03.07.2020

Индукция микросомальных ферментов печени может. Печеночные ферменты. Типы реакций метаболизма лекарственных веществ


Гепатолог → О печени → Изменения печеночных ферментов при различных патологиях, их диагностическое значение

Группа белковых веществ, которые увеличивают активность различных обменных процессов, называется ферментами.

Успешное протекание биологических реакций требует специальных условий – повышенной температуры, определенного давления или присутствия некоторых металлов.

Ферменты помогают ускорить химические реакции без соблюдения этих условий.

Что такое ферменты печени

Исходя из своих функции, энзимы располагаются внутри клетки, на клеточной мембране, входят в состав различных клеточных структур и участвуют в реакциях внутри нее. По выполняемой функции выделяют следующие группы:


гидролазы – расщепляют молекулы веществ;синтетазы – участвуют в молекулярном синтезе;трансферазы – транспортируют участки молекул;оксиредуктазы – влияют на окислительно-восстановительные реакции в клетке;изомеразы – меняют конфигурацию молекул;лиазы – образуют дополнительные молекулярные связи.

Работа многих энзимов требует присутствия дополнительных ко-факторов. Их роль выполняют все витамины, микроэлементы.

Какие есть ферменты печени

Каждая клеточная органелла обладает своим набором веществ, которые определяют ее функцию в жизни клетки. На митохондриях расположены энзимы энергетического обмена, гранулярный эндоплазматический ретикулум завязан на синтезе белков, гладкий ретикулум участвует в липидном, углеводном обмене, лизосомы содержат ферменты гидролиза.

Ферменты, которые возможно обнаружить в плазме крови, условно делят на три группы:

Секреторные. Они синтезируются в печени и выделяются в кровь. Примером являются энзимы свертывания крови, холинэстераза.Индикаторные, или клеточные (ЛДГ, глутоматдегидрогеназа, кислая фосфотаза, АЛТ,АСТ). В норме обнаруживаются в сыворотке только их следы, т.к. расположение их внутриклеточное. Повреждение тканей вызывает выброс этих ферментов в кровь, по их количеству можно судить о глубине поражения.Экскреторные энзимы синтезируются и выделяются вместе с желчью (щелочная фосфотаза). Нарушение этих процессов ведет к увеличению их показателей в крови.

Какие ферменты используют в диагностике

Патологические процессы сопровождаются появлением синдромов холестаза и цитолиза. Для каждого из них характерны свои изменения в биохимических показателях сывороточных ферментов.

Холестатический синдром – это нарушение желчевыделения. Определяется по изменению активности следующих показателей:

увеличение экскреторных ферментов (щелочная фосфотаза, ГГТП, 5-нуклеотидаза, глюкуронидаза);повышение билирубина, фосфолипидов, желчных кислот, холестерина.

Цитолитический синдром говорит о разрушении гепатоцитов, повышении проницаемости клеточных мембран. Состояние развивается при вирусных, токсических повреждениях. Характерно изменение индикаторных ферментов – АЛТ, АСТ, альдолазы, ЛДГ.

Щелочная фосфотаза может быть как печеночного, так и костного происхождения. О холестазе говорит параллельный подъем ГГТП. Активность увеличивается при опухолях печени (желтушность может не проявиться). Если параллельно не происходит увеличение билирубина, можно предположить развитие амилоидоза, абсцесса печени, лейкоза или гранулёмы.

ГГТП повышается одновременно с увеличением щелочной фосфотазы и указывает на развитие холестаза. Изолированное увеличение ГГТП может быть при злоупотреблении алкоголем, когда еще нет грубых изменений печеночной ткани. Если развился фиброз, цирроз или алкогольный гепатит, одновременно повышается уровень других печеночных энзимов.

Трансаминазы представлены фракциями АЛТ и АСТ. Аспартатаминотрансфераза находится в митохондриях печени, сердца, почек и скелетной мускулатуры. Повреждение их клеток сопровождается выходом большого количества фермента в кровь. Аланинаминотрансфераза является ферментом цитоплазмы. Его абсолютное количество небольшое, но содержание в гепатоцитах наибольшее, по сравнению с миокардом и мышцами. Поэтому повышение АЛТ более специфично для повреждения клеток печени.

Имеет значение изменение соотношения АСТ/АЛТ. Если оно 2 и более, то это говорит о гепатите или циррозе. Особенно высокие ферменты наблюдаются при гепатитах с активным воспалением.

Лактатдегидрогеназа – фермент цитолиза, но не является специфичным для печени. Может увеличиваться у беременных, новорожденных, после тяжелых физических нагрузок. Значительно увеличивается ЛДГ после инфаркта миокарда, эмболии легких, обширных травм с разможжением мышц, при гемолитической и мегалобластной анемии. На уровень ЛДГ опираются при дифференциальной диагностике болезни Жильбера – синдром холестаза сопровождается нормальным показателем ЛДГ. При других желтухах в начале ЛДГ остается неизменным, а затем повышается.

Анализ на ферменты печени

Подготовку к анализу начинают за сутки. Нужно полностью исключить алкоголь, вечером не употреблять жирных и жареных блюд. За час до анализа не курить.

Выполняют забор венозной крови натощак утром.

Печеночный профиль включает в себя определение следующих показателей:

АЛТ;АСТ;щелочная фосфотаза;ГГТП;билирубин и его фракции.

Также обращают внимание на общий белок, отдельно уровень альбумина, фибриногена, показатели глюкозы, 5-нуклеотидаза, церулоплазмин, альфа-1-антитрипсин.

Диагностика и нормы

Нормальные биохимические показатели, характеризующие работу печени, отражены в таблице

Показатель Норма
Общий белок 65-85 г/л
Холестерин 3,5-5,5 ммоль/л
Общий билирубин 8,4-20,5 мкмоль/л
Прямой билирубин 2,2-5,1 мкммоль/л
Непрямой билирубин До 17,1 мкмоль/л
АЛТ У мужчин до 45 Ед/лУ женщин до 34 Ед/л
АСТ У мужчин до 37 Ед/лУ женщин до 30 Ед/л
Коэффициент Ритиса (соотношение АСТ/АЛТ) 0,9-1,7
Щелочная фосфотаза До 260 Ед/л
ГГТП У мужчин 10-71 Ед/лУ женщин 6-42 Ед/л

Печеночные энзимы при беременности

Большая часть лабораторных показателей во время беременности остаются в пределах нормы. Если возникают незначительные колебания ферментов, то они проходят вскоре после родов. В третьем триместре возможен значительный подъем щелочной фосфотазы, но не более 4 норм. Это связано с выделением фермента плацентой.

Повышение других печеночных энзимов, особенно в первой половине гестации, следует связывать с развитием патологии печени. Это может быть поражение печени, вызванное беременностью – внутрипеченочный холестаз, жировой гепатоз. Также изменение в анализах появится при тяжелом гестозе.

Цирроз и изменения в биохимии

Патология печени, связанная с перестройкой ткани, вызывает изменения во всех функциях органа. Отмечается повышение неспецифических и специфических ферментов. Высокий уровень последних характерен для цирроза. Это такие энзимы:

аргиназа;фруктозо-1-фосфатальдолаза;нуклеотидаза.

В биохимическом анализе можно заметить изменения и других показателей. Альбумин снижается менее 40 г/л, глобулины могут увеличиваться. Холестерин становится менее 2 ммоль/л, мочевина ниже 2,5 ммоль/л. Возможно увеличение гаптоглобина.

Значительно увеличивается билирубин за счет роста прямой и связанной формы.

Микросомальные ферменты

Эндоплазматический ретикулум гепатоцитов производит полостные образования – микросомы, содержащие на своих мембранах группу микросомальных ферментов. Их предназначение – обезвреживание ксенобиотиков и эндогенных соединений путем окисления. Система включает в себя несколько ферментов, среди них цитохром Р450, цитохром b5 и другие. Эти энзимы обезвреживают лекарственные препараты, алкоголь, токсины.

