, пыли, пыльцы растений, ядов насекомых, вызывающие повышенную реактивность

Толерогены

Антигены клеток, белков, вызывающие ареактивность

Синтетические антигены

Искусственно синтезированные полимеры аминокислот, углеводов

Простые химические соединения в основном ароматического ряда

Тимус - зависимые

Полноценное развитие специфического иммунного ответа этих антигенов начинается только после подключения Т-клеток

Тимус - независимые

Полисахариды, с повторяющимися структурно идентичными эпитопами, стимулируют В- клетки; способны инициировать иммунный ответ в отсутствии Т- хелперов

Основными видами бактериальных антигенов являются:

Соматические или О- антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

Жгутиковые или Н- антигены (белковые);

Поверхностные или капсульные К- антигены.

3 Антитела(иммуноглобулины.)

Антителами называются сывороточные белки, образующиеся в ответ на действие антигена. Они относятся к сывороточным глобулинам, поэтому называются иммуноглобулинами (Ig). Через них реализуется гуморальный тип иммунного ответа. Антитела обладают 2 свойствами: специфичностью, т. е. способностью вступать во взаимодействие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование; гетерогенностью по физико-химическому строению, специфичности, генетической детерминированности образования (по происхождению). Все иммуноглобулины являются иммунными, т. е. образуются в результате иммунизации, контакта с антигенами. Тем не менее по происхождению они делятся: на нормальные (анамнестические) антитела, которые обнаруживаются в любом организме как результат бытовой иммунизации; инфекционные антитела, которые накапливаются в организме в период инфекционной болезни; постинфекционные антитела, которые обнаруживаются в организме после перенесенного инфекционного заболевания; поствакцинальные антитела, которые возникают после искусственной иммунизации.

4 неспецифические факторы защиты их характеристики

1) гуморальные факторы - система комплемента. Комплемент - это комплекс 26 белков в сыворотке крови. Обозначается каждый белок, как фракция, латинскими буквами: С4, С2, СЗ и т. д. В условиях нормы система комплемента находится в неактивном состоянии. При попадании антигенов он активируется, стимулирующим фактором является комплекс антиген - антитело. С активации комплемента начинается любое инфекционное воспаление. Комплекс белков комплемента встраивается в клеточную мембрану микроба, что приводит к лизису клетки. Также комле-мент участвует в анафилаксии и фагоцитозе, так как обладает хемотаксической активностью. Таким образом, комплемент является компонентом многих им-мунолитических реакций, направленных на освобождение организма от микробов и других чужеродных агентов;

2) клеточные факторы защиты.

Фагоциты. Фагоцитоз (от греч. phagos - пожираю, cytos - клетка) впервые открыл И. И. Мечников, за это открытие в 1908 г. он получил Нобелевскую премию. Механизм фагоцитоза состоит в поглощении, переваривании, инактивации инородных для организма веществ специальными клетками-фагоцитами. К фагоцитам Мечников отнес макрофаги и микрофаги. В настоящее время все фагоциты объединены в единую фагоцитирующую систему. В нее включены: промоноциты - вырабатывает костный мозг; макрофаги - разбросаны по всему организму: в печени они называются «купферовские клетки», в легких - «альвеолярные макрофаги», в костной ткани - «остеобласты» и т. д. Функции клеток-фагоцитов самые разнообразные: они удаляют из организма отмирающие клетки, поглощают и инактивируют микробы, вирусы, грибы; синтезируют биологически активные вещества (лизоцим, комплемент, интерферон); участвуют в регуляции иммунной системы.

Процесс фагоцитоза, т. е. поглощение инородного вещества клетками-фагоцитами, протекает в 4 стадии:

1) активация фагоцита и его приближение к объекту (хемотаксис);

2) стадия адгезии - прилипание фагоцита к объекту;

3) поглощение объекта с образованием фагосомы;

4) образование фаголизосомы и переваривание объекта с помощью ферментов.

5 Органы, ткани и клетки иммунной системы

Различают центральные и периферические органы иммунной системы, в которых развиваются, созревают и дифференцируются клетки иммунной системы.

Центральные органы иммунной системы - костный мозг и тимус. В них из стволовых кроветворных клеток лимфоциты дифференцируются в зрелые неиммунные лимфоциты, так называемые наивные лимфоциты (от англ. naive), или девственные (от англ. virgine).

Кроветворный костный мозг - место рождения всех клеток иммунной системы и созревания В-лимфоцитов (В-лимфопоэз).

