20.07.2019

Физиология иммунной системы. Иммунитет врожденный и приобретенный Физиология иммунной системы человека


Лекция № 6

Физиология крови (часть 2). Физиология иммунной системы

План лекции

1. Функция базофилов и эозинофилов.

2. Лимфоциты. Т-, В- и О- лимфоциты, их функция в организме.

3. Роль органов иммунной системы в защите организма.

4. Развитие Т- и В- лимфоцитов.

5. Механизм иммунного ответа организма.

6. Центральные органы иммунной системы.

7. Периферические органы иммунной системы.

Базофилы осуществляют синтез биологически активных веществ (БАВ) и ферментов: гепарина, входящего в антисвёртывающую систему крови; гистамина, расширяющего кровеносные сосуды; гиалуроновой кислоты, изменяющей проницаемость сосудистой стенки. В крови базофилов очень мало, однако в различных тканях, в том числе в сосудистой стенке, содержатся «тучные клетки», иначе называемые «тучные базофилы».

Существует два основных вида тканевых базофилов, отличающихся типом гистохимической структуры (клетки I I типа содержат в цитоплазме в 3 - 5 раз больше гранул, имеют больший периметр, длину, ширину, площадь и оптическую плотность). Они располагаются в слизистой оболочке желудочно-кишечного тракта, в субэпидермальной зоне кожи и в лимфатических узлах, т. е. входят в состав клеточных сообществ «барьерных» органов и зон, которые находятся в условиях постоянной антигенной стимуляции, обеспечивая реакции местного иммунитета.

Эозинофилы адсорбируют на своей поверхности антигены (чужеродные белки), многие тканевые вещества и токсины белковой природы. Обладают фагоцитарной активностью, особенно в отношении кокков. В тканях эозинофилы скапливаются преимущественно в тех органах, где содержится гистамин - в слизистой оболочке и подслизистой основе желудка и тонкой кишки, в лёгких. Они захватывают гистамин и разрушают его с помощью фермента гистаминазы, регулируя таким образом аллергические реакции. Эозинофилы выполняют роль «чистильщиков», фагоцитируя и инактивируя продукты, выделяемые базофилами. Чрезвычайно велика роль эозинофилов в борьбе с гельминтами, их яйцами и личинками.



Лимфоциты являются центральным звеном иммунной системы. Они образуются из стволовых лимфоидных клеток костного мозга и затем переносятся к тканям, где проходят дальнейшую дифференциацию. Одна их популяция направляется в вилочковую железу, где превращается в Т-лимфоциты (от лат. cлова thymus), другие клетки попадают в ткани миндалин и аппендикса, становятся В-лимфоцитами (от лат. слова bursa - фабрициева сумка у птиц, где они впервые были открыты). Часть лимфоидных клеток (10-20%) не проходит дифференцировки в органах иммунной системы и образуют группу О-лимфоцитов, составляющих резерв Т - и В - клеток, в которые при необходимости могут превращаться.

Популяция Т-лимфоцитов представлена несколькими классами клеток:

1) Т-киллеры(убийцы) посредством ферментов уничтожают микробы, вирусы, грибки, опухолевые клетки и др.;

2) Т-хелперы (помощники) выделяют биологически активные вещества (БАВ), усиливающие клеточный иммунитет (Т - Т-хелперы) и облегчающие течение гуморального иммунитета (Т - В-хелперы), без их участия В-лимфоциты не в состоянии превратиться в клетки плазмы;

3) Т- амплифайеры усиливают функцию Т- и В-лимфоцитов;

4) Т-супрессоры угнетают гуморальный иммунитет;

5) Т-клетки памяти хранят информацию о ранее действующих антигенах и таким образом регулируют вторичный иммунный ответ.

В-лимфоциты участвуют в реакциях гуморального иммунитета. Особенностью этих клеток является наличие на их поверхности микроворсинок, способных распознавать определённые виды чужеродных веществ - антигены (полисахариды, белки, вирусы и др.). Из В-лимфоцитов образуются также клетки плазмы (антителопродуценты), которые, как и лимфоциты, синтезируют антитела и выделяют их в кровь, лимфу и тканевую жидкость.

Физиология иммунной системы

Родоначальником всех видов клеток крови и иммунной (лимфоидной) системы являются стволовые клетки костного мозга. В костном мозге в его миелоидной ткани из стволовых клеток образуются клетки - предшественники, из которых путем распределения и дифференцировки по трем направлениям образуются: эритроциты, лейкоциты, тромбоциты. Из стволовых клеток в самом костном мозге и в тимусе образуются лимфоциты.

Иммунная система объединяет органы и ткани, обеспечивающие защиту организма от генетически чужеродных клеток или веществ.

В органах иммунной системы образуются иммуннокомпетентные клетки-лимфоциты, которые включаются в иммунный процесс. Лимфоциты распознают и уничтожают чужеродные клетки и вещества. При попадании в организм чужеродных веществ - антигенов образуются антитела (иммуноглобулины), которые нейтрализуют антигены.

К органам иммунной системы относятся все органы, которые участвуют в образовании клеток (лимфоцитов, плазматических клеток), осуществляющие защитные функции организма.

К органам иммунной системы относятся: костный мозг, тимус, скопления лимфоидной ткани, расположенные в тонком кишечнике - пейеровы бляшки, миндалины, селезенка и лимфатические узлы.

Костный мозг, тимус относятся к центральным органам иммунной системы. Другие - к периферическим органам иммуногенеза.

Стволовые клетки поступают из костного мозга в кровь, затем в тимус, где образуются Т - лимфоциты - тимус - зависимые. В самом костном мозге из стволовых клеток образуются В - лимфоциты, не зависящие от тимуса. Т- и В-лимфоциты попадают в периферические органы иммунной системы. Т-лимфоциты обеспечивают клеточный иммунитет. В - лимфоциты (их производные - плазматические клетки) синтезируют антитела (иммуноглобулины).

Т - лимфоциты поступают в тимус-зависимые зоны лимфатических узлов (паракортикальную зону), селезенки (лимфоидные, периартериальние муфты).

В - лимфоциты поступают в бурсозависимые зоны лимфатических узлов и селезенки. Т и В - лимфоциты с участием макрофагов выполняют функции генетического контроля, распознают и уничтожают чужеродные вещества и микроорганизмы. Общая масса лимфоцитов равна 1 300 - 1 500 г, 2,5% всей массы тела. У новорожденных - 4,3%.

В целом процесс иммунного ответа можно представить следующим образом:

1. Нейтрофилы являются первичной защитой организма от чужеродных веществ. Когда микробы проникают в организм, нейтрофилы атакуют и «пожирают» их.

2. Макрофаги уничтожают значительную часть чужеродных организмов, избежавших атаки нейтрофилов.

3. Одновременно с процессом фагоцитоза макрофаги обмениваются информацией с Т - хелперами, сообщая им о природе антигена (бактерий, вирусов или макромолекул).

4. Т- хелперы выделяют в кровь химическое вещество лимфокин, которое сигнализируют В - лимфоцитам, чтобы те активировали выработку необходимых антител.

5. В - лимфоциты исследуют структуру чужеродного агента и вырабатывают антитела, предназначенные для борьбы именно с ним.

6. Т - киллеры, активно циркулирующие по системе крови, получают информацию от Т-хелперов на разрушение чужеродных клеток и уничтожают их. Одновременно фагоциты разрушают повреждённые микробами собственные клетки.