Окисляя лечебные вещества, микросомальная система ускоряет их выведение и снижает время действия на организм. Некоторые вещества способны повышать активность цитохрома, тогда говорят об индукции микросомальных энзимов. Это проявляется ускорением распада лекарства. Индукторами могут выступать алкоголь, рифампицин, фенитоин, карбамазепин.

Другие лекарственные препараты ингибируют миросомальные ферменты, что проявляется удлинением жизни лекарства и увеличением его концентрации. В роли ингибиторов могут выступать флюконазол, циклоспорин, дилтиазем, верапамил, эритромицин.

Внимание! Учитывая возможность ингибирования или индукции микросомальных реакций, только врач может правильно назначить несколько препаратов одновременно без вреда для больного.

Роль микросомального окисления в жизни организма сложно переоценить или не заметить. Инактивация ксенобиотиков (ядовитых веществ), распад и образование гормонов надпочечников, участие в обмене белков и сохранении генетической информации – это лишь малая известная толика проблем, которые решаются благодаря микросомальному окислению. Это автономный процесс в организме, который запускается после попадания триггерного вещества и заканчивающийся с его эллиминацией.

Определение

Микросомальное окисление – это каскад реакций, входящих в первую фазу преобразования ксенобиотиков. Суть процесса заключается в гидроксилировании веществ с использованием атомов кислорода и образованием воды. Благодаря этому меняется структура первоначального вещества, а его свойства могут как подавляться, так и усиливаться.

Микросомальное окисление позволяет перейти к реакции конъюгации. Это вторая фаза преобразования ксенобиотиков, в конце которой к уже существующей функциональной группе присоединятся молекулы, вырабатываемые внутри организма. Иногда образуются промежуточные вещества, вызывающие повреждение клеток печени, некроз и онкологическое перерождение тканей.

Окисление оксидазного типа

Реакции микросомального окисления происходят вне митохондрий, поэтому на них расходуется около десяти процентов всего кислорода, попадающего в организм. Основные ферменты в этом процессе – оксидазы. В их структуре присутствуют атомы металлов с переменной валентностью, такие как железо, молибден, медь и другие, а значит, они способны принимать электроны. В клетке оксидазы расположены в особых пузырьках (пероксисомах), которые находятся на внешних мембранах митохондрий и в ЭПР (зернистый эндоплазматический ретикулюм). Субстрат, попадая на пероксисомы, теряет молекулы водорода, которые присоединяются к молекуле воды и образуют перекись.

Существует всего пять оксидаз:

Моноаминооксигеназа (МАО) – помогает окислять адреналин и другие биогенные амины, образующиеся в надпочечниках;

Диаминооксигеназа (ДАО) – участвует в окислении гистамина (медиатор воспаления и аллергии), полиаминов и диаминов;

Оксидаза L-аминокислот (то есть левовращающихся молекул);

Оксидаза D-аминокислот (правовращающихся молекул);

Ксантиноксидаза – окислят аденин и гуанин (азотистые основания, входящие в молекулу ДНК).

Значение микросомального окисления по оксидазному типу состоит в устранении ксенобиотиков и инактивации биологически активных веществ. Образование перекиси, оказывающей бактерицидное действие и механическое очищение в месте повреждения, является побочным явлением, которое занимает важное место среди прочих эффектов.

Окисление оксигеназного типа

Реакции оксигеназного типа в клетке также происходят на зернистом эндоплазматическом ретикулуме и на внещних оболочках митохондрий. Для этого необходимы специфические ферменты – оксигеназы, которые мобилизуют молекулу кислорода из субстрата и внедряют ее в окисляемое вещество. Если внедряется один атом кислорода, то фермент называется монооксигеназа или гидроксилаза. В случае внедрения двух атомов (то есть целой молекулы кислорода), фермент носит название диаксигеназа.

Реакции окисления оксигеназного типа входят в трехкомпонентный мультиферментный комплекс, который участвует в переносе электронов и протонов из субстрата с последующей активацией кислорода. Весь этот процесс происходит с участием цитохрома Р450, о котором более подробно еще будет рассказано.

Примеры реакций оксигеназного типа

Как уже упоминалось выше, монооксигеназы для окисления используют только один атом кислорода из двух, имеющихся в наличии. Второй они присоединяют к двум молекулам водорода и образуют воду. Одним из примеров такой реакции может служить образование коллагена. Донором кислорода в таком случае выступает витамин С. Пролингидроксилаза отбирает у него молекулу кислорода и отдает его пролину, который, в свою очередь, входит в молекулу проколлагена. Этот процесс придает прочности и эластичности соединительной ткани. Когда в организме дефицит витамина С, то развивается подагра. Она проявляется слабостью соединительной ткани, кровотечениями, гематомами, выпадением зубов, то есть качество коллагена в организме становится ниже.

Еще одним примером могут служить гидроксилазы, которые преобразуют молекулы холестерина. Это один из этапов образования стероидных гормонов, в том числе и половых.

Малоспецифичные гидроксилазы

Это гидролазы, необходимые для окисления чужеродных веществ, таких как ксенобиотики. Смысл реакций заключается в том, чтобы сделать такие вещества более податливыми для выведения, более растворимыми. Этот процесс называется детоксикацией, а происходит он по большей части в печени.

За счет включения целой молекулы кислорода в ксенобиотики производится разрыв цикла реакций и распад одного сложного вещества на несколько более простых и доступных для обменных процессов.

Активные формы кислорода

Кислород является потенциально опасным веществом, так как, по сути, окисление – это процесс горения. В виде молекулы О2 или воды он стабилен и химически инертен, потому что его электрические уровни заполнены, и новые электроны не могут присоединиться. Но соединения, в которых у кислорода не у всех электронов есть пара, имеют высокую реакционную способность. Поэтому их называют активными.

Такие соединения кислорода:

В монооксидных реакциях образуется супероксид, который отделяется от цитохрома Р450.В оксидазных реакциях идет образование пероксидного аниона (перекиси водорода).Во время реоксигенации тканей, которые подверглись ишемии.

Самым сильным окислителем является гидроксильный радикал, он существует в свободном виде всего миллионную долю секунды, но за это время успевает пройти множество окислительных реакций. Его особенностью является то, что гидроксильный радикал воздействует на вещества только в том месте, в котором образовался, так как не может проникать через ткани.

Супероксиданион и перекись водорода

Эти вещества активны не только в месте образования, но и на некотором удалении от них, так как могут проникать через мембраны клеток.

Гидроксильная группа вызывает окисление остатков аминокислот: гистидина, цистеина и триптофана. Это приводит к инактивации ферментных систем, а также нарушению работы транспортных белков. Кроме того, микросомальное окисление аминокислот приводит к разрушению структуры нуклеиновых азотистых оснований и, как следствие, страдает генетический аппарат клетки. Окисляются и жирные кислоты, входящие в состав билипидного слоя клеточных мембран. Это влияет на их проницаемость, работу мембранных электролитных насосов и на расположение рецепторов.

Ингибиторы микросомального окисления – это антиоксиданты. Они содержатся в продуктах питания и вырабатываются внутри организма. Самым известным антиоксидантом является витамин Е. Эти вещества могут сдерживать микросомальное окисление. Биохимия описывает взаимодействие между ними по принципу обратной связи. То есть чем больше оксидаз, тем сильнее они подавляются, и наоборот. Это помогает сохранять равновесие между системами и постоянство внутренней среды.

Электротранспортная цепь

Микросомальная система окисления не имеет растворимых в цитоплазме компонентов, поэтому все ее ферменты собраны на поверхности эндоплазматического ретикулума. Эта система включает несколько белков, которые формируют электротранспортную цепь:

НАДФ-Р450-редуктаза и цитохром Р450;

НАД-цитохромВ5-редуктаза и цитохром В5;

Стеаторил-КоА-десатураза.

