26.09.2019

Формулы и уравнения, которые изменили мир. Общие правила набора формул


Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, x 2 = 1 {\displaystyle x^{2}=1} является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например x 2 = a {\displaystyle x^{2}=a} понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: a = x 2 {\displaystyle a=x^{2}} .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество a + b = b + a {\displaystyle a+b=b+a} утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство (a + b) 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например 6 3 = 3 3 + 4 3 + 5 3 {\displaystyle 6^{3}=3^{3}+4^{3}+5^{3}} .

Приближённые равенства

Например: x ≈ sin ⁡ (x) {\displaystyle x\approx \sin(x)} - приближённое равенство при малых x {\displaystyle x} ;

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очерёдность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

2 + 2 = 7 {\displaystyle 2+2=7} - пример формулы, имеющей значение «ложь»;

Y = ln ⁡ (x) + sin ⁡ (x) {\displaystyle y=\ln(x)+\sin(x)} - функция одного действительного аргумента;

Z = y 3 y 2 + x 2 {\displaystyle z={\frac {y^{3}}{y^{2}+x^{2}}}} - функция нескольких аргументов (график одной из самых замечательных кривых - верзьера Аньези);

Y = 1 − | 1 − x | {\displaystyle y=1-|1-x|} - не дифференцируемая функция в точке x = 1 {\displaystyle x=1} (непрерывная ломаная линия не имеет касательной);

X 3 + y 3 = 3 a x y {\displaystyle x^{3}+y^{3}=3axy} - уравнение, то есть неявная функция (график кривой «

Основные виды (численных) формул

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако, важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например .

Приближённые равенства

В 7-8 классе изучают решение уравнений графическим способом. В это время на решение даются простые уравнения("с хорошим корнем") которые легко отыскиваются с помощью графиков, особенно на клетчатой бумаге. Но существуют примеры где с корнем немного иначе. Рассмотрим два уравнения:√х=2-х и √х=4-х. Первое уравнение имеет единственный корень х=1, поскольку графики функций у =√х и у =2-хпересекаются в одной точке А(1,1). Во втором случае графики функций у =√х-фс у =4-х также пересекаются в одной точке А(1,1), но с "плохими" координатами. С помощью чертежа, делаем вывод, что абсцисса точки В примерно равна 2,5. В таких случаях говорят не о точном, а о приближённом решении уравнения и записывают так: х≈2,5.

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очередность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

Функция одного действительного аргумента или однозначная функция;

Функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези) ;

Не дифференцируемая функция в точке (непрерывная ломаная линия не имеет касательной) ;

- целочисленная функция;

- чётная функция ;

- нечётная функция ;

Функция точки, расстояние от точки до начала (декартовых) координат;

Разрывная функция в точке ;

Параметрически заданная функция (график циклоиды) ;

Прямая и обратная функции;

Интегральное уравнение;

Ссылки

  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.

См. также

  • Алгебраическое выражение - математическое обозначение, не выражающее законченную мысль.

Wikimedia Foundation . 2010 .

Смотреть что такое "Математическая формула" в других словарях:

    - (от лат. formula форма, правило, предписание): Математическая формула Формула в Microsoft Excel Химическая формула Эпическая формула Физическая формула Зубная формула Формула цветка Магическая формула Формула технических видов… … Википедия

    Формула произведения корангов математическая формула, выражающая коразмерность множества точек, в которых ядро производной отображения имеет заданную размерность, в виде произведения корангов данного отображения в прообразе и образе.… … Википедия

    Формула Грассмана математическая формула, описывающая размерность подпространства конечномерного пространства. Выведена немецким ученым Г. Г. Грассманом. Формулировка: Если линейное пространство V конечномерно, то конечномерными… … Википедия

    Формула Остроградского математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… … Википедия

    Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

Одним из наиболее сложных видов набора является набор математических формул. Формулы представляют собой тексты, включающие шрифты на русской, латинской и греческой основах, прямого и курсивного, светлого, полужирного начертания, с большим числом математических и других знаков, индексов на верхнюю и нижнюю линии шрифта и различных крупнокегельных знаков. Ассортимент шрифтов для набора формул минимально составляет 2 тыс. знаков. Таблица символов в WORD-98 включает 1148 символов.