7. После уничтожения всех антигенов Т - супрессоры дают команду Т-хелперам о прекращении иммунного ответа.

Интенсивность иммунного ответа во многом определяется состоянием нервной и эндокринной систем. Гипофиз и эпифиз с помощью пептидных биорегуляторов - цитомединов - контролируют деятельность вилочковой железы и костного мозга. Передняя доля гипофиза является регулятором преимущественно клеточного, а задняя - гуморального иммунитета.

Ряд микроорганизмов может ослаблять иммунную систему, а некоторые, например, ВИЧ, полностью блокируют её работу, прицельно убивая Т- хелперов.

Центральные органы иммунной системы расположены в местах, защищенных от внешних воздействий.

Периферические органы иммунной системы расположены на путях возможного внедрения в организм чужеродных веществ. Глоточное лимфатическое кольцо окружает вход в глотку из полости рта и полости носа. В слизистой оболочке органов пищеварения, дыхательных и мочевыводящих путей находятся скопления лимфоидной ткани - лимфоидные узелки. В стенках тонкой кишки - пейеровы бляшки, большое количество одиночных лимфоидных узелков. В слепой кишке и аппендиксе - также много лимфоидных узелков. В стенке толстой кишки также скопления лимфоидной ткани.

Лимфатические узлы лежат на путях тока лимфы от органов и тканей почек и слизистых оболочек.

Селезенка лежит на пути потока крови из артериальной системы в венозную, является органом, контролирующим кровь. В селезенке утилизируют эритроциты, вышедшие из строя.

При постоянных и сильных антигенных действиях в центре лимфоидных узелков наблюдается размножение, образование молодых лимфоидов - герминативний центр - центр размножения. Такие узелки есть в миндалинах глоточного кольца, в стенках желудка, кишечника, в аппендиксе, в лимфоузлах, в селезенке.

Все органы иммунной системы достигают своего максимального развития в детском возрасте и у подростков. Затем постепенно уменьшается количество лимфоидных узелков, в них исчезают центры размножения, на месте лимфоидной ткани появляется жировая и соединительная ткани.

ФИЗИОЛОГИЯ ИММУННОЙ СИСТЕМЫ

Подготовил к.б.н., доцент кафедры общеобразовательных дисциплин Хакасского филиала

ФГОУ ВПО «Красноярский государственный аграрный университет» Степанов Ю.М. 1

1. СТРУКТУРА ИММУННОЙ СИСТЕМЫ 1

1.1. ЦЕНТРАЛЬНЫЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ 1

1.2. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ 2

1.3. КЛЕТКИ ИММУННОЙ СИСТЕМЫ 5

2. ИНДУКЦИЯ И РЕГУЛЯЦИЯ ИММУННОГО ОТВЕТА 8

2.1. АНТИГЕНЫ 8

2.2. АКТИВАЦИЯ ЛИМФОЦИТОВ 10

^ 2.3. ИММУННЫЙ ОТВЕТ ГУМОРАЛЬНОГО ТИПА 13

2.4. АНТИТЕЛА 16

2.5. ИММУННЫЙ ОТВЕТ КЛЕТОЧНОГО ТИПА 21

3. ФАКТОРЫ ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ 25

3.1. ЕСТЕСТВЕННЫЕ БАРЬЕРЫ 26

^ 3.2. СИСТЕМА ФАГОЦИТОВ 26

3.3. СИСТЕМА КОМПЛЕМЕНТА, ПРОПЕРДИН 29

3.4. ЛИЗОЦИМ 34

3.5. ИНТЕРФЕРОНЫ 35

3.6. ВЗАИМОДЕЙСТВИЕ АНТИГЕН-АНТИТЕЛО 35

Введение

Иммунология признана как наука в 1881г., когда Луи Пастер сделал доклад во французской академии о возможности использования ослаб­ленных штаммов микроорганизмов для создания искусственного иммунитета. В настоящее иммунология должна применяться в практической ветеринарии, поскольку фактически нет заболеваний, в патогенезе которых не были бы затронуты ме­ханизмы иммунитета.

Наиболее распространено следующее определение: и ммунная система - функциональная система организма по­звоночных, состоящая из лимфоидных клеток и органов, ответствен­ ных за специфические защитные механизмы.

В настоящее время иммунная система рассматривается как система контроля, обеспечивающая индивидуальность и целост­ность организма. Основные функции иммунной системы – отличать генетичес­ки чужеродные структуры от собственных, перерабатывать и эли­минировать их. Иммунная система обеспечивает защиту организ­ма от инфекций, а также удаление поврежденных, состарившихся и измененных клеток собственного организма.
^

1. СТРУКТУРА ИММУННОЙ СИСТЕМЫ

1.1. ЦЕНТРАЛЬНЫЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ


Центральный орган иммунной системы – вилочковая железа (тимус). Она состоит из множества мелких долек, в которых различают корковый и мозговой слои. Корковый слой заполнен лимфоцитами, на которые воздействуют «тимические факторы», выделяемые эпителиальными клетками этого слоя (факторы, играющие важную роль в дифференцировке Т-лимфоцитов). Лимфоциты коркового слоя различны по размеру. Большие лимфоциты находятся преимущественно во внешней зоне коры, где они продолжают пролиферировать. Во внутренней зоне коры сосредоточено множество малых лимфоцитов, несущих Т-клеточные антигены. Большая часть из них погибает еще в вилочковой железе.

В мозговом слое содержится меньшее количество, но уже зре­лых Т-лимфоцитов, покидающих вилочковую железу и включаю­щихся в циркуляцию. В вилочковой железе существует барьер между циркулирующей кровью и корковым слоем, аналогичный гематоэнцефалическому барьеру, вследствие чего в контакт с ан­тигеном вступают только клетки мозгового слоя.

Закладка тимуса происходит в период внутриутробного разви­тия. Первый идентифицированный лимфоидный орган - тимус - появляется у плодов на 42-е сутки развития. Дифференцировка тимуса происходит также в плодный период, и он приобретает выраженное дольчатое строение, под­разделяясь на зоны: в корковой зоне содержатся тимоциты, в моз­говой зоне - эпителиальные структуры (тельца Гассаля).

Сумка Фабрициуса у птиц также относится к центральным органам иммунной системы. В ней формируются В-лимфоциты аналогично тому, как в вилочковой железе созревают Т-лимфоциты. У млекопитающих и человека, органом, в котором происходит диффе­ренцировка В-лимфоцитов, является костный мозг.

Костный мозг, не являясь непосредственно лимфоидным орга­ном, принадлежит к органной иммунной системе. С одной сторо­ны, он поставляет все клетки-предшественники для различных популяций лимфоцитов и макрофагов, а с другой - в костном мозге протекают специфические иммунные реакции, связанные, например, с синтезом антител. Этот процесс происходит следую­щим образом. Через несколько дней после начала вторичного иммунного ответа обнаруживается миграция активированных В-клеток памяти в костный мозг, где они и созревают в плазматические клетки. Костный мозг служит основным источ­ником сывороточных иммуноглобулинов. Костный мозг в отличие от периферической лимфоидной ткани на антиген реагирует мед­ленно, однако ответ более продолжительный и сопровождается более эффективной продукцией антител при последующем кон­такте с антигеном. Лимфоциты составляют примерно около 20 % всех клеток костного мозга.
^

1.2. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ


Селезенка заселяется лимфоцитами в поздний эмбриональный период и сразу после рождения. Структурно выраженная селезен­ка выявлена у плодов крупного рогатого скота 55-суточного воз­раста, а дифференцирование красной и белой пульпы происходит между 80-ми и 100-ми сутками.