Донором электронов в подавляющем числе случаев выступает НАДФ (никотинамидадениндинуклеотидфосфа́т). Он окисляется НАДФ-Р450-редуктазой, который содержит два кофермента (ФАД и ФМН), для принятия электронов. В конце цепи ФМН окисляется при помощи Р450.

Цитохром Р450

Это фермент микросомального окисления, гем-содержащий белок. Связывает кислород и субстрат (как правило, это ксенобиотик). Название его связано с поглощением света с длинной волны в 450 нм. Биологи обнаружили его во всех живых организмах. На данный момент описано более одиннадцати тысяч белков, входящих в систему цитохром Р450. У бактерий это вещество растворено в цитоплазме, и считается, что такая форма является наиболее эволюционно древней, чем у человека. У нас цитохром Р450 – это пристеночный белок, зафиксированный на эндоплазматической мембране.

Ферменты данной группы участвуют в обмене стероидов, желчных и жирных кислот, фенолов, нейтрализации лекарственных веществ, ядов или наркотиков.

Свойства микросомального окисления

Процессы микросомального окисления обладают широкой субстратной специфичностью, а это, в свою очередь, позволяет обезвреживать разнообразные вещества. Одиннадцать тысяч белков цитохрома Р450 могут складываться более чем в сто пятьдесят изоформ этого фермента. Каждая из них имеет большое количество субстратов. Это дает возможность организму избавляться практически от всех вредных веществ, которые образуются внутри него или попадают извне. Вырабатываясь в печени, ферменты микросомального окисления могут действовать как на месте, так и на значительном удалении от этого органа.

Регуляция активности микросомального окисления

Микросомальное окисление в печени регулируется на уровне информационной РНК, а точнее ее функции – транскрипции. Все варианты цитохрома Р450, например, записаны на молекуле ДНК, и для того чтобы он появился на ЭПР, необходимо «переписать» часть информации с ДНК на информационную РНК. Затем иРНК направляется на рибосомы, где образуются молекулы белка. Количество этих молекул регулируется извне и зависит от объема веществ, которые необходимо деактивировать, а также от наличия необходимых аминокислот.

На данный момент описано более двухсот пятидесяти химических соединений, которые активируют в организме микросомальное окисление. К ним относятся барбитураты, ароматические углеводы, спирты, кетоны и гормоны. Несмотря на такое кажущееся разнообразие, все эти вещества липофильны (растворимы в жирах), а значит восприимчивы к цитохрому Р450.

Большинство лекарственных веществ в организме подвергается превращениям (биотрансформация, метаболизм). Биотрансформация большинства веществ происходит в печени, где обычно создаются высокие концентрации веществ. Кроме того, биотрансформация может происходить в лёгких, почках, стенке кишечника, коже и других тканях.

Различают метаболическую трансформацию (окисление, восстановление, гидролиз) и конъюгацию (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.). Соответственно продукты превращений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации (первая фаза биотрансформации), а затем – конъюгации (вторая фаза биотрансформации).

Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее исходных веществ. На этом основано создание так называемых пролекарств (prodrugs). Синтезирует неактивное (малоактивное) соединение, которое хорошо всасывается в желудочно-кишечном тракте, и при биотрансформации превращается в активный метаболит.

Например, пролекарство эналаприл хорошо всасывается в желудочно-кишечном тракте. Активный метаболит эналанрила – эналаприлат – оказывает выраженное гипотензивное действие. Эналаприлат применяют также в виде самостоятельного лекарственного препарата, но эналаприлат плохо всасывается в желудочно-кишечном тракте, поэтому его вводят внутривенно (например, при гипертензивном кризе).

Пролекарство леводопа после назначения внутрь всасывается в кишечнике, проникает через гематоэнцефалический барьер и в ткани мозга превращается в активный дофамин, который оказывает противопаркинсоническое действие (назначение дофамина в качестве противопаркинсонического средства неэффективно, так как дофамин не проникает через гематоэнцефалический барьер).

Метаболиты могут быть токсичнее исходных веществ. Так, один из метаболитов парацетамола (обезболивающее средство) – Ν-ацетил-парабензохинонимин – при передозировке парацетамола может вызывать некроз печени (при терапевтических дозах быстро инактивируется путём конъюгации с глутатионом).

Конъюгаты обычно малоактивны и малотоксичны.

В результате биотрансформации липофильные неполярные вещества обычно превращаются в гидрофильные полярные соединения, которые легче выводятся из организма.

Различают специфическую и неспецифическую биотрансформацию. При специфической биотрансформации отдельный фермент воздействует на одно или несколько соединений, проявляя при этом высокую субстратную специфичность.

Например, метанол (метиловый спирт) окисляется алкогольдегидрогеназой. При этом образуются высокотоксичные соединения – формальдегид и муравьиная кислота. Этанол (этиловый спирт) также окисляется алкогольдегидрогеназой. Аффинитет этанола к алкогольдегидрогеназе значительно выше, чем аффинитет метанола. Поэтому этанол может замедлять биотрансформацию метанола и таким образом уменьшать токсичность метанола.


Суксаметоний (деполяризующий миорелаксант) и прокаин (местный анестетик) гидролизуются холинэстеразой плазмы крови. Прокаин может замедлять гидролиз суксаметония и пролонгировать его действие.

Большинство лекарственных веществ подвергается неспецифической биотрансформации под влиянием ферментов печени, локализованных в гладкоповерхностных участках эндоплазматического ретикулума клеток печени. При выделении этих фрагментов эндоплазматического ретикулума их назвали микросомами. Поэтому и ферменты, локализованные в этих участках, называют микросомальными ферментами (в основном оксидазы смешанных функций – изоферменты цитохрома Р450).

Микросомальные ферменты не обладают высокой субстратной специфичностью, но действуют в основном на липофильные неполярные вещества, которые легко проникают в гепатоциты. Микросомальные ферменты превращают липофильные неполярные вещества в гидрофильные полярные соединения, которые легче выводятся из организма. Микросомальные ферменты окисляют и некоторые эндогенные вещества (например, стероидные гормоны).

В том случае когда ферменты, обеспечивающие биотрансформацию, насыщены, в единицу времени метаболизируется постоянное количество вещества (биотрансформация нулевого порядка). Если ферменты, обеспечивающие биотрансформацию, не насыщены (биотрансформация большинства веществ), в единицу времени метаболизируется постоянная доля вещества (биотрансформация первого порядка).

Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств.

Так, у мужчин активность микросомальных ферментов несколько выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устойчивы к действию многих лекарственных веществ.

У новорожденных система микросомальных ферментов несовершенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием.

Активность микросомальных ферментов печени снижается в пожилом возрасте, поэтому многие лекарственные препараты лицам старше 60 лет назначают в меньших дозах по сравнению с лицами среднего возраста.

При заболеваниях печени активность микросомальных ферментов может снижаться, замедляется биотрансформация лекарственных средств, усиливается и удлиняется их действие.

Известны лекарственные вещества, индуцирующие синтез микросомальных ферментов печени, например фенобарбитал, гризеофульвин, рифампицин (табл. 2). Индукция синтеза микросомальных ферментов при применении указанных лекарственных веществ развивается постепенно (примерно в течение двух недель). При одновременном назначении с ними других препаратов (например, глюкокортикоидов, противозачаточных средств для назначения внутрь) действие последних может ослабляться.

Таблица 2. Лекарственные средства, влияющие на синтез микросомальных ферментов печени

Ферменты (энзимы) – это специфические белки, которые участвуют в биохимических реакциях, могут ускорять или замедлять их течение. В печени вырабатывается большое количество таких соединений в связи с ее важной ролью в обмене жиров, белков и углеводов. Их активность определяется по результатам биохимического анализа крови. Такие исследования важны для оценки состояния печени и для диагностики многих заболеваний.

Что это такое?