Основное отличие формульного набора от всех других видов набора состоит в том, что набор формулы в ее классическом виде производится не параллельными строками, а занимает определенную часть площади полосы.

Формула - математическое или химическое выражение, в котором при помощи цифр, символов и специальных знаков в условной форме выражается соотношение между определенными величинами.

Цифры - знаки, которыми обозначаются или выражаются числа (количества). Цифры бывают арабские и римские.

Арабские цифры : 1, 2. 3, 4, 5, 6, 7, 8, 9, 0. Арабские цифры меняют свое значение в зависимости оттого места, которое они занимают в ряду цифровых знаков. Арабские цифры делятся на два класса - 1-й - единицы, десятки, сотни; 2-й - тысячи, десятки тысяч, сотни тысяч и т.д.

Римские цифры . Основных цифровых знаков семь: I - единица, V - пять, X - десять, L - пятьдесят, С - сто, D - пятьсот, М - тысяча. Римские цифры имеют постоянное значение, поэтому числа получаются сложением или вычитанием цифровых знаков. Например: 28 = XXVIII (10 + 10 + 5 + 1 + 1+ 1); 29 = XXIX (10 + 10 -1 + 10); 150 = CL (100 + 50); 200 = СС (100 + 100); 1980 = MDCCCCLXXX (1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10+ 10 + 10); 2002 = MMII (1000 + 1000 + 1 + 1).

Римскими цифрами обычно обозначают столетия (ХV1в.), номера томов (том IX), глав (глава VII), частей (часть II) и т.д.

Символы - буквенные выражения, входящие в состав формулы (например, математические символы: l - длина, λ - частота отказов (усадка), π - отношение длины окружности к диаметру и т.д.; химические символы: Аl - алюминий, РЬ - свинец, Н - водород и т.д.).

Коэффициенты - цифры, стоящие перед символами, например 2Н 2 О; 4sinx. Символы и цифры часто имеют индексы надстрочные (на верхнюю линию) и подстрочные (на нижнюю линию), которые либо поясняют значение индексов, (например, λ с - линейная усадка, G T - теоретическая масса отливки, С ф -фактическая масса отливки); либо указывают на математические действия (например, х 2 , у 3 , z -2 и т.д.); либо указывают число атомов в молекуле и число зарядов ионов в химических формулах (например, СН 4). В формулах встречаются также индексы к индексам: верхний индекс к верхнему индексу - верхний супраиндекс , нижний индекс к верхнему индексу - верхний субиндекс , верхний индекс к нижнему индексу - нижний супраиндекс и нижний индекс к нижнему индексу - нижний субиндекс.



Знаки математических действий и соотношений - сложение « + », вычитания « - », равенства « = », умножения «х»; действие деление обозначается горизонтальной линейкой, которая будет называться дробной или делительной линейкой..

(9.12)

Основная строка - строка, в которой размещены основные знаки математических действий и соотношений.

Классификация формул .

Математические формулы разделяются по сложности набора, зависящей от состава формулы (однострочные, двухстрочные, многострочные) и насыщенности ее различными математическими знаками и символами, индексами, субиндексами, супраиндексами и приставными знаками. По сложности набора все математические формулы условно можно разделить на четыре основные группы и одну дополнительную:

1 группа. Однострочные формулы (9.13-9.16);

2 группа. Двухстрочные формулы (9.17-9.19). Фактически эти ф-лы состоят из 3-х строк;

3 группа. Трехстрочные формулы (9.20-9.23). Фактически эти ф-лы состоят из 5-и строк;

4 группа. Многострочные формулы (9.24-9.26);

Дополнительная группа (9.27-9.29).

При выделении формул в группы сложности учитывалась трудоемкость набора и время, затрачиваемое на набор.

II группа. Двустрочные формулы :

(9.29)

Правила набора текста математических формул .

При наборе математического текста необходимо соблюдать следующие основные правила.

Набирать цифры в формулах прямым шрифтом, например 2ах; Зу .