Тимус (вилочковая железа) отвечает за развитие Т-лимфоцитов: Т-лимфопоэз (реаранжировка, т.е. перестройка генов TcR, экспрессия рецепторов, и т. д.). В тимусе отбираются Т-лимфоциты (CD4 и CD8) и уничтожаются высокоавидные к собственным антигенам клетки. Гормоны тимуса завершают функциональное созревание Т-лимфоцитов, повышают секрецию ими цитокинов. Родоначальницей всех клеток иммунной системы является кроветворная стволовая клетка. Из лимфоидных стволовых клеток образуются предшественники Т- и В - клеток, которые служат источником Т- и В- популяций лимфоцитов. Т - лимфоциты развиваются в тимусе под влиянием его гуморальных медиаторов (тимозин, тимопоэктин, тиморин и др.). В дальнейшем тимусзависимые лимфоциты расселяются в периферических лимфоидных органах и трансформируются. Т 1 - клетки локализуются в периартериальных зонах селезенки, слабо реагируют на действие лучистой энергии и являются предшественниками эффекторов клеточного иммунитета, Т 2 - клетки накапливаются в перикортикальных зонах лимфоузлов, высокорадиочувствительны и отличаются антигенреактивностью.

Периферические линфоидные органы и ткани (лимфатические узлы, лимфоидные структуры глоточного кольца, лимфатические протоки и селезенка) - территория взаимодействия зрелых неиммунных лимфоцитов с антигенпрезентирующими клетками (АПК) и последующей антигензависимой дифференцировки (иммуногенеза) лимфоцитов. В эту группу входят: лимфоидная ткань, ассоциированная с кожей); лимфоидная ткань, ассоциированная со слиэистыми оболочками желудочно-кишечного, респираторного и мочеполового трактов (солитарные фолликулы, миндалины, пейеровы бляшки и др.).Пейеровы бляшки (групповые лимфатические фолликулы) - лимфоидные образования стенки тонкой кишки. Антигены проникают из просвета кишки в пейеровы бляшки через эпителиальные клетки (М-клетки).

6 Т-клетки иммунной системы, их характеристика

T-лимфоциты участвуют в реакциях клеточного иммунитета: аллергических реакциях замедленного типа, реакции отторжения трансплантата и других, обеспечивают противоопухолевый иммунитет. Популяция T-лимфоцитов делится на две субпопуляции: лимфоциты CD4 - T-хелперы и лимфоциты CD8 - цитотоксические T-лимфоциты и T-супрессоры. Помимо этого существуют 2 типа T-хелперов: Th1 и Th2

Т-лимфоциты. Характеристика Т-лимфоцитов. Типы молекул на поверхности Т-лимфоцитов. Решающее событие в развитии Т-лимфоцитов - формирование антигенраспознающего Т-клеточного рецептора - происходит только в тимусе. Для обеспечения возможности распознавания любого антигена нужны миллионы различных по специфичности антигенраспознающих рецепторов. Формирование огромного разнообразия антигенраспознающих рецепторов возможно благодаря перестройке генов в процессе пролиферации и дифференцировки клеток-предшественниц. По мере созревания Т-лимфоцитов на их поверхности появляются ан-тигенраспознающие рецепторы и другие молекулы, опосредующие их взаимодействие с антигенпредставляющими клетками. Так, в распознавании собственных молекул главного комплекса гистосовместимости наряду с Т-клеточным рецептором участвуют молекулы CD4 или CD8. Межклеточные контакты обеспечиваются наборами поверхностных адгезионных молекул, каждой из которых соответствует молекула - лиганд на поверхности другой клетки. Как правило, взаимодействие Т-лимфоцита с антигенпредставляющей клеткой не ограничивается распознаванием антигенного комплекса Т-клеточным рецептором, а сопровождается связыванием других попарно комплементарных поверхностных «костимулирующих» молекул. Таблица 8.2. Типы молекул на поверхности Т-лимфоцитов Молекулы Функции Антигенраспознающий рецептор: Т-клеточный рецептор Распознавание и связывание комплекса: антигенный пептид + собственная молекула главного комплекса гистосовместимости Корецепторы: CD4, CD8 Участвуют в связывании молекулы главного комплекса гистосовместимости Адгезионные молекулы Адгезия лимфоцитов к эндотелиальным клеткам, к антигенпредставляющим клеткам, к элементам внеклеточного матрикса Костимулирующие молекулы Участвуют в активации Т-лимфоцитов после взаимодействия с антигеном Рецепторы иммуноглобулинов Связывают иммунные комплексы Рецепторы цитокинов Связывают цитокины Сочетание поверхностных молекул лимфоцитов, которые принято обозначать порядковыми номерами «кластеров дифференцировки» (clusters of differentiation - CD), обозначается как «поверхностный фенотип клетки», а отдельные поверхностные молекулы называют «маркерами», так как они служат метками конкретных субпопуляций и стадий дифференцировки Т-лимфоцитов. Так, например, на поздних этапах дифференцировки одни Т-лимфоциты утрачивают молекулу CD8 и сохраняют только CD4, а другие утрачивают CD4, а сохраняют CD8. Поэтому среди зрелых Т-лимфоцитов различают CD4+ (Т-хелперы) и CD8+ (цитотоксические Т-лимфоциты). Среди циркулирующих в крови Т-лимфоцитов клеток с маркером CD4 примерно в два раза больше, чем клеток с маркером CD8. Зрелые Т-лимфоциты несут на поверхности рецепторы для разных цитокинов и рецепторы для иммуноглобулинов (табл. 8.2). При распознавании Т-клеточным рецептором антигена Т-лимфоциты получают сигналы активации, пролиферации и дифференцировки в направлении клеток-эффекторов, т. е. клеток, способных непосредственно участвовать в защитных или повреждающих эффектах. Для этого на их поверхности резко возрастает количество адгезионных и костимулирующих молекул, а также рецепторов для цитокинов. Активированные Т-лимфоциты начинают продуцировать и секретировать цитокины, активирующие макрофаги, другие Т-лимфоциты и В-лимфоциты. После завершения инфекции, сопряженной с усиленной продукцией, дифференцировкой и активацией Т-эффекторов соответствующего клона, в течение нескольких дней 90 % эффекторных клеток погибают, поскольку не получают дополнительных сигналов активации. В организме остаются долгоживущие клетки памяти, несущие соответствующие по специфичности рецепторы и способные ответить пролиферацией и активацией на повторную встречу с тем же антигеном.