Между 70-ми и 100-ми сутками происходит диф­ференциация на красную и белую пульпу. Ретикулярные клетки содержат вакуоли и эндоплазматический ретикулум. Лимфоциты накапливаются в периваскулярных пространствах и являются предшественниками белой пульпы селезенки. В белой пульпе различают тимусзависимые и тимуснезависимые зоны, ко­торые заселяются соответственно Т- и В-лимфоцитами. Т-клетки располагаются преимущественно в периартериальных областях, а В-клетки - в лимфоидных муфтах и фолликулах. Антигены с то­ком крови достигают селезенки, фиксируются в дендритных клет­ках и в маргинальной зоне, откуда они транспортируются в белую пульпу и расположенные в ней центры размножения. Эти антиге­ны индуцируют образование лимфобластов в тимусзависимой зоне селезенки, а в тимуснезависимой зоне происходит пролиферация лимфоцитов и образование плазматических клеток.

Селезенка осуществляет контроль за цитологическим составом крови, удаляя из кровотока утратившие функциональную актив­ность эритроциты и лейкоциты, а также образует новые лимфоци­ты в ответ на занесенные кровотоком чужеродные антигены, осо­бенно корпускулярные.

^ Лимфатические узлы относятся к периферическим органам им­мунной системы. Они состоят из заключенной в капсулу паренхимы, содержащей ретикулярную строму и большое число подвижных клеток: лимфоцитов, плазматических клеток и макрофагов.

У крупного рогатого скота в эмбриональный период надвыменый лимфатический узел и узел коленной складки представлен небольшими узелками, окруженными студенистой плотной массой. Постепенно они приобретают рыхлую, а затем упругую консистенцию и ко времени рождения формируются полностью. В них содержатся фолликулы, лимфоциты и миелоциты. У эмбрионов коз поверхностные региональные лимфатические узлы закладываются также в форме прозрачных студенистых пузырьков в первой половине суягности; к 75-м суткам развития они морфологически оформляются. У 120-суточных плодов уже развита капсула, различаются трабекулы и фолликулы некоторых узлов. Периферические и глубокие лимфатические узлы у плодов свиней представляют собой систему синусов, покрытых плоскими клетками; на 51-е сутки развития доминируют гисторетикулярные клетки; разбросанныелимфоциты обнаруживаются на 64-е сутки развития. Ретикулярные клетки лимфатических узлов образуют синусы, фильтрующие лимфу, которая дренирует ткани организма и может содержать чужеродные антигены. В лимфатическом узле также различают мозговой и корковый слои. Корковый слой густо заселен лимфоцитами. В коре, в свою очередь, также выделяют внешнюю и внутреннюю зоны. Лимфоидные фолликулы и зародышевые центры имеются только во внешней коре и содержат большое количество делящихся лимфоидных клеток, лимфобластов и средних лимфоцитов (в том числе одиночных Т-лимфоцитов) и плазматических клеток. Тимусзависимой зоной лимфатического узла является внутренняя зона.

В зависимости от вида антигенного воздействия изменения мо­гут возникнуть в различных зонах лимфатического узла. При реак­ции клеточного типа во внутренней (паракортикальной) зоне лимфатического узла уже в течение суток можно обнаружить бластные клетки, а пролиферация Т-клеток продолжается несколько суток. Если же антигены вызывают иммунную реакцию гуморального типа, то морфологически значимые изменения происходят во внешней (тимусзависимой) области коры. Тогда антиген, на­капливаясь на ретикулярных клетках лимфоидного фолликула, индуцирует пролиферацию в зародышевых центрах, и через не­сколько суток начинается миграция плазматических клеток из корковой зоны в мозговую.

Лимфоциты поступают в лимфатический узел по афферентным лимфатическим сосудам, проникая через стенки посткапилляр­ных венул с так называемым высоким эндотелием. На эндотелиальных клетках, выстилающих эти венулы, располагаются специ­альные рецепторы, направляющие соответствующую популяцию лимфоцитов в лимфатический узел. Перемещение лимфоцитов между тканями, кровеносным руслом и лимфатическими узлами позволяет антигенчувствительным клеткам обнаружить антиген и скапливаться в местах протекания иммунной реакции, а распро­странение по организму клеток памяти и их потомков позволяет лимфоидной системе организовать генерализованный иммунный ответ. Уже через 24 часа после того как антиген оказывается в лим­фатическом узле или селезенке, реагирующие на него клетки из циркулирующего пула лимфоцитов скапливаются в месте локали­зации антигена, интенсивно пролиферируют, из лимфатическо­го узла через 3 суток выходят активированные бластные клетки.

К периферическим органам иммунной системы также относят­ся лимфоидная ткань пищеварительного тракта (миндалины глот­ки, пейеровы бляшки и солитарные фолликулы кишечника) и лимфоидная ткань органов дыхания (гортань, трахея, бронхи, лег­кие). Как известно, органы дыхания и пищеварительный тракт служат главными «входными воротами» для антигенов, содержа­щиеся там многочисленные лимфатические фолликулы сходны по строению с таковыми селезенки и лимфатических узлов.

Тимус (thymus), или вилочковая железа, имеется у всех позвоночных животных. В эмбриогенезе закладывается раньше дру­гих лимфоидных органов. У новорожденного тимус уже полнос­тью развит, а его масса составляет 0,6% массы тела. Закладка тимуса происходит достаточно рано (например, у крупного рога­того скота на 25- 27 сутки) в виде трубчатых выпячиваний энто­дермы третьего-четвертого жаберных карманов головной кишки. Роль тимуса была убедительно показана при изучении заболева­ния, получившего название «синдром ДиДжорджи, при котором генетически детерминированное недоразвитие этого органа приводит к отсутствию одной из популяций лимфоцитов – Т-лимфоцитов. При таком врожденном иммунодефиците прояв­лялась повышенная чувствительность к вирусным, грибным и не­которым бактериальным инфекциям.

Максимального развития тимус достигает к концу подсосного периода (у телят 2-месячного возраста его масса 1050 г). Вместе с тем объективные данные свидетельствуют об очень быстрой его возрастной инволюции, т. е. об утрате тимуса с возрастом. В тече­ние первых лет жизни ежегодно теряется по 3% истинно тимической ткани, которая постепенно замещается жировой и соединительной тканями. Соответственно снижается и продукция Т-лимфоцитов. Самая высокая продукция Т-лимфоцитов у приматов, например, сохраняется до двух лет, а затем быстро падает. У мыши к 24-месячному возрасту продукция Т-клеток составляет 0,7% уровня их продукции у новорожденной мыши, т.е. происходит почти полная редукция тимуса: теряется и структура, и его функ­ция. Однако следует отметить, что количество Т-лимфоцитов в циркуляции сохраняется на достигнутом уровне. Дело в том, что значительную часть популяции Т-лимфоцитов составляют долгоживущие клетки, которые не нуждаются в постоянном об­новлении, и поэтому численность Т-клеток поддерживается во взрослом организме и при отсутствии тимуса. Более того, зрелые Т-лимфоциты подвергаются так называемой клональной экспан­сии, т. е. избирательной пролиферации в ответ на встречу со сво­им антигеном, за счет чего их численность возрастает. После со­здания пула периферических Т-лимфоцитов утрата тимуса уже не приводит к катастрофическому снижению иммунитета. В пользу этого говорят результаты иммунологического обследования мы­шей, перенесших тимэктомию.