Сокращенные тригонометрические и математические термины , например sin, cos, tg, ctg, arcsin. Ig, lim и т.д., набирать шрифтом латинского алфавита прямого светлого начертания.

Сокращенные слова в индексе набирать русским шрифтом прямого начертания на нижнюю линию.

Сокращенные наименования физических, метрических и технических единиц измерения , обозначенные буквами русского алфавита, набирать в тексте прямым шрифтом без точек, например 127 В, 20 кВт . Эти же наименования, обозначенные буквами латинского алфавита, набирать также прямым шрифтом без точек, например 120 V, 20 kW , если нет в оригинале других указаний.

Символы (или цифры и символы ), следующие один за другим и не разделенные какими-либо знаками, набирать без отбивки, например 2ху; 4у .

Знаки препинания в формулах набирать прямым светлым шрифтом. Запятые внутри формулы отбивать от последующего элемента формулы на 3 п .; от предыдущего элемента формулы запятая не отбивается; от предшествующей подстрочной литеры запятая отбивается на 1 п .

Многоточие на нижнюю линию набирать точками с разбивкой на полукегельную. От предыдущего и последующего элементов формулы точки отбивать тоже полукегельной, например:

(9.30)

Символы (или цифры и символы), следующие один за другим, не разделять, а набирать без отбивки.

Знаки математических действий и соотношений, а также знаки геометрических образов , как, например, = ,< ,> , + , - , отбивать от предыдущих и последующих элементов формулы на 2 п

Сокращенные математические термины отбивать от предыдущих и последующих элементов формулы на 2 п.

Показатель степени , следующий непосредственно за математическим термином, набирать вплотную к нему, а отбивку делать после показателя степени.

Буквы «d» (в значении «дифференциал» ), δ (в значении «частная производная») и ∆ (в значении «приращение») отбивать от предшествующего элемента формулы на 2 п., от последующего символа указанные знаки не отбиваются.

Сокращенные наименования физических и технических единиц измерения и метрических мер в формулах отбивать на 3 п. от цифр и символов, к которым они относятся.

Знаки ° , " , " отбивать от последующего символа (или цифры) на 2 п., от предыдущего символа указанные знаки не отбиваются.

Знаки препинания, следующие за формулой , не отбиваются от нее.

Строку отточий в формулах набирают точками, используя полукегельную отбивку между ними.

Формулы, набранные в подбор с текстом, отбивать от предыдущего и последующего текстов полукегельной; эта отбивка при выключке строки не уменьшается, а увеличивается. Так же выключают формулы, следующие одна за другой в подбор с текстом.

Несколько формул, помещенных в одной строке, выключенной по центру, отбивать друг от друга пробелом не менее кегельной и не более 1/2 кв.

Мелкие пояснительные формулы, набираемые в одну строку с основной формулой, выключать в правый край строки, или отбивать на две кегельные от основного выражения (если нет иных указаний в оригинале).

Порядковые номера формул набирать цифрами того же кегля, что и однострочные формулы, и выключать в правый край, например:

Х+У=2 (9.31)

Если формула не умещается в формат строки, а переносить ее нельзя, допускается ее набор меньшим кеглем.

Переносы в формулах нежелательны. Во избежание переноса допускается уменьшение пробелов между элементами формулы. Если уменьшением пробелов не удается довести формулу до нужного формата строки, то переносы допускаются:

1) на знаках соотношения между левой и правой частями формулы (= ,>,< );

2) на знаках сложения или вычитания (+, - );

3) на знаках умножения (х). При этом следующая строка начинается со знака, на котором закончилась формула в предыдущей строке. При переносе формул необходимо смотреть за тем, чтобы переносимая часть не была очень маленькой, не разрывались выражения, заключенные в скобки, выражения, относящиеся к знакам корня, интеграла, суммы; не допускается разделение индексов, показателей степеней, дробей.

В нумерованных формулах номер формулы в случае ее переноса ставят на уровне центральной строки перенесенной части формулы. Если порядковая нумерация на умещается в строке, ее помещают в следующей и выключают в правый край. Формулы, числитель или знаменатель которых не умещается в заданном формате набора, набирают шрифтом меньшего кегля, либо шрифтом этого же кегля, но в две строки с переносом.