7 В-клетки иммунной системы их характеристика

B-лимфоциты составляют около 15-18% всех лимфоцитов, находящихся в периферической крови. После распознавания специфического антигена эти клетки размножаются и дифференцируются, трансформируясь в плазматические клетки. Плазматические клетки вырабатывают большое количество антител (иммуноглобулины Ig), которые являются собственными рецепторами B-лимфоцитов в растворенном виде. Основной компонент иммуноглобулинов Ig (мономер) состоит из 2 тяжелых и 2 легких цепей. Принципиальное отличие между иммуноглобулинами состоит в строении их тяжелых цепей, которые представлены 5 типами (γ, α, µ, δ, ε).

8.Макрофаги

Макрофаги - крупные клетки, образовавшиеся из моноцитов, способные к фагоцитозу.Помимо непосредственно фагоцитоза,

макрофаги принимают участие в сложных процессах имунного ответа, стимулируя лимфоциты и имунные другие клетки.

актически моноцит становится макрофагом, когда покидает сосудистое русло и проникает в ткани.

В зависимости от типа ткани выделяют следующие виды макрофагов.

Гистиоциты - макрофаги соединительной ткани; компонент ретикуло-эндотелиальной системы.

Купферовские клетки - иначе эндотелиальные звездчатые клетки печени.

Альвеолярные макрофаги - иначе, пылевые клетки; расположены в альвеолах.

Эпителиоидные клетки - составляющие гранулемы.

Остеокласты - многоядерные клетки, участвующие в резорбции костной ткани.

Микроглия - клетки центральной нервной системы, разрушающие нейроны и поглощающие инфекционные агенты.

Макрофаги селезенки

функции макрофагов включают в себя фагоцитоз, «обработку» антигенов и взаимодействие с цитокинами.

Неиммунный фагоцитоз: макрофаги способны фагоцитировать чужеродные частицы, микроорганизмы и остатки

поврежденных клеток непосредственно, без вызова иммунного ответа. «Обработка» антигенов:

макрофаги «обрабатывают» антигены и представляют их B- и T-лимфоцитам в необходимой форме.

Взаимодействие с цитокинами: макрофаги взаимодействуют с цитокинами, производимыми T-лимфоцитами

для защиты организма против определенных повреждающих агентов.

9.Кооперация клеток в иммунном ответе .

Патрульные макрофаги, обнаружив в крови чужеродные белки (клетку), предъявляют его Т-хелперам

(происходит процессинг АГ макрофагами). Т-хелперы передают АГ информацию на В-лимфоциты,

которые начинают бласттрансформироваться и пролиферировать, выделять нужный иммуноглобулин.