Из всех органов иммунной системы только для тимуса харак­терна возрастная инволюция. Костный мозг не претерпевает по­добных возрастных изменений, если не считать накопления жи­ровых отложений. Не подвержены возрастной инволюции ни се­лезенка, ни лимфатические узлы. С возрастом дифференцировка гранулоцитов и моноцитов даже усиливается, повышается коли­чество естественных киллеров – больших гранулярных лимфо­цитов вне зависимости от тимуса. Можно заключить, что в орга­низме сохраняется воспроизводство всех остальных иммуноком-петентных клеток, которые не являются долгоживущими, выпол­няют функции эффекторов и тратятся постоянно в борьбе с бо­лезнетворными микроорганизмами. В отличие от этого необхо­димость в генерации новых Т-лимфоцитов снижается с возрас­том. Первичные контакты с инфекционными агентами проис­ходят в основном в первые годы жизни, когда и формируются Т-клетки памяти. Т-лимфоциты памяти у людей живут более 20 лет. В дальнейшем возможность поступления новых патогенов снижается и содержание организмом целого тимуса с его энерге­тической емкостью становится нецелесообразным. Тимус под­вергается инволюции к тому периоду жизни, когда этот орган становится ненужным, так как остаются долгоживущие Т-клетки памяти. При наличии такого клона организму нестрашна встреча с болезнетворным асептом: тут же распознаются «запомнившие­ся» антигены, вырабатываются сигналы клональной экспансии (пролиферации), активации и клетки начнут выполнять свои защитные функции, что ведет к элиминации возбудителя и нейтра­лизации его токсинов.

При отсутствии тимуса его функции могут частично выпол­нять участки лимфоидных тканей, где созревают Т-лимфоциты. Наиболее ярким примером механизма компенсации функций отсутствующих Т-лимфоцитов могут служить так называемые голые (nude) мыши. У таких мышей имеется сочетание двух ге­нетических дефектов: дефекта эпителия кожи, ведущего к от­сутствию волосяного покрова, и недоразвития тимуса, ведущего к отсутствию Т-лимфоцитов. У них компенсаторно повышено количество естественных киллеров, которые способны проду­цировать и секретировать один из важнейших защитных цитокинов – гамма-интерферон. При наличии в организме Т-лим­фоциты являются основными продуцентами гамма-интерферо­на, но при их отсутствии эту важную защитную функцию берут на себя другие клетки - естественные киллеры, развитие кото­рых протекает без участия тимуса.

Костный мозг дает начало всем росткам кроветворе­ния: из единой стволовой полипотентной клетки костного мозга происходят эритроциты, тромбоциты, гранулоциты, моноциты и лимфоциты. Из стволовых клеток костного мозга путем различ­ных превращений образуются Т- и В-лимфоциты. Превращение стволовой клетки в В-лимфоцит происходит, по-видимому, также в костном мозге. Красный костный мозг первоначально занимает и трубчатые, и плоские кости, но в процессе развития организма детеныша он замещается желтым костным мозгом, причем пол­ностью этот процесс завершается к моменту полового созревания. После этого момента красный костный мозг остается только в плоских костях.

Селезенка впервые как самостоятельный орган появляет­ся у рыб. В эмбриогенезе развивается из мезенхимы в дорсальной части брыжейки. Вначале в ней происходит образование эритроци­тов и гранулоцитов. Позднее из центральных органов кровообра­зования в селезенку вселяются лимфоциты. У новорожденных масса селезенки составляет (у крупного рогатого скота) около 0,15...0,19% массы тела. Селезенка участвует в защите организма, а в связи с тем, что она состоит из ретикулярной и лимфоидной тканей, выполняет функции кроветворения. В организме созданы благоприятные условия для компенсации функции селезенки за счет других отделов ретикулоэндотелиальной системы в случае спленэктомии. Ее деятельность в филогенезе претерпевает опре­деленные изменения. У птиц селезенка выполняет только функ­цию кроветворения (продукция лимфоцитов и моноцитов). У млекопитающих кроме кроветворения селезенка участвует в им­мунологических реакциях организма за счет того, что эндотелиальные клетки способны захватывать чужеродные частицы и электроотрицательные коллоиды.

>> анатомия и физиология

Иммунитет (от лат. immunitas – освобождать от чего-либо) – это физиологическая функция, которая обуславливает невосприимчивость организма к чужеродным антигенам. Иммунитет человека делает его невосприимчивым по отношению ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных. Кроме того, иммунитет обеспечивает защиту организма от раковых клеток.

Задачей иммунной системы является распознавать и разрушать все чужеродные структуры. При контакте с чужеродной структурой клетки иммунной системы запускают иммунный ответ , который приводит к выведению чужеродного антигена из организма.

Функция иммунитета обеспечивается работой иммунной системы организма, в состав которой входят различные типы органов и клеток. Ниже рассмотрим подробнее строение иммунной системы и основные принципы ее функционирования.

Анатомия иммунной системы
Анатомия иммунной системы чрезвычайно неоднородна. В целом, клетки и гуморальные факторы иммунной системы присутствуют почти во всех органах и тканях организма. Исключение составляют некоторые отделы глаз, яичек у мужчин, щитовидной железы , головного мозга – эти органы ограждены от иммунной системы тканевым барьером, который необходим для их нормального функционирования.

В общем, работа иммунной системы обеспечивается двумя видами факторов: клеточными и гуморальными (то есть жидкостными). Клетки иммунной системы (различные виды лейкоцитов) циркулируют в крови и переходят в ткани, осуществляя постоянный надзор за антигенным составов тканей. Кроме того, в крови циркулирует большое количество разнообразных антител (гуморальные, жидкостные факторы), которые также способны распознавать и уничтожать чужеродные структуры.

В архитектуре иммунной системы различаем центральные и периферические структуры. Центральными органами иммунной системы являются костный мозг и тимус (вилочковая железа). В костном мозге (красный костный мозг) происходит формирование клеток иммунной системы из так называемых стволовых клеток , которые дают начало всем клеткам крови (эритроциты, лейкоциты, тромбоциты). Вилочковая железа (тимус) расположена в грудной клетке, сразу позади грудины. Тимус хорошо развит у детей, но с возрастом подвергается инволюции и практически отсутствует у взрослых. В тимусе происходит дифференциация лимфоцитов – специфических клеток иммунной системы. В процессе дифференциации лимфоциты «учатся» распознавать «свои» и «чужие» структуры.

Периферические органы иммунной системы представлены лимфатическими узлами, селезенкой и лимфоидной тканью (такая ткань находится, например, в небных миндалинах, на корне языка, на задней стенке носоглотки, в кишечнике).

Лимфатические узлы представляют собой скопление лимфоидной ткани (на самом деле скопление клеток иммунной системы) окруженные оболочкой. В лимфатический узел входят лимфатические сосуды, по которым течет лимфа. Внутри лимфатического узла лимфа фильтруется и очищается от всех чужеродных структур (вирусы , бактерии , раковые клетки). Сосуды выходящие из лимфатического узла сливаются в общий проток, который впадает в вену.