Ферменты печени – это группа биологически активных белков, которые могут вырабатываться исключительно клетками этого органа. Они могут находиться на внутренней или наружной мембране, внутри клеток или в крови. В зависимости от роли энзимов, их разделяют на несколько категорий:

  • гидролазы – ускоряют расщепление сложных соединений на молекулы;
  • синтетазы – принимают участие в реакциях синтеза сложных биологических соединений из простых веществ;
  • трансферазы – участвуют в транспорте молекул через мембраны;
  • оксиредуктазы – являются основным условием нормального течения окислительно-восстановительных реакциях на клеточном уровне;
  • изомеразы – необходимы для процессов изменения конфигурации простых молекул;
  • лиазы – формируют дополнительные химические связи между молекулами.

ВАЖНО! На активность ферментов влияет в том числе наличие других соединений (ко-факторов). К ним относятся белки, витамины и витаминоподобные вещества.

Группы печеночных энзимов

От локализации печеночных ферментов зависит их функция в процессах клеточного обмена. Так, митохондрии участвуют в обмене энергии, гранулярная эндоплазматическая сеть синтезирует белки, гладкая – жиры и углеводы, на лизосомах находятся белки-гидролазы. Все энзимы, которые вырабатывает печень, можно обнаружить в крови.

В зависимости от того, какие функции выполняют энзимы и где они находятся в организме, их разделяют на 3 большие группы:

  • секреторные – после секреции клетками печени поступают в кровь и находятся здесь в максимальной концентрации (факторы свертываемости крови, холинэстераза);
  • индикаторные – в норме содержатся внутри клеток и высвобождаются в кровь только при их повреждении, поэтому могут служить индикаторами степени поражения печени при ее заболеваниях (АЛТ, АСТ и другие);
  • экскреторные – выводятся из печени с желчью, а повышение их уровня в крови свидетельствует о нарушении этих процессов.

Для диагностики состояния печени имеет значение каждый из энзимов. Их активность определяют при подозрении на основные патологии печени и для оценки степени повреждения печеночной ткани. Для получения более полной картины может потребоваться также диагностика пищеварительных ферментов, энзимов желудочно-кишечного тракта, поджелудочной железы и желчевыводящих путей.

Для определения печеночных ферментов необходима венозная кровь, собранная утром натощак

Ферменты, которые определяют для диагностики болезней печени

Биохимия крови – это важный этап диагностики болезней печени. Все патологические процессы в этом органе могут происходить с явлениями холестаза или цитолиза. Первый процесс представляет собой нарушение оттока желчи, которую выделяют гепатоциты. При остальных нарушениях происходит разрушение здоровых клеточных элементов с высвобождением их содержимого в кровь. По наличию и количеству энзимов печени в крови можно определить стадию болезни и характер патологических изменений в органах гепатобилиарного тракта.

Показатели холестаза

Синдром холестаза (затруднение желчеотделения) сопровождает воспалительные заболевания печени, нарушение секреции желчи и патологии желчевыводящих путей. Эти явления вызывают следующие изменения в биохимическом анализе:

  • экскреторные энзимы повышены;
  • увеличены также компоненты желчи, в том числе билирубин, желчные кислоты, холестерин и фосфолипиды.

Отток желчи может нарушаться при механическом давлении на желчные протоки (воспаленной тканью, новообразованиями, камнями), сужении их просвета и других явлениях. Комплекс характерных изменений показателей крови становится основанием для более подробного исследования состояния желчного пузыря и желчевыводящих путей.

Индикаторы цитолиза

Цитолиз (разрушение гепатоцитов) может происходить при инфекционных и незаразных гепатитах либо при отравлениях. В таком случае содержимое клеток высвобождается, а индикаторные ферменты появляются в крови. К ним относятся АЛТ (аланинаминотрансфераза), АСТ (аспартатаминотрансфераза), ЛДГ (лактатдегидрогеназа) и альдолаза. Чем выше показатели этих соединений в крови, тем обширнее степень поражения паренхимы органа.

Определение щелочной фосфатазы

Щелочная фосфатаза, которая обнаруживается в крови, может иметь не только печеночное происхождение. Небольшое количество этого фермента вырабатывается костным мозгом. О заболеваниях печени можно говорить, если происходит одновременное повышение уровня ЩФ и гамма-ГГТ. Дополнительно может обнаруживаться увеличение показателей билирубина, что говорит о патологиях желчного пузыря.

Гамма-глютамилтранспептидаза в крови

ГГТ обычно повышается с щелочной фосфатазой. Эти показатели свидетельствуют о развитии холестаза и о возможных заболеваниях желчевыводящей системы. Если этот фермент повышается изолированно, есть риск незначительного повреждения печеночной ткани на начальных стадиях алкоголизма или других отравлениях. При более серьезных патологиях наблюдается одновременное увеличение печеночных энзимов.


Окончательный диагноз можно поставить только на основании комплексного обследования, которое включает УЗИ

Трансаминазы печени (АЛТ, АСТ)

АЛТ (аланинаминотрансфераза) – это наиболее специфичный фермент печени. Он находится в цитоплазме и других органов (почек, сердца), но именно в печеночной паренхиме он присутствует в наибольшей концентрации. Его повышение в крови может указывать на различные заболевания:

  • гепатит, интоксикации с повреждением печени, цирроз;
  • инфаркт миокарда;
  • хронические заболевания сердечно-сосудистой системы, которые проявляются некрозом участков функциональной ткани;
  • травмы, повреждения или ушибы мышц;
  • тяжелая степень панкреатита – воспаления поджелудочной железы.

АСТ (аспартатдегидрогеназа) находится не только в печени. Ее также можно обнаружить в митохондриях сердца, почек и скелетных мускулов. Повышение этого фермента в крови указывает на разрушение клеточных элементов и развитие одной из патологий:

  • инфаркта миокарда (одна из наиболее распространенных причин);
  • заболеваний печени в острой или хронической форме;
  • сердечной недостаточности;
  • травм, воспаления поджелудочной железы.

ВАЖНО! В исследовании крови и определении трансфераз имеет значение соотношение между ними (коэффициент Ритиса). Если он АСТ/АЛС превышает 2, можно говорить о серьезных патологиях с обширным разрушением паренхимы печени.

Лактатдегидрогеназа

ЛДГ относится к цитолитическим ферментам. Она не является специфичной, то есть обнаруживается не только в печени. Однако ее определение имеет важное значение при диагностике желтушного синдрома. У пациентов с болезнью Жильбера (генетическим заболеванием, которое сопровождается нарушением связывания билирубина) она находится в пределах нормы. При остальных видах желтух ее концентрация повышается.

Как определяют активность веществ?

Биохимический анализ крови на ферменты печени – это одно из основных диагностических мероприятий. Для этого потребуется венозная кровь, собранная натощак в утреннее время. В течение суток перед исследованием необходимо исключить все факторы, которые могут влиять на работу печени, в том числе прием алкогольных напитков, жирных и острых блюд. В крови определяют стандартный набор ферментов:

  • АЛТ, АСТ;
  • общий билирубин и его фракции (свободный и связанный).

На активность ферментов печени могут влиять и некоторые группы медикаментов. Также они могут изменяться в норме при беременности. Перед анализом необходимо уведомить врача о приеме любых лекарств и о хронических заболеваниях любых органов в анамнезе.

Нормы для пациентов разного возраста

Для лечения болезней печени обязательно проводят полную диагностику, которая включает в том числе биохимический анализ крови. Активность ферментов исследуют в комплексе, поскольку различные показатели могут свидетельствовать о разных нарушениях. В таблице представлены нормальные значения и их колебания.