Меньшая часть Т-хелперов (индукторы) побуждают макрофагов и макрофаги начинают продуцировать

интерлейкин I – активатор основной части Т-хелперов. Те, возбуждаясь, в свою очередь объявляют

всеобщую мобилизацию, начиная бурно выделять интерлейкин II (лимфокин) , который ускоряет пролиферацию и

Т-хелперов, и Т-киллеров. Последние имеют специальный рецептор именно к тем белковым детерминантам,

которые были предъявлены патрульными макрофагами.

Т-киллеры устремляются к клеткам-мишеням и разрушают их. Одновременно интерлейкин II

способствует росту и созреванию В-лимфоцитов, которые превращаются в плазматические клетки.

Тот же интерлейкин II вдохнет жизнь в Т-супрессоры, которые замыкают общую реакцию иммунного ответа,

останавливая синтез лимфокинов. Размножение иммунных клеток прекращается, но остаются лимфоциты памяти.

10.Аллергия

Спецефически повышенная чувствительность организма патогенного характера к веществам с антигенными свойствами.

Классификация:

1.реакции гиперчувствительности немедленного типа: развиваются в течении нескольких минут.Участвуют антитела.Терапия-антигистаминовыми препаратами.Болезни-атопическая бронхиальная астма,крапивница,сывороточная болезнь

2.реакции гиперчувствительности замедленного типа:через 4-6часов,симптомы нарастают в течении 1-2суток.Антитела в сыворотке отсутствуют,но имеются лимфоциты,способные с помощью своих рецепторов узнавать антиген.Болезни-бактериальная аллергия,контактный дерматит,реакции отторжения трансплантата.

4типа реауции по джелу и кубсу:

1тип анафилактические реакции:они вызывают взаимодействием поступающих в организм антигенов с антителами(IgE ),осевшими на поверхности тучных клеток и базофилов.Происходит активация этих клеток-мишенейюИз них высвобождаются биологичекси активные вещества(гистамин,серотонин).Так развивается анафилаксия,атопическая бронхиальная астма.

2тип цитотоксические: Циркульрующие вкрови антитела взаимодействуют с антигенами,фиксированными на мембранах клеток,В итоге клетки повреждаются и возникает цитолиз.Аутоиммуные гемолитические анемии,гемолитическая болезнь новорожденных.

3тип реакции иммцнных комплексов: циркулирующие вкрови антитела взаимодействуют с циркулир.антигенами,Образующиеся комплексы оседают на стенках кровеносных капилляров,повреждая слосуды.Сывороточная болезнь ежедневных инъукций

4тип клеточно-опосредованные иммунные реакции: они не зависят от наличия антител,а связанны с реакциями тимусзависимых лимфоцитов.Т-лимфоциты повреждают чужеродные клетки.Трансплатата,бактериальная аллергия.

5тип антирецепторные: антитела взаимодействуют с рецепторами гормона на мемране клеток.Это приводит к активации клеток.Болезнб Грейвса(увеличение тиреоидных гормонов)

11.Иммунодифициты

Иммунодефициты - это определенной степени недостаточность или выпадение нормальной функции иммунной системы организма, в результате генетических или другого рода поражений. Генетический анализ выявляет спектр хромосомных аномалий при иммунодефицитах: от делеции хромосом и точечных мутаций до изменения процессов транскрипции и трансляции.

Иммунодефицитные состояния

сопутствуют многие патологические процессы. Единой общепринятой классификации иммунодефицитов не существует. Многие авторы делят иммунодефициты на «первичные» и «вторичные». В основе врожденных форм иммунодефицитов лежит генетический дефект. Основное значение имеют нарушения в хромосомах, прежде всего 14-ой, 18-ой и 20-ой.

В зависимости от того какие эффекторные звенья привели к развитию иммунодефицита, следует различать дефициты специфического и неспецифического звеньев резистентности организма.

Врожденные иммунодефицитные состояния

А. Иммунодефициты специфического звена :

Дефициты Т-клеточного звена:

вариабельные иммунодефициты.

Селективный иммунодефицит по Ir-гену.

Дефициты В-клеточного звена:

Сочетанные иммунодефициты:

Селективные дефициты:

Б. Иммунодефициты неспецифического звена

Дефициты лизоцима.

Дефициты системы комплемента:

Дефициты фагоцитоза.

Иммунодефициты вторичные

Заболевания иммунной системы.

Генерализованные нарушения костного мозга.

Инфекционные заболевания.

Нарушения обмена веществ и интоксикации.

Экзогенные воздействия.

Иммунодефициты при старении.