Селезенка представляет собой не что иное, как большой лимфатический узел. У взрослого человека масса селезенки может достигать нескольких сотен граммов, в зависимости от количества крови, накопленного в органе. Селезенка расположена в брюшной полости слева от желудка. В сутки через селезенку прокачивается большое количество крови, которая, подобно лимфе в лимфатических узлах, подвергается фильтрации и очищению. Также в селезенке запасается определенное количество крови, в котором организм на данный момент не нуждается. Во время физической нагрузки или стресса селезенка сокращается и выбрасывает кровь в кровеносные сосуды, для того чтобы удовлетворить потребность организма в кислороде.

Лимфоидная ткань рассеяна по всему организму в виде маленьких узелков. Основная функция лимфоидной ткани – обеспечение местного иммунитета, поэтому наиболее крупные скопления лимфоидной ткани расположены в области рта, глотки и кишечника (эти зоны организма в изобилии населены разнообразными бактериями).

Кроме того, в различных органах существуют, так называемые, мезенхимальные клетки , которые могут выполнять иммунную функцию. Много таких клеток в коже, печени, почках .

Клетки иммунной системы
Общее название клеток иммунной системы это лейкоциты . Однако семейство лейкоцитов очень неоднородно. Различаем два основных типа лейкоцитов: зернистые и незернистые.

Нейтрофилы – наиболее многочисленные представители лейкоцитов. Эти клетки содержат вытянутое ядро, разделенное на несколько сегментов, поэтому иногда их называют сегментоядерными лейкоцитами. Как и все клетки иммунной системы, нейтрофилы образуются в красном костном мозге и после созревания попадают в кровь. Время циркуляции нейтрофилов в крови не велико. В течение нескольких часов эти клетки проникают через стенки сосудов и переходят в ткани. Пробыв некоторое время в тканях, нейтрофилы могут вновь вернуться в кровь. Нейтрофилы чрезвычайно чувствительны к наличию в организме очага воспаления и способны направленно мигрировать в воспаленные ткани. Попадая в ткани, нейтрофилы меняют свою форму – из круглых превращаются в отростчатые. Основная функция нейтрофилов обезвреживание различных бактерий. Для передвижения в тканях нейтрофил снабжен своеобразными ножками, которые представляют собой выросты цитоплазмы клетки. Придвигаясь к бактерии нейтрофил, окружает ее своими отростками, а затем «заглатывает» и переваривает ее при помощи специальных ферментов. Отмершие нейтрофилы скапливаются в очагах воспаления (например, в ранах) в виде гноя. Количество нейтрофилов крови увеличивается во время различных воспалительных заболеваний бактериальной природы.

Базофилы принимают активное участие в развитии аллергических реакций немедленного типа. Попадая в ткани базофилы, превращаются в тучные клетки, содержащие большое количество гистамина – биологически активного вещества, которое стимулирует развитие аллергии. Благодаря базофилам яды насекомых или животных сразу блокируются в тканях и не распространяются по всему телу. Также базофилы регулируют сворачиваемость крови при помощи гепарина.

Лимфоциты . Существует несколько разновидностей лимфоцитов: B-лимфоциты (читается «Б-лимфоциты»), Т-лимфоциты (читается «Т-лимфоциты»), К-лимфоциты (читается «К-лимфоциты»), NK-лимфоциты (естественные киллеры) и моноциты.

В-лимфоциты распознают чужеродные структуры (антигены) вырабатывая при этом специфические антитела (белковые молекулы, направленные против чужеродных структур).

Т-лимфоциты выполняют функцию регуляции иммунитета. Т-помошники стимулируют выработку антител, а Т-супрессоры тормозят ее.

К-лимфоциты способны разрушать чужеродные структуры, помеченные антителами. Под влиянием этих клеток могут быть разрушены различные бактерии, раковые клетки или клетки инфицированные вирусами.

NK-лимфоциты осуществляют контроль над качеством клеток организма. При этом NK-лимфоциты способны разрушать клетки, которые по своим свойствам отличаются от нормальных клеток, например, раковые клетки.

Моноциты это самые большие клетки крови. Попадая в ткани, они превращаются в макрофагов. Макрофаги это большие клетки, активно разрушающие бактерии. Макрофаги в больших количествах накапливаются в очагах воспаления.

По сравнению с нейтрофилами (см. выше) некоторые виды лимфоцитов более активны в отношении вирусов, чем бактерий, и не разрушаются во время реакции с чужеродным антигеном, поэтому в очагах воспаления вызванного вирусами гной не формируется. Также лимфоциты накапливаются в очагах хронического воспаления.

Популяция лейкоцитов постоянно обновляется. Каждую секунду образуются миллионы новых иммунных клеток. Некоторые клетки иммунной системы живут всего несколько часов, а другие могут сохраняться на протяжении нескольких лет. В этом и заключается суть иммунитета: однажды повстречав антиген (вирус или бактерию), иммунная клетка «запоминает» его и при новой встрече реагирует быстрее, блокируя инфекцию сразу после ее попадания в организм.

Общая масса органов и клеток иммунной системы организма взрослого человека составляет около 1 килограмма . Взаимодействия между клетками иммунной системы чрезвычайно сложны. В целом, согласованная работа различных клеток иммунной системы, обеспечивает надежную защиту организма от различных инфекционных агентов и собственных мутировавших клеток.

Помимо функции защиты иммунные клетки контролируют рост и размножение клеток организма, а также восстановление тканей в очагах воспаления.

Кроме клеток иммунной системы в организме человека существует ряд факторов неспецифической защиты, которые составляют так называемый видовой иммунитет. Эти факторы защиты представлены системой комплимента, лизоцимом, трансферином, С-реактивным белком, интерферонами.

Лизоцим – это специфический фермент, который разрушает стенки бактерий. В больших количествах лизоцим содержится в слюне, чем объясняются ее антибактериальные свойства.

Трансферин – это белок, который конкурирует с бактериями за захват определенных веществ (например, железо), необходимых для их развития. В результате этого рост и размножение бактерий замедляется.

С-реактивный белок активируется подобно комплименту при попадании в кровь чужеродных структур. Присоединение этого белка к бактериям делает их уязвимыми для клеток иммунной системы.

Интерфероны – это сложномолекулярные вещества, которые выделяются клетками в ответ на проникновение в организм вирусов. Благодаря интерферонам клетки становятся невосприимчивыми по отношению к вирусу.

Библиография :

  • Хаитов Р.М. Иммуногенетика и иммунология, Ибн Сина, 1991
  • Лесков,В.П. Клиническая иммунология для врачей, М., 1997
  • Борисов Л.Б. Медицинская Микробиология, вирусология, иммунология, М. : Медицина, 1994

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

В результате изучения материала данной главы студент будет:

  • о значении иммунной системы для организма, о механизмах и органах иммунной защиты;
  • о возрастных морфофункциональных особенностях иммунных органов, об организации иммунного ответа в разные периоды онтогенеза, о факторах, влияющих на их состояние и развитие иммунитета в онтогенезе;
  • возможные пути организации профилактических мероприятий, направленных на укрепление иммунной защиты в детском и подростковом возрасте;
  • анализировать возрастные особенности иммунной защиты и обусловленные ими требования к уходу и воспитанию детей и подростков;
  • анализировать теоретические предпосылки методов повышения иммунной защиты для обоснованного использования их в практической деятельности;

владеть навыками

Культурно-просветительной работы по вопросам иммунной защиты в детском и подростковом возрасте.