Если при переносе формулы разрывается делительная линейка или линейка корня, то место разрыва каждой линейки указывают стрелками.

Стрелки нельзя устанавливать около математических знаков.

Образование - то, что остается после того, как забыто все, чему учили в школе.

Игорь Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи " Уроки образовательных реформ в Европе и странах бывшего СССР"

Заучивание наизусть и долговременная память

Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе. Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними. Поэтому, чтобы в голове образовалась база знаний в какой-либо предметной области, например, в арифметике, нужно для начала выучить хоть что-то наизусть. Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций). Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п. Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.

Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий. Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.

Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.

Без дальнейших церемоний, вот она:

Ее обычно называют тождеством Эйлера в честь великого швейцарского математика Леонарда Эйлера (1707 — 1783). Ее можно увидеть на футболках и кофейных кружках, и несколько опросов среди математиков и физиков удостоили ее такого названия, как “величайшее уравнение” (Crease, Robert P., “The greatest equations ever”).

Ощущение красоты и элегантности тождества происходит из того, что оно сочетает в простой форме пять самых важных чисел математических констант: — основание натурального логарифма, — квадратный корень из и . Глядя на него внимательно, большинство людей задумываются о показателе: что значит возвести число в мнимую степень? Терпение, терпение, мы до этого доберемся.

Чтобы объяснить, откуда возникает эта формула, мы должны сначала получить более общую формулу, найденную Эйлером, а затем показать, что наше равенство является всего лишь частным случаем этой формулы. Общая формула удивительна сама по себе и имеет множество замечательных приложений в математике, физике и технике.

Первый шаг в нашем путешествии — понять, что большинство функций в математике может быть представлено в виде бесконечной суммы по степеням аргумента. Это пример:

Здесь измеряется в радианах, а не в градусах. Мы можем получить хорошее приближение для конкретного значения , используя только несколько первых членов ряда. Это пример ряда Тейлора, и довольно легко вывести эту формулу, используя математический анализ. Здесь я не предполагаю знание математического анализа, поэтому прошу читателя принять ее на веру.

Соответствующая формула для косинуса:

Число — константа, равная , и Эйлер был первым, кто признал его фундаментальное значение в математике и вывел последнюю формулу (две предыдущие были найдены Исааком Ньютоном). О числе написаны книги (например, Maor, E. (1994). e, the story of a number. Princeton University Press), можно также прочитать о нем .

Примерно в 1740 году Эйлер посмотрел на эти три формулы, расположенные приблизительно так, как мы их здесь видим. Сразу видно, что каждое слагаемое в третьей формуле также появляется в любой предыдущей. Тем не менее, половина членов в первых равенствах являются отрицательными, в то время как каждый член в последнем положителен. Большинство людей так бы это и оставили, но Эйлер увидел во всем этом закономерность. Он первый сложил первые две формулы:

Обратите внимание на последовательность знаков в этом ряду: , она повторяется группами по 4. Эйлер заметил, что эта же последовательность знаков получается, когда мы возводим мнимую единицу в целые степени:

Это означало, что можно заменить в последней формуле на и получить:

Теперь знаки соответствуют знакам в предыдущей формуле, и новый ряд совпадает с предыдущим, за исключением того, что члены разложения умножаются на . То есть получаем в точности

Это удивительный и таинственный результат, он свидетельствует о существовании тесной связи между числом и синусами и косинусами в тригонометрии, хотя было известно только из задач, не связанных с геометрией или треугольниками. Кроме ее элегантности и странности, однако, было бы трудно переоценить важность этой формулы в математике, которая увеличивалась с момента ее открытия. Она появляется везде, и не так давно вышла книга примерно в 400 страниц (Nahin P. Dr. Euler’s Fabulous Formula, 2006), посвященная описанию некоторых приложений этой формулы.

Обратите внимание, что старый вопрос о мнимых показателях в настоящее время решен: для возведения в мнимую степень просто поставьте мнимое число в формулу Эйлера. Если основание – число, отличное от , требуется только ее незначительная модификация.




© 2024
womanizers.ru - Журнал современной женщины