ВИЧ-инфекция . Вирус иммунодефицита человека (ВИЧ) вызывает инфекционное заболевание, опосредованное первичным поражением вируса иммунной системы, с ярко

выраженным вторичным иммунодефицитом, что обусловливает развитие болезней, вызванных оппортунистическими инфекциями.

ВИЧ имеет тропность к лимфойдной ткани, конкретно к Т-хелперам. ВИЧ-вирус у больных находится в крови, в слюне, семенной жидкости. Поэтому заражение возможно при переливании такой крови, половым путем, вертикальным путем.

Следует отметить, что нарушения клеточного и гуморального звеньев иммунного ответа при СПИДе характеризуются:

а) снижением общего количества Т-лимфоцитов, за счет Т-хелперов

б) сижением функции Т-лимфоцитов,

в) повышением функциональной активности В-лимфоцитов,

г) увеличением количества иммунных комплексов,

л) снижением цитотоксической активности натуральных киллеров,

е) снижением хемотаксиса, цитотоксичности макрофагов, снижении продукции ИЛ-1.

Иммунологические нарушения сопровождаются увеличением альфа-интерферона, появлением антилимфоцитарных антител, супрессивных факторов, снижением тимозина в сыворотке крови, увеличением уровня 2-микроглобулинов.

Возбудителем болезни является человеческий Т-лимфоцитарный вирус

Такие микроорганизмы обычно обитают на коже и слизистой, получившие название резидентной микрофлоры. Заболевание имеет фазовый характер. Период выраженных клинических проявлений получило название синдрома приобретенного иммунодефицита (СПИД).

Нейтрофилы (полиморфноядерныe лейкоциты, ПЯЛ)

Это подвижные фагоциты с сегментированным ядром. Нейтрофилы идентифицируют либо по структуре ядра, либо по поверхностному антигену CD66.

Основную роль в эффекторных функциях нейтрофилов играют компоненты гранул. Гранулы нейтрофилов классифицируют на первичные, вторичные, третичные и секреторные пузырьки. Различия между классами гранул могут быть определены после анализа белков-маркеров. В гранулах нейтрофилов сохраняется около 300 различных белков, которые могут быть освобождены в окружение клетки или оставаться присоединенными к мембране нейтрофилов.

Секреторные пузырьки
Считают, что секреторные пузырьки формируются только в зрелых сегментоядерных нейтрофилах при поступлении их в кровоток . Секреторные пузырьки по происхождению эндосомы , и представляют собой пул рецепторов, включаемых в плазматическую мембрану после слияния мембраны секреторных пузырьков с мембраной нейтрофила. В мембране секреторных пузырьков множество рецепторов - β2-интегрины, Cr1, рецепторы формил-пептида (fpr), CD14, CD16, а также ферменты металлопротеиназы и щелочная фосфатаза. В полости секреторных пузырьков содержится альбумин и белок, связывающий гепарин (HBP). Маркерный фермент пузырьков - щелочная фосфатаза.

Вторичные и третичные гранулы
Пероксидазонегативние гранулы нейтрофилов могут быть разделены на вторичные и третичные, которые отличаются содержанием белков и секреторными свойствами. Вторичные гранулы содержат больше антибактериальных соединений, чем третичные. Третичные гранулы легче, чем вторичные подвергаются экзоцитозу. Третичные гранулы – резерв матрикс-деградирующих ферментов и мембранных рецепторов, необходимых для экстравазации и диапедеза нейтрофила . Напротив, вторичные гранулы участвуют главным образом, в антибактериальных действиях нейтрофилов путем мобилизации в фагосомы или секрецию во внешнюю среду. В арсенале их антибактериальных пептидов - лактоферрин, NGAL, лизоцим и hCAP18, LL-37. Маркерный белок третичных гранул - фермент желатиназа, вторичных – лактоферрин .

Первичные гранулы
Первичные гранулы содержат кислые гидролазами, в том числе кислую фосфатазу и антибактериальные белки; их мембрана лишена рецепторов. У человека антибактериальные белки представлены нейтрофильными пептидами – α-дефензинами и сериновыми протеазами с антибактериальной активностью. При созревании нейтрофилов в костном мозге первыми еще на стадии миелобластов формируются азурофильные гранулы; дефензины (катионные белки) в азурофильных гранулах синтезируются на второй стадии дифференцировки нейтрофилов - стадии образования промиелоцитов.

Маркерный белок этих гранул фермент миелопероксидазы.