Механизмы иммунной защиты организма

Иммунитет - это способность распознавать вторжение в организм чужеродных объектов и уничтожать или удалять эти объекты из организма.

В организме человека одновременно работают две иммунные системы, различающиеся своими возможностями и механизмом действия, - специфическая и неспецифическая. Специфические защитные механизмы отличаются тем, что они начинают действовать только после первичного контакта с антигеном , тогда как неснецифические обеззараживают даже те вещества, с которыми организм прежде не встречался. Однако специфическая иммунная система является наиболее мощной и эффективной.

Специфическая иммунная система. При проникновении в организм антигена клетки специфической иммунной системы начинают вырабатывать антитела и антитоксины, которые соединяются с антигенами и нейтрализуют их вредное влияние на организм. Антитела , или иммунные тела, представляют собой циркулирующие в крови белковые вещества

(иммуноглобулины), образующиеся в организме под действием попавших в него чужеродных тел (бактерий, вирусов, белковых частиц и др.), называемых антигенами. Антитоксины - это антитела, синтезирующиеся в организме при его отравлении токсинами (ядовитыми веществами, продуцируемыми патогенными микроорганизмами).

Основной структурной и функциональной единицей специфической иммунной системы является белая кровяная клетка - лимфоцит, который существует в виде двух независимых популяций (Т-лимфоциты и В-лимфоциты). Лимфоциты, как и другие клетки крови, образуются из стволовых клеток костного мозга. Из части стволовых клеток формируются непосредственно В-лимфоциты. Другая часть поступает в тимус (вилочковую железу), где они дифференцируются в Т-лимфоциты.

В специфической борьбе с чужеродными микроорганизмами участвуют и клетки (клеточный иммунитет), и антитела (гуморальный иммунитет).

Клеточный иммунитет. Т-лимфоциты, несущие на своих мембранах рецепторы соответствующих веществ, распознают иммуноген. Размножаясь, они образуют клон таких же Т-клеток и уничтожают микроорганизм или вызывают отторжение чужеродной ткани.

Гуморальный иммунитет. В-лимфоциты также распознают антиген, после чего синтезируют соответствующие антитела и выделяют их в кровь. Антитела связываются с антигенами на поверхности бактерий и ускоряют их захват фагоцитами либо нейтрализуют бактериальные токсины.

Становление механизмов специфического иммунитета связано с формированием лимфоидной системы, дифференцировкой Т- и В-лимфоцитов, которая начинается с 12-й недели внутриутробной жизни. У новорожденных содержание Т- и В-лимфоцитов в крови выше, чем у взрослого, но они менее активны, поэтому основную роль играют антитела, попадающие в кровь ребенка от матери через плаценту до рождения и поступающие с материнским молоком.

Собственная иммунная система начинает функционировать с началом развития микрофлоры в желудочно-кишечном тракте ребенка. Микробные антигены являются стимуляторами иммунной системы организма новорожденного. Примерно со 2-й недели жизни организм начинает выработку собственных антител. В первые 3-6 месяцев после рождения разрушается материнская и созревает собственная иммунная система. Низкое содержание иммуноглобулинов в течение первого года жизни объясняет легкую восприимчивость детей к различным заболеваниям. Только ко 2-му году организм ребенка обретает способность вырабатывать достаточное количество антител. Иммунная защита достигает максимума на 10-м году. В дальнейшем напряженность иммунитета держится на постоянном уровне и начинает снижаться после 40 лет.

Важнейшим свойством специфической иммунной системы является иммунологическая память. В результате первой встречи запрограммированного лимфоцита с определенным антигеном образуется два вида клеток. Одни из них сразу выполняют свою функцию - секретируют антитела, другие представляют собой клетки памяти, циркулирующие в крови длительное время. В случае повторного поступления этого же антигена клетки памяти быстро превращаются в лимфоциты, вступающие в реакцию с антигеном (рис. 10.1). При каждом делении лимфоцита количество клеток памяти возрастает.

Рис. 10.1.

(на графике видно, что организм, один раз уже боровшийся с инфекцией, во второй раз реагирует быстрее и более мощно)

Кроме того, после встречи с антигеном Т-лимфоциты активируются, увеличиваются и дифференцируются в одну из пяти субпопуляций, каждая из которых обусловливает определенный ответ. Т-киллеры (убийцы) при встрече с антигеном вызывают его гибель. Т-супрессоры подавляют иммунный ответ В-лимфоцитов и других Т-лимфоцитов на антигены. Для осуществления иммунного ответа В-лимфоцита на антиген необходима его кооперация с Т-хелпером (помощником). Но это взаимодействие возможно только при наличии макрофага - Е-клетки. При этом макрофаг передает антиген В-лимфоциту, который затем продуцирует плазматические клетки, уничтожающие чужеродный микроорганизм.

В-лимфоцит производит сотни плазматических клеток. Каждая такая клетка дает огромное количество антител, готовых уничтожить антиген. Антитела по своей природе являются иммуноглобулинами и обозначаются Ig. Иммуноглобулины бывают пяти видов: IgA, IgG, IgE, IgD и IgM. Около 15% всех антител - это IgG, которые вместе с IgM воздействуют на бактерии и вирусы. IgA защищают слизистые оболочки пищеварительной, дыхательной, мочеполовой систем. IgE ответственны за аллергические реакции. Увеличение количества IgM свидетельствует об остром заболевании, IgG - о хроническом процессе.

Кроме того, лимфоциты продуцируют лимфокины. Самый известный из них - интерферон, который образуется под действием вируса. Функцией интерферона является стимуляция неинфицированных клеток к выработке противовирусных белков. Интерферон активен против всех видов вирусов и способствует увеличению числа Т-лимфоцитов.

Активация лимфоцитов приводит также к синтезу клетками неспецифических биологически активных веществ, называемых цитокинами , или интерлейкинами. Эти вещества регулируют характер, глубину, продолжительность иммунного ответа и иммунного воспаления. Продолжительность жизни В-лимфоцитов составляет несколько недель, Т-лимфоцитов - 4-6 месяцев.

Специфический иммунитет может быть активным и пассивным , врожденным и приобретенным. Существуют четыре основных типа иммунитета:

  • естественный пассивный иммунитет (иммунитет новорожденного) - готовые антитела передаются от одного индивидуума к другому (того же вида); вследствие естественного разрушения антител в организме он обеспечивает лишь кратковременную защиту от инфекции;
  • приобретенный пассивный иммунитет - на основе образованных в организме одного индивидуума антител создают лечебные сыворотки и вводят их в кровь другому; этот вид иммунитета также сохраняется непродолжительное время;
  • естественный активный иммунитет - организм вырабатывает собственные антитела при инфицировании;
  • приобретенный активный иммунитет - в организм вводятся небольшие количества иммуногенов в виде вакцины.