Соединение Показатели нормы
Общий белок 65-85 г/л
Холестерин 3,5-5,5 ммоль/л
Общий билирубин 8,5-20,5 мкмоль/л
Прямой билирубин 2,2-5,1 мкмоль/л
Непрямой билирубин Не более 17,1 мкмоль/л
АЛТ Для мужчин - не более 45 ед/л;

Для женщин - не более 34 ед/л

АСТ Для мужчин - не более 37 ед/л;

Для женщин - не более 30 ед/л

Коэффициент Ритиса 0,9-1,7
Щелочная фосфатаза Не более 260 ед/л
ГГТ Для мужчин - от 10 до 70 ед/л;

Для женщин - от 6 до 42 ед/л

Фермент АЛС имеет наиболее важное диагностическое значение при подозрении на гепатит, жировую дистрофию или цирроз печени. Его значения в норме меняются со временем. Это соединение измеряют в единицах на 1 литр. Нормальные показатели в разном возрасте составят:

  • у новорожденных – до 49;
  • у детей до 6 месяцев – 56 и более;
  • до года – не более 54;
  • от 1 до 3 лет – до 33;
  • от 3 до 6 лет – 29;
  • у детей более старшего возраста и у подростков – до 39.


Лекарственные средства накапливаются в паренхиме печени и могут вызывать повышение активности ее ферментов

ВАЖНО! Биохимический анализ крови – это важное, но не единственное исследование, по которому определяют состояние печени. Также проводят УЗИ и дополнительные обследования по необходимости.

Особенности определения при беременности

При нормальном течении беременности практически все показатели ферментов остаются в пределах нормы. На поздних сроках возможно незначительное повышение уровня щелочной фосфатазы в крови – явление связано с образованием этого соединения плацентой. Повышенные ферменты печени могут наблюдаться при гестозе (токсикозе) либо свидетельствуют об обострении хронических заболеваний.

Изменение активности энзимов при циррозе

Цирроз – это наиболее опасное состояние, при котором здоровая паренхима печени замещается рубцами из соединительной ткани. Эта патология не лечится, поскольку восстановление органа возможно только за счет нормальных гепатоцитов. В крови наблюдается повышение всех специфических и неспецифических ферментов, увеличение концентрации связанного и несвязанного билирубина. Уровень белка, наоборот, снижается.

Особая группа – микросомальные ферменты

Микросомальные ферменты печени – это особая группа белков, которые вырабатываются эндоплазматической сетью. Они принимают участие в реакциях обезвреживания ксенобиотиков (веществ, которые являются чужеродными для организма и могут вызывать симптомы интоксикации). Эти процессы проходят в две стадии. В результате первой из них водорастворимые ксенобиотики (с низкой молекулярной массой) выводятся с мочой. Нерастворимые вещества проходят ряд химических превращений с участием микросомальных ферментов печени, а затем элиминируются в составе желчи в тонкий отдел кишечника.

Основной элемент, который вырабатывается эндоплазматической сетью клеток печени, – цитохром Р450. Для лечения некоторых заболеваний применяют препараты-ингибиторы или индукторы микросомальных ферментов. Они оказывают влияние на активность этих белков:

  • ингибиторы – ускоряют действие ферментов, благодаря чему действующие вещества препаратов быстрее выводятся из организма (рифампицин, карбамазепин);
  • индукторы – снижают активность ферментов (флюконазол, эритромицин и другие).

ВАЖНО! Процессы индукции или ингибирования микросомальных ферментов учитывают при подборе схемы лечения любого заболевания. Одновременный прием лекарственных средств этих двух групп противопоказан.

Ферменты печени – это важный диагностический показатель для определения заболеваний печени. Однако для комплексного исследования необходимо также провести дополнительные анализы, в том числе УЗИ. Окончательный диагноз ставят на основании клинического и биохимического анализов крови, мочи и кала, УЗИ органов брюшной полости, по необходимости – рентгенографии, КТ, МРТ или других данных.

ТЕМА 2. Занятие 5

ДЕЙСТВИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ ПРИ ИХ КОМБИНИРОВАННОМ И ПОВТОРНОМ ВВЕДЕНИИ

План разбора темы (сделать гиперссылки )

Комбинированное применение ЛС. Фармацевтическая и фармакологическая несовместимость. Действие лекарств при их комбинированном применении (синергизм, антагонизм, синергоантагонизм).

Лекция

Литература для обязательного изучения

Контрольные вопросы

Один из главных принципов современной фармакотерапии – использование комбинаций лекарственных средств. При рациональном комбинировании возможно добиться усиления фармакологического действия и снижения частоты побочных эффектов. Однако при данном подходе необходимо строго контролировать возможность взаимодействия лекарственных веществ между собой.

Различают несколько видов лекарственных взаимодействий:


  1. Физико-химические,

  2. Фармакокинетические,

  3. Фармакодинамические.

Физико-химические взаимодействия

С такими видами взаимодействия приходится сталкиваться уже при изготовлении лекарственного препарата. Если при этом утрачивается или изменяется терапевтический эффект композиции, либо становится невозможным точное дозирование препарата, говорят о несовместимости . Физико-химические взаимодействия препаратов вследствие несовместимости лекарственных средств обычно приводят к образованию нерастворимого осадка, потере активности лекарственного вещества в растворе либо приобретению токсичности. Например, антибиотики группы аминогликозидов нейтрализуются при смешивании их в одном шприце с пенициллинами, железо превращается в нерастворимое соединение при добавлении тетрациклинов.

Поскольку большинство лекарственных препаратов относится либо к слабым кислотам, либо к слабым основаниям, то их сочетание в одном объеме способно к взаимной нейтрализации и ослаблению фармакологического действия препаратов.

Физико-химические взаимодействия могут происходить и в организме – желудочно-кишечном тракте, плазме крови, тканевой жидкости.

^ Фармакокинетические взаимодействия

Фармакокинетические взаимодействия включают в себя изменение при совместном применении одной или нескольких характеристик фармакокинетики препаратов: всасывания, распределения, метаболизма или экскреции . Такие типы взаимодействия обычно зависят от следующих параметров: соотношения препаратов в желудочно-кишечном тракте (ЖКТ), их липидо- и водорастворимости, рН среды, концентрации в сыворотке, времени полужизни, связывания с белками, количества в крови свободного препарата, скорости и количества экскретируемого препарата.

ИЗМЕНЕНИЕ ВСАСЫВАНИЯ (абсорбции) в желудочно-кишечном тракте при лекарственном взаимодействии препаратов может происходить в результате адсорбции одного из них на поверхности другого (физические взаимодействия), в результате изменения рН среды и других химических взаимодействий.

^ Физические взаимодействия . На всасывание множества лекарственных препаратов (антикоагулянтов, дигоксина, тиазидных диуретиков, гормонов щитовидной железы и жирорастворимых витаминов) могут влиять ионообменные смолы, например, холестирамин, и энтеросорбенты (активированный уголь, полисорб и др.). В результате этого взаимодействия концентрация в крови вышеперечисленных препаратов может существенно снизиться.

^ Химические взаимодействия в желудочно-кишечном тракте чаще всего приводят к формированию комплексных соединений или хелатов. Нерастворимые комплексы с любыми препаратами способны образовать антациды (альмагель, фосфалюгель и др.). При этом значительно нарушается всасывание лекарственных веществ и снижается эффективность терапии. Подобные реакции характерны и для антибиотиков тетрациклинового ряда. В просвете ЖКТ они связываются с множеством агентов, в том числе - любой пищей, препаратами, содержащими алюминий, кальций, цинк или магний, солями висмута, серебра, железа и со всеми двух - и трехвалентными катионами, образуя нерастворимые хелаты.

Этих видов взаимодействия можно избежать, если между приемом лекарственных препаратов сделать промежуток не менее 4 часов. Возможность неблагоприятных реакций возрастает, если препарат имеет короткий период полувыведения или для проявления его терапевтической активности требуется быстрое достижение пиковой концентрации в плазме (анальгетики, снотворные средства).

Физико-химические взаимодействия могут иметь определенное значение в детоксикации. Как известно, активированный уголь специально назначают при передозировке лекарственных средств.