Моноциты/макрофаги

Моноциты – это фагоциты, которые циркулируют в крови. Когда моноциты мигрируют в ткани, они превращаются в макрофаги. Моноциты имеют характерную форму ядра в виде почки. Они могут быть определены морфологически или по CD14 – маркеру клеточной поверхности. В отличие от ПЯЛ они не содержат гранул, но имеют многочисленные лизосомы, содержимое которых похоже на содержимое гранул нейтрофилов. Специализированные виды макрофагов могут быть найдены во многих органах, включая легкие, почки, мозг и печень.

Макрофаги выполняют множество функций. Как мусорщики, они удаляют из организма изношенные клетки, иммунные комплексы. Макрофаги представляют чужеродный антиген для распознавания его лимфоцитами, в этом отношении макрофаги похожи на дендритные клетки. Макрофаги способны секретировать удивительное разнообразие мощных химических сигналов – монокинов, которые жизненно важны для иммунного ответа неспецифического иммунитета: ответ фагоцитов на инфекцию.

Циркулирующие в крови нейтрофилы и моноциты реагируют на сигналы опасности (SOS), образующиеся в месте локализации инфекции. SOS сигналы включают в себя N-формил-метионин, освобождаемый бактериями; пептиды, образующиеся при свертывании крови, растворимые пептиды – продукты активации системы комплемента и цитокины, секретируемые тканевыми макрофагами, которые столкнулись в тканях с бактериями. Некоторые из сигналов SOS стимулируют экспрессию молекул клеточной адгезии на эндотелиальных клетках неподалеку от места инфекции, такие как ICAM-1 и селектины. Молекулы адгезии связываются с комплементарными структурами на поверхности фагоцитирующих клеток. Как следствие нейтрофилы и моноциты прилипают к эндотелию. Вазодилататоры, освобождаемые в месте инфекции тучными клетками, способствуют диапедезу прилипших фагоцитов через эндотелиальный барьер " и миграции их к месту локализации инфекции. Перемещение в тканях по градиенту концентрации молекул SOS. Параллельно SOS сигналы активируют фагоциты, что приводит к усилению, как поглощения возбудителей, так и внутриклеточному уничтожению инвазивных организмов.

Инициирование фагоцитоза при неспецифическом иммунитете

Клетка- фагоциты имеет на своей мембране рецепторы, способствующие связыванию их с возбудителем-антигеном, и поглощать его. К важнейшим рецепторам относятся следующие структуры.

1. Fc-рецепторы - если с бактериями связываются антитела IgG , то на поверхности бактерий будут Fc-фрагменты, которые распознаются и связываются Fc- рецептором на фагоцитах. На поверхности одного нейтрофила содержится порядка 150 000 таких рецепторов! Связывание бактерий, покрытых IgG, инициирует фагоцитоз и активацию метаболической активности фагоцитов (респираторный взрыв).

2. Рецепторы комплемента - фагоциты имеют рецепторы для С3b компонента комплемента, При активации комплемента при взаимодействии со структурами поверхности бактерий, последняя покрывается гидрофобным фрагментом C3b. Связывание рецептора к C3b с С3b на приводит также к повышению фагоцитоза и стимулированию респираторного взрыва.

3. Рецепторы - мусорщики связывают широкий спектр полианионов на бактериальной поверхности, опосредуя фагоцитоз бактерий.

4. Toll-подобные рецепторы - фагоциты имеют различные Toll-подобные рецепторы, которые признают широкий спектр консервативных структур на поверхности инфекционных агентов. Связывание инфекционных агентов через Toll-подобных рецепторов приводит к фагоцитозу и высвобождению провоспалительных цитокинов (IL-1, TNF-альфа и IL-6) фагоцитами.

Фагоцитоз и неспецифический иммунитет

После прикрепления бактерий, мембрана фагоцитов образует псевдоподии, которые, в конце концов, окружают бактерию и поглощают её, бактерии оказывается заключенной в фагосому. Фагосомы сливаются с вторичными гранулами, образуя фаголизосому.

Респираторный взрыв и внутриклеточный киллинг при неспецифическом иммунитете

Во время фагоцитоза, фагоцитирующие клетки увеличивают потребление глюкозы и кислорода, этот процесс называют респираторный взрыв. Следствие респираторного взрыва – образование активных форм кислорода, которые способны убить бактерии в составе фаголизосомы. Этот процесс называют кислород-зависимый внутриклеточный киллинг. Кроме того, в составе фаголизосомы бактерии и могут быть уничтожены под действием уже имеющегося содержимого в гранулах. Комплекс этих реакций называют кислород независимый внутриклеточный киллинг.