Неспецифические факторы защиты включают:

  • непроницаемость кожного покрова и слизистых оболочек для микроорганизмов;
  • бактерицидные вещества в слюне, слезной жидкости, крови, спинномозговой жидкости;
  • выделение вирусов почками;
  • фагоцитоз - процесс поглощения чужеродных частиц и микроорганизмов специальными клетками: макрофагами и микрофагами;
  • гидролитические ферменты, расщепляющие микроорганизмы;
  • лимфокины;
  • систему комплемента - специальную группу белков, участвующих в «борьбе» с чужеродными микроорганизмами.

Фагоцитарная реакция осуществляется с помощью специальных лейкоцитов, способных к фагоцитозу, т.е. поглощению болезнетворных агентов и комплексов антиген-антитело. У человека фагоцитарную роль выполняют нейтрофилы и моноциты. Как только в организм попадают чужеродные частицы, к месту их внедрения направляются находящиеся поблизости лейкоциты, причем скорость некоторых из них может достигать почти 2 мм/ч. Приблизившись к чужеродной частице, лейкоциты обволакивают ее, втягивают внутрь протоплазмы и затем переваривают с помощью специальных пищеварительных ферментов. Многие из лейкоцитов при этом гибнут, и из них образуется гной. При распаде погибших лейкоцитов выделяются также вещества, вызывающие в ткани воспалительный процесс, сопровождающийся неприятными и болевыми ощущениями. Вещества, обусловливающие воспалительную реакцию организма, способны активировать все защитные силы организма: к месту внедрения чужеродного тела направляются лейкоциты из самых отдаленных частей тела.

  • Под антигеном понимается микроорганизм, вещество, продукт питания или другаясубстанция (например, пересаженные от другого организма ткани), несущие чужероднуюдля данного организма информацию, закодированную в структуре молекул белка.

Лекция 11.
Физиология иммунной системы

Морфофункциональная характеристика иммунной системы. Иммунный ответ, его типы и механизм. Антитела, их взаимодействие с антигеном . Иммунологическая реактивность и неспецифическая резистентность. Использование достижений иммунологии в животноводстве.

1. Морфофункциональная характеристика иммунной системы.

n Иммунная система (от лат. immunitas - освобождаться от чего-либо) - это система органов и клеток, деятельность которых обеспечивает иммунитет это способность организма защищаться от генетически чужеродных веществ, сохранять свой генетический гомеостаз (биологическую индивидуальность).

n Чужеродные вещества могут поступать из внешней среды (бактерии, вирусы , простейшие, токсины, белки) и из внутренней (собственные клетки с искаженной генетической информацией).

n Морфологически иммунная система представляет собой совокупность всех лимфоидных органов и скоплений лимфоидных клеток тела, коммуникация между которыми осуществляется через кровоток и лимфоток. Главной клеточной формой иммунной системы является лимфоцит.

n Лимфоидные органы:

n 1. Центральные (первичные ) - тимус (вилочковая железа), фабрициева бурса (у птиц) и костный мозг; в них образуются исходные стволовые клетки, осуществляется пролиферация и первичная дифференцировка иммунокомпетентных (ответственных за иммунитет) клеток - лимфоцитов.

n 2. Периферические (вторичные ) - лимфатические узлы, миндалины, селезенка, пейеровы бляшки тонкого кишечника, фолликулы аппендикса , лимфоэпителиальные образования в слизистой желудочно-кишечного тракта, дыхательных и мочеполовых путей; в них происходит созревание лимфоцитов, их пролиферация в ответ на антигенную стимуляцию.

n Первичные лимфоидные органы .

n В красном костном мозгу и печени (у плодов) находятся стволовые клетки, дающие начало всем типам клеток крови. Часть стволовых клеток, запрограммированных как лимфоцитарные, мигрируют с током крови в тимус, где размножаются и дифференцируются в лимфоциты - Т-лимфоциты, или тимусзависимые.

n Другие поселяются и дифференцируется в фабрициевой бурсе птиц - дивертикуле клоаки - В-лимфоциты, или бурсозависимые . У млекопитающих эту функцию выполняет сама кроветворная ткань костного мозга или лимфатические пейеровы бляшки, расположенные в стенке тонкого кишечника. С наступлением половой зрелости тимус и фабрициева бурса уменьшаются в размерах и затем подвергаются инволюции.

n Вторичные лимфоидные органы.

n Часть лимфоцитов из тимуса и фабрициевой бурсы переносится (еще в эмбриональный период) в периферические лимфоидные органы. В лимфатических фолликулах этих образовании различают тимусзависимые зоны - где селятся Т-лимфоциты и тимуснезависимые зоны - В-лимфоциты.

n Пр., в лимфатических узлах тимуснезависимой зоной является кортикальный слой, а паракортикальный слой, прилегающий к медуллярным синусам, составляет тимусзависимый слой. Однако резкой границы между зонами нет, поскольку иммунный ответ требует, как правило, взаимодействия между Т - и В-лимфоцитами.

n В селезенке, выполняющей роль фильтра для крови, обе зоны находятся в белой пульпе. Вдоль артерий расположена тимусзависимая зона, кнаружи от нее - тимуснезависимая зона

2. Иммунный ответ, его типы и механизм.

n Иммунный ответ - это реакция организма на внедрение чуждых ему макромолекул.

n Вещество, способное вызвать специфический иммунный ответ, называется антигеном.

n Иммуногенность антигена - способность вызывать иммунный ответ. Зависит от его чужеродности, молекулярной массы (молекулы массой менее 5000 обычно не иммуногенны), структурной гетерогенности, устойчивости к разрушению ферментами, вида животных.

n Антигены могут быть животного, растительного и микробного происхождения.

n Пр., антигены гистосовместимости - распознающие и устраняющие аномальные клетки организма или трасплантированных тканей; аллергены (пыльца, чешуйки кожи, волосы, перья и др.); групповые антигены крови.

n Типы иммунного ответа:

n 1. Гуморальный - выработка антител , циркулирующих в крови и специфически связывающихся с чужеродными молекулами, ответственны В-лимфоциты

n 2. Клеточный - образование специализированных клеток, реагирующих с антигеном посредством его связывания и последующего разрушения. В основном против клеточных антигенов - бактерий, патогенных грибов, чужеродных клеток и тканей (пересаженных или опухолевых), ответственны Т-лимфоциты.

n Механизм иммунного ответа .

n 5. IgD (0,1%) - являются рецепторами для антигена на некоторых В-лимфоцитах.

n Антитела способствуют уничтожению чужеродных тел с помощью трех механизмов :

n 1. Усиления фагоцитоза (путем связывания с рецепторами макрофагов и нейтрофилов),

n 2. Активации системы комплемента - белкового комплекса сыворотки, участвующего в реакции антиген-антитело и вызывающего лизис клеток,

n 3. Стимуляции функции К-клеток (лимфоцитов без Т - или В-маркеров, обладающих цитотоксическим действием).

n Кроме того, антитела могут присоединяться к вирусам или бактериальным токсинам и предотвращать их связывание с рецепторами на клетках-мишенях.