^ Изменение рН жидкостей желудочно-кишечного тракта обычно влияет на скорость абсорбции, но не на общее количество попавшего в кровь препарата. Изменения нормальной кислотности желудка при использовании антацидов, антагонистов гистаминовых рецепторов второго типа, блокаторов протонной помпы и сукральфата также может влиять на биодоступность лекарственных препаратов, поскольку это меняет их растворимость в желудочном содержимом. Некоторые препараты, например, кетоконазол, практически не всасываются (90% препарата), если принимаются вместе с циметидином. В противоположность этому, увеличение рН желудочного содержимого при приеме антацидов повышают всасывание глибутида примерно на 25%. Возникновения этих взаимодействий можно избежать, если назначать подобного рода препараты с интервалом в два часа.

^ Изменения моторики желудочно-кишечного тракта могут приводить либо к ускорению, либо к замедлению всасывания лекарственных препаратов. Усиление моторики и скорости опорожнения желудка в большинстве случаев увеличивает скорость всасывания препаратов, поскольку лекарственное вещество быстрее достигает большой поверхности всасывания в тонкой кишке. Например, уровень циклоспорина в плазме возрастает примерно на 30%, когда его принимают вместе с метоклопрамидом, поскольку метоклопрамид - это прокинетик, который ускоряет опорожнение желудка. Обратное действие наблюдается, если одновременно принимаются труднорастворимые препараты и прокинетики. Например, биодоступность медленно растворяющегося дигоксина снижается на 20%, если его дают одновременно с метоклопрамидом.

Противоположное действие – удлинение времени опорожнения желудка и замедление моторики приведет к замедлению всасывания большинства принимаемых перорально препаратов. Пример комбинации, вызывающей подобный эффект – антихолинергические вещества и наркотические анальгетики. Степень всасывания может меняться при снижении моторики в том случае, если препарат плохо всасывается и плохо растворяется в жидкостях, содержащихся в ЖКТ. В этом случае замедление моторики может привести к тому, что препарат сильнее растворяется и достигает места всасывания (тонкой кишки) в растворенном виде, что повышает его биодоступность.

^ Изменения бактериальной флоры , возникающие в результате действия антибиотиков, могут влиять на всасывание некоторых лекарственных средств, которые не полностью всасываются в тонкой кишке, или препаратов, которые после всасывания секретируются обратно в тонкую кишку. Нужно отметить относительную редкость клинически значимого вида этого взаимодействия.

Так, например, могут взаимодействовать оральные контрацептивы и антибиотики. В результате может снижаться концентрация эстрогенов из-за того, что уменьшается количество бактерий, необходимых для кишечно-печеночной циркуляции эстрогенов.

^ Изменение распределения. После того, как лекарство всосалось, оно должно добраться до рецепторов – мишеней в органах и тканях, что зависит от состояния транспортных систем. Одновременный прием нескольких препаратов, связанных с одной и той же белковой фракцией, может вытеснить одно из фармакологических веществ из связанного состояния, увеличивая его свободную фракцию в крови. Вышесказанное имеет практическое значение для тех лекарственных средств, которые более чем на 85% связываются с белками. Так, снижение содержания связанного с белком дигитоксина с 98 % до 96 % приводит к увеличению его свободной фракции в крови в 2 раза. Данный вариант лекарственного взаимодействия наблюдается при сочетании дигитоксина с клофибратом.

Возможность развития взаимодействия с отрицательным эффектом возрастает, когда один из препаратов имеет небольшой объем распределения, низкую терапевтическую дозу или начинает быстро действовать.

^ Изменение метаболизма. Метаболизм или биотрансформация лекарственного препарата часто приводит к превращению жирорастворимых веществ в более полярные (водорастворимые). Эти метаболиты менее биологически активны, а биотрансформация облегчает их экскрецию с мочой или желчью. Биотрансформация может происходить не только в печени, но и в стенке кишки, почках и легких. Однако ряд веществ в результате биотрансформации становятся более активными, чем до нее.

Вероятность возникновения и выраженность взаимодействия зависит от количества и активности метаболических ферментов.

^ Индукция микросомальных ферментов печени. Многие лекарственные вещества и пищевые продукты могут повышать активность цитохрома Р-450 и, соответственно, изменять время полувыведения лекарства - объекта. Примерами, могущими вызывать клинически значимые взаимодействия, являются: прием рифампицина и некоторых противосудорожных лекарственных средств (барбитуратов, фенитоина, карбамазепина), а также курение сигарет, хронический алкоголизм. Быстрота развития и обратимость индукции ферментов зависит от индуктора и скорости синтеза новых ферментов. Этот адаптационный процесс относительно медленный и может занимать от нескольких дней до нескольких месяцев. Он также может ускорять метаболизм самого индуктора – (явление аутоиндукции, что характерно, в частности, для фенобарбитала). Система цитохромов может также индуцироваться глюкокортикоидами и некоторыми антибиотиками из группы макролидов.

^ Ингибирование микросомальных ферментов печени. Ингибирование ферментов группы цитохромов - это частый механизм, ответственный за возникновение лекарственных взаимодействий. Если вещество угнетает цитохром, то оно изменяет и метаболизм препарата – объекта. Этот эффект заключается в удлинении времени полувыведения лекарства - объекта и соответственно, повышении его концентрации. Некоторые ингибиторы влияют сразу на несколько изоформ ферментов, это, например, эритромицин. Чем выше доза ингибитора, тем быстрее наступает его действие и тем больше оно выражено. Ингибирование вообще развивается быстрее, чем индукция, обычно его можно зарегистрировать уже через 24 часа от момента назначения ингибиторов. Время развития максимального угнетения активности ферментов зависит как от самого ингибитора, так и от лекарства - объекта. Поскольку изоформы фермента отличаются генетически, зависят от воздействия окружающей среды, возраста человека, имеющихся заболеваний, то при воздействии одного и того же ингибитора степень угнетения активности фермента у разных пациентов может варьировать. Наиболее часто встречается ингибирование изоформы 3А. Вызывать его могут кетоконазол, флюконазол, циклоспорин, ритонавир, дилтиазем, нифедипин, никардипин, флуоксетин, хинидин, верапамил и эритромицин. Эти препараты относятся к быстро обратимым ингибиторам.

^ Изменение выделения. Высокополярные вещества или растворимые в воде метаболиты жирорастворимых веществ выделяются почками, в меньшей степени - печенью, с потом и грудным молоком. Водорастворимые вещества, находящиеся в крови, могут выделяться с мочой путем пассивной клубочковой фильтрации, активной канальцевой секреции или путем блокады активной, или чаще пассивной канальцевой реабсорбции.

Препараты, снижающие скорость клубочковой фильтрации, обычно снижают фильтрационное давление либо вследствие уменьшения внутрисосудистого объема, либо снижения артериального давления, либо сосудистого тонуса почечных артерий. Снижение скорость клубочковой фильтрации например, фуросемидом, может, в свою очередь, ограничить пассивную фильтрацию, например, аминогликозидов, что приводит к повышению их концентрации в крови. В это же самое время нефротоксичные препараты, такие, как те же аминогликозиды, могут уменьшать количество функционирующих нефронов и снижать скорость клубочковой фильтрации, что приводит к накоплению в организме других препаратов, таких, как дигоксин.

Реабсорбция отфильтрованных и выделенных лекарственных препаратов происходит в дистальной части канальца и в собирательных трубочках. На этот процесс влияют изменения концентрации препаратов, объемная скорость диуреза, и рН мочи по сравнению с таковым для сыворотки крови. При изменении рН мочи в дистальной части канальцев изменяется транспорт органических оснований и кислот. Эти ионизированные вещества не проходят через мембрану канальцев почек напрямую, что увеличивает скорость их экскреции. При этом общая экскреция щелочных лекарств увеличивается при повышении кислотности мочи и уменьшается при ощелачивании мочи. Так, при щелочном рН мочи увеличивается клиренс "кислых" препаратов (ацетазоламида, бутадиона, барбитуратов, сульфаниламидов, салициловой кислоты). Смещение рН мочи в кислую сторону повышает выведение хинидина, кодеина, морфина, новокаина. Важный пример таких взаимодействий – это использование гидрокарбоната натрия для ощелачивания мочи и ускорения выведения ацетилсалициловой кислоты и других салицилатов, сульфаниламидов при отравлении этими веществами.