  1. В процессе фагоцитоза включается механизм прямого окисления глюкозо-6-фосфата в пентозофосфатном пути с образованием НАДФН. Тотчас осуществляется сборка надмолекулярного комплекса активной молекулы НАДФН-оксидазы. Активированная НАДФН-оксидаза использует кислород для окисления НАДФН. В результате реакции образуется супероксид-анион. Под действием супероксиддисмутазы часть супероксид-анионов превращается в синглетный кислород и H 2 O 2 Другая часть супероксид-анионов взаимодействует с Н 2 О 2 с образованием гидроксильных радикалов и синглетного кислорода. В результате всех этих реакций образуются токсичные кислорода соединений супероксид-анион перекись водорода, синглетный кислород и гидроксильные радикалы (ОН ).

2. Кислород зависимый миелопероксидаза-зависимый внутриклеточный киллинг

Как только азурофильные гранулы сливаются с фагосомой, в состав фаголизосомы высвобождается миелопероксидаза. Миелопероксидаза катализирует реакцию образования гипохлорит иона из H2O2 и хлорид иона. Гипохлорит иона высокотоксичное соединение, мощный окислитель. Некоторая часть гипохлорита может самопроизвольно распадаться до синглетного кислорода. В результате этих реакций образуются токсичные гипохлорит (OCl -) и синглетный кислород (1 O2).

3. Реакции детоксикации (табл. 3)

Нейтрофилы и макрофаги располагают средствами защиты от действия активных форм кислорода. Эти реакции включают дисмутацию супероксид аниона в перекись водорода супероксиддисмутазой и конверсию перекиси водорода в воду каталазой.

4. Кислород-независимый внутриклеточный киллинг

Кислород-независмые механизмы внутриклеточного киллинга

5. Зависимый от оксида азота киллинг в реакциях неспецифического иммунитета

Связывание бактерий макрофагами, в частности, посредством Toll-подобных рецепторов, приводит к продукции ФНО-альфа, который аутокринно (стимулирует те же клетки, которые его секретировали) индуцирует экспрессию гена индуцибельной NO синтазы (iNOS), в результате чего макрофаги синтезируют оксида азота (NO). Если клетка подвергается действию гамма-интерферона (IFN-гамма) , синтез оксида азота усиливается. Концентрация оксид а азота, освобождаемого макрофагами, обладает выраженным токсическим действием на микроорганизмы в непосредственной близости от макрофагов.

Добрый день, дорогие читатели!
В прошлый раз я рассказала вам об очень важной группе клеток крови – которые являются настоящими бойцами передовой линии иммунной защиты. Но они не единственные участники операций по захвату и уничтожению «вражеских агентов» в нашем организме. У них есть помощники. И сегодня я хочу продолжить свой рассказ и изучить функции лейкоцитов - агранулоцитов. К этой группе относятся и лимфоциты, в цитоплазме которых отсутствует зернистость.
Моноцит является самым крупным представителем лейкоцитов. Диаметр его клетки составляет 10 – 15 мкм, цитоплазма заполнена крупным ядром в виде фасоли. В крови их немного, всего 2 – 6 %. Но в костном мозге они образуются в большом количестве и созревают в тех же микроколониях, что и нейтрофилы. Но при выходе в кровь, их пути расходятся. Нейтрофилы, путешествуют по сосудам и всегда находятся в готовности №1. А моноциты быстро расселяются по органам и там превращаются в макрофаги. Половина из них уходит в печень, а остальные расселяются в селезенку, кишечник, легкие и т.д.

Макрофаги – это оседлые, окончательно созревшие. Как и нейтрофилы, они способны к фагоцитозу, но, кроме того, имеют свою сферу влияния и другие конкретные задачи. Под микроскопом макрофаг – весьма видная клетка с внушительными размерами до 40 – 50 мкм в диаметре. Это настоящая передвижная фабрика по синтезу специальных белков для собственных нужд и для соседних клеток. Оказывается, макрофаг в сутки может синтезировать и выделять до 80! различных химических соединений. Вы спросите: какие активные вещества выделяют макрофаги? Это зависит от того, где живут макрофаги и какие функции выполняют.

Функции лейкоцитов:

Начнем с костного мозга. Существует два вида макрофагов, участвующих в процессе обновления костной ткани – остеокласты и остеобласты. Остеокласты постоянно циркулируют по костной ткани, отыскивают старые клетки и уничтожают их, оставляя за собой свободное пространство для будущего костного мозга, а остеобласты формируют новую ткань. Эту работу макрофаги выполняют, синтезируя и выделяя специальные стимулирующие белки, ферменты и гормоны. Например, для разрушения кости они синтезируют коллагеназу и фосфатазу, а для выращивания эритроцитов - эритропоэтин.
Есть еще клетки – «кормилицы» и клетки – «санитары», которые обеспечивают быстрое размножение и нормальное созревание клеток крови в костном мозге. Гемопоэз в костях идет островками – в середине такой колонии располагается макрофаг, а вокруг теснятся красные клетки разного возраста. Выполняя функцию кормящей матери, макрофаг снабжает растущие клетки питанием – аминокислотами, углеводами, жирными кислотами.