В крови сельскохозяйственных животных (крупного рогатого скота, свиней, овец, коз и лошадей) обнаружено 3 класса иммуноглобулинов: IgG, IgA, IgM, причем IgG имеет два подкласса (IgG1 и IgG2). В молозиве содержатся преимущественно IgG, в молоке - IgA и IgM.

n Комплементарные, т. е. взаимно соответствующие друг другу антигены и антитела, образуют иммунный комплекс антиген - антитело .

n Прочность таких структур определяется высокой избирательностью и большой площадью взаимодействия по принципу «ключ-замок», благодаря гидрофобным водородным электростатическим связям и силам Ван-дер-Ваальса. Антиген при этом соединяется своей антигенной детерминантой , антитело - своим активным центром.

n Антиген, как правило, больше по размерам, чем антитело, поэтому последнее может распознавать только отдельные участки антигена, которые называются детерминантами .

n Большинство антигенов имеет на поверхности много антигенных детерминант, которые стимулируют иммунный ответ.

n Антитела могут вступать в реакцию не только с гомологичным антигеном, но и с родственными ему гетерологичными антигенами.

n Пр., на этом принципе основана предохранительная противооспенная прививка, когда человеку прививают «безобидную» коровью оспу, родственную натуральной оспе.

n Реакции специфического взаимодействия антител с антигенами проявляются в следующих формах:

n 1. Агглютинация - склеивание антигенных частиц между собой;

n 2. Преципитация - агрегация частиц с образованием нерастворимых комплексов;

n 3. Лизис - растворение клеток под влиянием антител в присутствии комплемента;

n 4. Цитотоксичность - гибель клеток под влиянием антител - цитотоксинов;

n 5. Нейтрализация - обезвреживание токсинов белковой природы;

n 6. Опсонизация - усиление фагоцитарной активности нейтрофилов и макрофагов под влиянием антител или комплемента.

n Обычно иммунный ответ выявляется через несколько дней.

n 4. Иммунологическая реактивность и неспецифическая резистентность .

n Формы нормальной иммунологической реактивности :

n 1. Иммунитет - защита при помощи антител и сенсибилизированных Т-лимфоцитов;

n 2. Иммунологическая память - способность иммунной системы специфически отвечать на повторные или последующие введения антигена. Проявляется в виде ускоренного и усиленного ответа на антиген (уменьшение латентного периода, более резкое нарастание титра антител, ускоренное отторжение трансплантата, аллергические реакции). Может быть краткосрочной, долговременной и пожизненной. Ее основными носителями являются долгоживущие сенсибилизированные В-лимфоциты, образующиеся при кооперации их с лимфобластами. Эти клетки продолжают циркулировать в кровяном и лимфатическом русле, являясь специфическими предшественниками антигенреактивных лимфоцитов. При повторном контакте с антигеном они размножаются, обеспечивая быстрое увеличение специфических В - или Т-лимфоцитов.

n 3. Иммунологическая толерантность - негативная форма иммунологической памяти. Проявляется в отсутствии или ослаблении ответа на повторное введение антигена. Лежит в основе отсутствия реакции организма на собственные антигены. В ранний период развития иммунная система потенциально способна реагировать на них, но постепенно «отвыкает» от этого. Предположительно, это обусловлено выведением (элиминацией) В - и Т-клеток с рецепторами для антигенных детерминант собственного организма или активацией Т-супрессоров, подавляющих реакцию на собственные антигены.

n Пр., телки-близнецы, имевшие в антенатальный период общую плаценту (т. е. обмен клетками крови), при взаимных пересадках кожи не отторгают трансплантат, т. е. не признают его чужеродным. При наличии же у каждого из близнецов собственной плаценты кожные трансплантаты при аналогичных пересадках отторгаются.

n Патологическими формами реактивности являются антигенспецифическая гиперчувствительность, аутоиммунные процессы, отсутствие ответа или дефектный ответ вследствие врожденного иммунодефицита.

n Неспецифическая резистентность .

n Система неспецифической защиты, или неспецифической резистентности включает следующие компоненты: непроницаемость кожных и слизистых покровов; кислотность содержимого желудка; наличие в сыворотке крови и жидкостях организма бактерицидных субстанций - лизоцима, пропердина (комплекса сывороточного белка, ионов Мg++ и комплемента), а также ферментов и противовирусных веществ (интерферона, термоустойчивых ингибиторов). Активность факторов естественной резистентности неодинакова в разные периоды онтогенеза.

n Факторы неспецифической защиты первыми включаются в борьбу при поступлении в организм чужеродных антигенов. Подготавливают почву для дальнейшего развертывания иммунных реакций, которые определяют исход.

n Особое положение среди факторов защиты занимают фагоциты (макрофаги и полиморфноядерные лейкоциты) и система белков крови - комплемент. Их можно отнести как к неспецифическим, так и к иммунореактивным факторам защиты. Связывание антител с антигеном облегчает поглощение антигена фагоцитами и часто активирует систему комплемента, хотя выработка комплемента и явление фагоцитоза не являются сами по себе специфическими реакциями в ответ на введение антигена.

5. Использование достижений иммунологии в животноводстве.

n По времени проявления в онтогенезе различают иммунитет врожденный и приобретенный , а по способу возникновения - активный и пассивный .

n Приобретенный активный иммунитет возникает при переболевании животного или при его активной иммунизации (вакцинации).

n Вакцинация - парентеральное введении препарата из живых, ослабленных или убитых микроорганизмов. В ответ на это у животных образуется иммунитет гуморального или клеточного типа, специфичный по отношению к данному возбудителю.

n Массовая вакцинация проводится в обязательном порядке (против особо опасных инфекций), либо при угрожающей эпизоотологической ситуации.

n Метод генной инженерии позволяет получать синтетические вакцины против вирусных болезней животных, которые состоят из коротких полипептидов, соответствующих антигенным детерминантам вирусов. Такие вакцины свободны от балластного материала, эффективны и не обладают побочным действием .

n Пассивная иммунизация осуществляется путем введения животному специфических антибактериальных, антитоксических или антивирусных сывороток , содержащих готовые антитела . Продолжительность возникающего пассивного гуморального иммунитета обычно невелика, определяется периодом биологической полужизни антидн.).

n Пассивный колостральный иммунитет (от лат. colostrum - молозиво) у новорожденных возникает за счет иммуноглобулинов матери, передаваемых через молозиво. Новорожденные животные не обладают иммунитетом вследствие недоразвитости лимфоидной ткани и отсутствия иммунокомпетентных клеток. Плацентарный барьер не пропускает иммуноглобулины матери в кровь плода.

n Иммуноглобулины проходят, не разрушаясь, через стенку кишечника новорожденного, так как протеолитическая активность пищеварительных соков ингибируется специальным ферментом, содержащимся в молозиве. Интенсивность всасывания иммуноглобулинов резко снижается со временем.

n Так, у телят сразу после рождения абсорбируется 50% антител молозива, через 20 ч - 15%, через 36 ч - ничтожное количество (у ягнят - 24-40 ч). Наряду с этим снижается концентрация иммуноглобулинов в молозиве: через 3-5 ч после отела - в 1,5 раза, через 12 ч - в 3, через 3 сут. - в 5, через 5 сут. - в 10 раз. Поэтому возможно более ранняя (в первые часы) дача молозива и обильное его выпаивание в последующем позволяют значительно снизить отход молодняка .

n Колостральный иммунитет непродолжителен (10-14 дн.). Уровень иммунноглобулинов в крови постепенно снижается и лишь с 4-5-й нед. снова возрастает вследствие функционального созревания собственной лимфомиелоидной системы. Полноценный иммунный ответ, характерный для взрослых, формируется у поросят и телят примерно к 2-3 мес.




© 2024
womanizers.ru - Журнал современной женщины