Учитывая, что для ряда фармакологических препаратов важным путем элиминации является активная секреция в просвет канальцев, реакции лекарственного взаимодействия могут включать конкуренцию за активную секрецию в канальцы почек. Конкурируя за активный транспорт при секреции в канальцах нефрона, одно лекарственное средство может снижать выведение и повышать содержание в организме другого препарата. Таким образом выведение дигоксина снижают спиронолактон (верошпирон), кордарон, верапамил, нифедипин, а на выведение пенициллинов влияет индометацин и ацетилсалициловая кислота. Фуросемид блокирует секрецию аминогликозидов, повышая их концентрацию в организме. При длительном применении указанной комбинации существует вероятность возникновения нефронекроза за счет проявления побочного действия аминогликозидов. Фуросемид подавляет также клиренс ампициллина, цефалоспоринов.

Взаимодействие лекарственных веществ на уровне их секреции имеет практическое значение только в том случае, если при фармакотерапии базовый препарат или его активный метаболит секретируется в канальцевом аппарате почек более чем на 80%, или у больного имеет место нарушение фильтрационно-реабсорбционной функции почек.

^ Фармакодинамические лекарственные взаимодействия

Фармакодинамические взаимодействия - это изменение ответной реакции организма больного на препарат, при этом лекарственные вещества взаимодействуют на уровне рецепторов или в результате других механизмов действия.

^ Синергизм лекарственных веществ

Под синергизмом понимают однонаправленное действие двух или более лекарственных препаратов. Если при сочетании двух препаратов действие их равняется сумме эффектов, вызываемых каждым из препаратов в отдельности, говорят о суммации , или аддиктивном синергизме (ЭфАБ=ЭфА+ЭфБ). Например, при сочетанном назначении нейролептиков, антидепрессантов, транквилизаторов, антигистаминных средств наблюдается суммация их седативного действия и увеличивается угнетающее влияние на ЦНС. Благодаря общности фармакологического эффекта и близости химического строения, такие вещества реагируют с рецепторами одной и той же категории. Хотя подобные взаимодействия часто используются в терапевтических целях, они могут вызывать серьезные нежелательные реакции.

Если в результате взаимодействия лекарственных веществ наблюдается значительное усиление эффективности одного из них под влиянием другого и конечное действие препарата превышает сумму эффектов, вызываемых каждым препаратом в отдельности, говорят о потенцировании , или супрааддиктивном синергизме (ЭфАБ>ЭфА+ЭфБ). Он характерен для веществ разных фармакологических групп, действующих однонаправленно. Примером супрааддиктивного синергизма является усиление нейролептиками (аминазином, дроперидолом) и транквилизаторами (диазепамом, феназепамом) действия местных анестетиков, анальгетиков и миорелаксантов, в связи с чем эти психотропные средства используются для премедикации перед проведением наркоза.

Синергизм используется для повышения терапевтической эффективности комбинации либо для снижения побочных явлений лекарственной терапии за счет уменьшения дозировок отдельных компонентов.

В клинической практике часто встречается синергизм по побочным действиям. Например, Амфотерицин В, противогрибковый препарат, приводит к выраженной задержке натрия в организме, что увеличивает токсичность даже терапевтических доз дигоксина. Комбинация теофиллина с β- адреномиметиками, например, альбутеролом, дает гораздо более сильное бронхолитическое действие, чем эти препараты по отдельности, но в то же самое время существенно увеличивает риск развития аритмии.

^ Антагонизм лекарственных веществ

Если при сочетанном применении препаратов действие одного из них под влиянием другого уменьшается или устраняется полностью, говорят об антагонизме , при этом суммарный эффект становится меньше суммы эффектов каждого препарата в отдельности (ЭфАБ
В случае конкурентного (прямого) антагонизма препараты действуют на одни и те же структуры. Выраженность проявлений конкурентного взаимодействия препаратов на уровне рецепторов зависит от степени сродства препарата к рецепторам (аффинитета).

Например, на фоне применения неселективных бета-адреноблокаторов (пропранолол, надолол) происходит уменьшение бронходилятирующего эффекта адреналина. Это обусловлено конкурентными взаимоотношениями препаратов на уровне  2 - адренорецепторов бронхов. Антагонист бензодиазепиновых рецепторов флумазенил может очень быстро снять угнетение функции ЦНС, вызванное диазепамом. Таким же образом антагонист опиоидных рецепторов налоксон ликвидирует действие морфина. Классическим примером такого взаимодействия может являться применение атропина при передозировке холиномиметических средств.

Конкурентный антагонизм может возникнуть не только между двумя препаратами, но и между лекарством и естественным метаболитом тела человека или микроорганизма.

При неконкурентном (косвенном) антагонизме действие веществ проявляется в области рецепторов различных типов (средства для наркоза и дыхательные аналептики). Возможен и нерецепторный антагонизм. Например, гипогликемический эффект препаратов из группы сульфанилмочевины может быть нивелирован тиазидовыми диуретиками, следствием чего будет являться нежелательная гипергликемия.

Лекарственные препараты могут изменять местный транспорт, биотрансформацию и связывание с неактинвными участками тканей других веществ. Примером такого взаимодействия является изменение активности гуанетидина под влиянием трициклических антидепрессантов. Гуанетидин проникает в окончания адренергических нейронов и вызывает высвобождение норадреналина, который разрушается моноаминоксидазой. Истощение запасов норадреналина приводит к снижению симпатической инервации сосудов и АД. Трициклические антидепрессанты, блокируя мембранно-транспортную систему, нарушают инактивацию гуанетидина и препятствуют его действию. В этих условиях возможен гипертонический криз.

Снижение фармакологической активности лекарственных веществ может быть опосредовано влиянием на системы медиаторов, например, взаимодействие резерпина с ингибиторами МАО. В анестезиологии при необходимости используется антагонизм между курареподобными препаратами и антихолинестеразными средствами.

Некоторые препараты изменяют чувствительность рецепторов тканей к другим препаратам. Например, повышение чувствительности миокарда к адреналину во время фторотанового наркоза является причиной аритмии. Истощение запасов калия под действием диуретиков повышает чувствительность миокарда к сердечным гликозидам.

Об одностороннем антагонизме говорят тогда, когда прием одного вещества полностью исключает последующее действие другого. Так, симпатолитики устраняют эффекты норадреналина, а М-холиноблокаторы – М-холиномиметиков.

При двустороннем антагонизме эффекты препаратов ослабляются независимо от очередности их приема (вещества, стимулирующие и угнетающие ЦНС).

Если одно из веществ нивелирует только некоторые эффекты другого, возникает частичный антагонизм. Например, введение атропина сульфата препятствует угнетению дыхательного центра при использовании морфина, не снижая противошокового действия последнего.

Одним из видов частичного антагонизмаявляется синергоантагонизм. При этом взаимодействии комбинируемые лекарственные вещества синергичны по одним эффектам и антагонистичны по другим. Явление синергоантагонизма может иметь положительное значение для медицинской практики. Это явление используют при комбинации противотуберкулезных препаратов с никотиновой кислотой. При этом снижается токсичность комбинации, улучшается терапевтический эффект (синергизм по основному действию и антагонизм по побочному). В некоторых случаях препараты в больших дозах могут быть антагонистами, а в малых – синергистами (витамины).

^ Изменение действия лекарственных препаратов при их повторном введении

Вследствие взаимного влияния лекарственного препарата и организма при курсовом лечении могут наблюдаться неблагоприятные реакции. При этом препараты могут снижать терапевтическую активность либо возрастают их токсические свойства.

^ При развитии привыкания (толерантности) при повторном применении препарата его терапевтическое действие ослабевает. Поэтому для получения первоначального эффекта требуются все большие и большие дозы. Известно несколько механизмов развития толерантности: при повторных введениях некоторых веществ (кофеин, атропин, морфин и др.) ускоряется их окислительный метаболизм в печени. Появление антител к лекарственному веществу также может привести к привыканию. Привыкание описано для пероральных препаратов железа, слабительных, психотропных средств, хинина и др.