Особую роль играют в печени. Там они называются купферовыми клетками. Активно работая в печени, макрофаги поглощают различные вредные вещества и частицы, поступающие из кишечника. Вместе с клетками печени они участвуют в обработке жирных кислот, холестерина и липидов. Таким образом, они неожиданно оказываются причастными к формированию холестериновых бляшек на стенках сосудов и возникновению атеросклероза.

Пока еще не совсем ясно, с чего начинается атеросклеротический процесс. Возможно, здесь срабатывает ошибочная реакция на «свои» липопротеиды в крови, и макрофаги, как бдительные иммунные клетки, приступают к их захвату. Получается, что прожорливость макрофагов имеет как положительные, так и отрицательные стороны. Захват и разрушение микробов – это, конечно, хорошо. А вот избыточное поглощение макрофагами жировых веществ – плохо и, вероятно, ведет к патологии, опасной для здоровья и жизни человека.

Но разделять, что хорошо, что плохо макрофагам тяжело, поэтому наша задача облегчить участь макрофагов и самим заботится о своем здоровье и здоровье печени: следить за питанием, сокращать употребление продуктов, содержащих большое количество жиров и холестерина и два раза в год проводить от шлаков и токсинов.

Теперь поговорим о макрофагах, работающих в легких.

Вдыхаемый воздух и кровь в легочных сосудах разделены тончайшей границей. Вы понимаете, насколько важно в данных условиях обеспечить стерильность воздушных путей! Правильно, здесь эту функцию выполняют тоже макрофаги, блуждающие по соединительной ткани легких.
Они всегда наполнены остатками погибших легочных клеток и микробов, вдыхаемых из окружающего воздуха. Макрофаги легких размножаются тут же в зоне своей деятельности, и их число резко возрастает при хронических заболеваниях дыхательных путей.

К сведению курящих! Пылевые частицы и смолистые вещества табачного дыма сильно раздражают верхние дыхательные пути, повреждают слизистые клетки бронхов и альвеол. Легочные макрофаги, конечно, захватывают и обезвреживают эти вредные химические продукты. У курильщиков резко увеличивается активность, число и даже размеры макрофагов. Но спустя 15 – 20 лет предел их надежности истощается. Нежные клеточные барьеры, разделяющие воздух и кровь, нарушаются, инфекция прорывается в глубину легочной ткани и начинается воспаление. Макрофаги уже не в состоянии полноценно работать в качестве микробных фильтров и уступают свое место гранулоцитам. Так, многолетнее курение приводит к хроническим бронхитам и уменьшению дыхательной поверхности легких. Чересчур активные макрофаги разъедают эластичные волокна легочной ткани, что ведет к затруднению дыхания и гипоксии.

Самое печальное, что работая на износ, макрофаги перестают выполнять очень важные функции – это способность бороться со злокачественными клетками. Поэтому хронический гепатит чреват развитием опухолей печени, а хроническая пневмония – раком легких.

Макрофаги селезенки.

В селезенке макрофаги выполняют функцию «убийц», уничтожая стареющие эритроциты. На оболочках эритроцитов обнажаются предательские белки, которые являются сигналом к ликвидации. Кстати сказать, уничтожение старых эритроцитов идет и в печени, и в самом костном мозге – всюду, где есть макрофаги. В селезенке этот процесс наиболее нагляден.

Таким образом, макрофаги являются великими тружениками и самыми главными санитарами нашего организма, выполняя при этом сразу несколько ключевых ролей:

  1. участие в фагоцитозе,
  2. сохранение и переработка важных питательных веществ для нужд организма,
  3. выделение нескольких десятков белков и других биологически активных веществ, регулирующий рост клеток крови и других тканей.

Ну вот, мы знаем функции лейкоцитов - моноцитов и макрофагов. А на лимфоциты опять не осталось времени. О них, самых маленьких защитниках нашего организма, мы поговорим в следующий раз.
А пока давайте оздоровляться и укреплять иммунитет, слушая исцеляющую музыку Моцарта - Симфония сердца:


Желаю вам крепкого здоровья и благополучия!




© 2024
womanizers.ru - Журнал современной женщины