^ Тахифилаксия (быстрое привыкание)

Тахифилаксией называется исчезновение эффекта препарата при его повторных частых введениях. Тахифилаксия характерна для наркотических, психотропных, слабительных средств, барбитуратов. Характерный пример такого вида реакции – снижение эффекта эфедрина гидрохлорида (см. лекцию «Вещества, действующие на адренергические структуры»).

^ Лекарственная зависимость . Так называют невозможность отказа от приема препарата вследствие психического пристрастия (психическая зависимость) или изменения метаболических процессов под влиянием препарата (физическая зависимость).

^ Психическая лекарственная зависимость заключается в том, что прекращение введения того или другого препарата вызывает эмоциональный дискомфорт, и человек прибегает к повторному приему вещества с целью снятия дискомфорта (ощущения эйфории, облегчения засыпания, повышения работоспособности). При физической лекарственной зависимости повторное введение вещества больным диктуется необходимостью не только воспроизвести состояние эйфории, но и купировать абстинентный синдром.

Довольно многие из веществ, действующих на ЦНС, способны вызвать пристрастие. Это, например, наркотические анальгетики – морфина гидрохлорид, омнопон; снотворные и другие угнетающие ЦНС средства - барбитураты, мепробамат, бензодиазепины; стимуляторы ЦНС – кофеин и др.

Кумуляция возникает, если лекарственное вещество способно накапливаться в депо организма (например, в жировой ткани). При этом оно способно постепенно выделяться из депо обратно в кровь и вызывать интоксикацию. Различают материальную (накапливается само вещество) и функциональную («накапливается» фармакологический эффект) кумуляцию. К веществам с выраженной способностью к кумуляции относятся, в частности, сердечные гликозиды группы наперстянки, барбитураты, бензодиазепиновые транквилизаторы, хинидина сульфат.

Синдром отмены. Под синдромом отмены понимают комплекс явлений, который развивается при внезапном прекращении приема лекарственного препарата после длительного применения его, как правило, в больших дозировках. Это одна из самых трудных проблем современной медикаментозной терапии. Явления абстиненции, которые возникают у лиц, страдающих лекарственной зависимостью, после внезапной отмены привычного вещества представляют собой одну из разновидностей синдрома отмены.

Чаще всего синдром отмены может развиться после внезапного прекращения приема гормональных препаратов (глюкокортикоиды, тиреоидин и др.), гипотензивных средств (клофелин), антиангинальных веществ (бета-АБ), барбитуратов (фенобарбитал и др.), бензодиазепинов, антикоагулянтов (гепарин и др.), Н2-гистаминоблокаторов (циметидин и др.) Риск возникновения синдрома отмены можно уменьшить путем постепенного уменьшения дозировок препарата перед тем, как прекратить его назначение.

Микросомальное окисление – это последовательность реакций с участием оксигеназ и НАДФН , приводящих к внедрению атома кислорода в состав неполярной молекулы и появлению у нее гидрофильности и повышает ее реакционную способность..

Реакции микросомального окисления осуществляются несколькими ферментами, расположенными на мембранах эндоплазматического ретикулума (в случае in vitro они называются микросомальные мембраны). Ферменты организуют короткие цепи, которые заканчиваются цитохромом P 450 .

Реакции микросомального окисления относятся к реакциям фазы 1 и предназначены для придания гидрофобной молекуле полярных свойств и/или для повышения ее гидрофильности, усиления реакционной способности молекул для участия в реакциях 2 фазы. В реакциях окисления происходит образование или высвобождение гидроксильных, карбоксильных, тиоловых и аминогрупп, которые и являются гидрофильными.

Ферменты микросомального окисления располагаются в гладком эндоплазматическом ретикулуме и являются оксидазами со смешанной функцией (монооксигеназами).

Цитохром P450

Основным белком микросомального окисления является гемопротеин – цитохром Р 450 . В природе существует до 150 изоформ этого белка, окисляющих около 3000 различных субстратов. Соотношение разных изоформ цитохрома Р450 различается в силу генетических особенностей. Считается, что одни изоформы участвуют в биотрансформации ксенобиотиков, другие – метаболизируют эндогенные соединения (стероидные гормоны, простагландины, жирные кислоты и др.).

Цитохром Р450 взаимодействует с молекулярным кислородом и включает один атом кислорода в молекулу субстрата, способствуя появлению (усилению) у нее гидрофильности, а другой – в молекулу воды. Основными его реакциями являются:

  • окислительное деалкилирование, сопровождающееся окислением алкильной группы (при атомах N, O или S) до альдегидной и ее отщеплением,
  • окисление (гидроксилирование) неполярных соединений с алифатическими или ароматическими кольцами,
  • окисление спиртов до соответствующих альдегидов.

Работа цитохрома Р 450 обеспечивается двумя ферментами:

  • НАДН‑цитохром b 5 ‑оксидоредуктаза , содержит ФАД ,
  • НАДФН‑цитохром Р 450 ‑оксидоредуктаза , содержит ФМН и ФАД .

Схема взаиморасположения ферментов микросомального окисления и их функции

Обе оксидоредуктазы получают электроны от соответствующих восстановленных эквивалентов и передают их на цитохром Р 450 . Этот белок, предварительно присоединив молекулу восстановленного субстрата, связывается с молекулой кислорода. Получив еще один электрон, цитохром P 450 осуществляет включение в состав гидрофобного субстрата первого атома кислорода (окисление субстрата). Одновременно происходит восстановление второго атома кислорода до воды.

Последовательность реакций гидроксилирования субстратов с участием цитохрома Р450

Существенной особенностью микросомального окисления является способность к индукции или ингибированию, т.е. к изменению мощности процесса.

Индукторами являются вещества, активирующие синтез цитохрома Р 450 и транскрипцию соответствующих мРНК. Они бывают

1. Широкого спектра действия, которые обладают способностью стимулировать синтез цитохрома Р 450 , НАДФН-цитохром Р 450 -оксидоредуктазы и глюкуронилтрансферазы. Классическим представителем являются производные барбитуровой кислоты – барбитураты, также в эту группу входят диазепам , карбамазепин , рифампицин и др.

2. Узкого спектр а действия, т.е. стимулируют одну из форм цитохрома Р 450 – ароматические полициклические углеводороды (метилхолантрен , спиронолактон ), этанол.

Например, этанол стимулирует синтез изоформы Р 450 2Е1 (алкогольоксидаза) которая участвует в метаболизме, этанола, нитрозаминов, парацетамола и др.
Глюкокортикоиды индуцируют изоформу Р 450 3А.

Ингибиторы микросомального окисления связываются с белковой частью цитохрома или с железом гема. Они делятся на:

1. Обратимые

  • прямого действия – угарный газ (СО ), антиоксиданты ,
  • непрямого действия , т.е. влияют через промежуточные продукты своего метаболизма, которые образуют комплексы с цитохромом Р 450 – эритромицин .

2. Необратимые ингибиторы – аллопуринол , аминазин , прогестерон , оральные контрацептивы , тетурам , фторурацил ,

Оценка реакций 1-й фазы

Оценку микросомального окисления можно проводить следующими способами:

  • определение активности микросомальных ферментов после биопсии,
  • по фармакокинетике препаратов,
  • с помощью метаболических маркеров (антипириновая проба ).

Антипириновая проба

Обследуемый принимает утром натощак амидопирин из расчета 6 мг/кг веса. Собирается 4 порции мочи в интервале соответственно от 1 до 6 часов, 6-12, 12-24 и 45-48 часов. Объем мочи измеряется. Не позже, чем через 24 часа моча центрифугируется или фильтруется. Далее исследуется концентрация 4-аминоантипирина и его метаболита N-ацетил-4-аминоантипирина в моче.




© 2024
womanizers.ru - Журнал современной женщины