08.07.2019

Интерфаза в мейозе 2 происходит. Рекомендации по решению заданий С5 (подсчет количества хромосом и количества ДНК). Фаза митоза, набор хромосом


себе подобную - дочернюю, происходит уже в интерфазе. ||В профазе оболочка ядра сохраняется.

Метафазой называют стадию расположения хромосом экваториальной, плоскости клетки после исчезновения хромосом^: можно сосчитать и определить их форму.

В телофазе дочерние хромосомы удлиняются (деспирализуются) и утрачивают видимую индивидуальность. Обра­зуется оболочка дочерних ядер. Затем восстанавливается яд­рышко (или ядрышки), причем в том числе, в котором они при­сутствовали и в родительских ядрах. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, кото­рые оно претерпевало в профазе. Цитокинез - деление тел а клетки - начинается за делением ядра.

Спутник

хромонема

Центромера (первичная. перстята)

К а -типы- 16 - 3, 4, 5 - 8 -

4 - 6 - 8 - телофаза (одна из дочерних

51 оболочки ядра. Хромосомы, расположенные в этой плоскости, об-зуют, метафазную пластинку. Каждая хромосома в метафазе располагается так, что ее центромера находится точно

м микроскопе невидимы. Их особенность - высокое Йердержание РНК (рибосомной) и белков. В рибосомах - находится„;., 80-90 % клеточной РНК, в них осуществляется синтез: белков под контролем ядрахромосом^: можно сосчитать и определить их форму.

Анафазой называют следующую фазу митоза, в которой центромеры хромосомы делятся и хроматиды расходятся к по­люсам. Центромеры оказываются впереди и увлекают за со­бой все хроматиды. Расхождение хромосом в анафазе начи­нается одновременно и завершается очень быстро. Количество их у каждого полюса оказывается одинаковым и точно соот­ветствует общему числу хромосом каждой клетки. Благодаря такому способу деления ядра обеспечивается постоянное число хромосом в клеточных поколениях.

Продолжительность всего митотического цикла -от 30 мин до 3 ч - зависит от вида и физиологического состояния орга­низма, типа ткани, внешних факторов (температуры, света и др.). Скорость прохождения отдельных фаз митоза также различна.

3.3. Морфология хромосом. Она лучше всего выявляется на стадии метафазы или ранней анафазы, когда хромосомы наи­более укорочены и находятся в экваториальной плоскости. В это время отчетливо видно их различие по форме и вели­чине. Форма каждой хромосомы определяется положением пер­вичной перетяжки, где располагается центромера. Местополо­жение центромеры различно для разных хромосом и является постоянным, типичным для каждой хромосомы (рис. 16, 17). Если центромера располагается в хромосоме посередине, то в метафазе такая хромосома выглядит как равноплечая, или метацентрическая. Если центромера делит хромосому на два неравномерных участка, то образуется или слабо не­равноплечая, суб метацентрическая, или резко нерав­ноплечая, а кр о центрическая, хромосома. Центромера никогда не бывает на самом конце хромосомы. Концевые;, сег­менты хромосом названы теломерами. Кроме первичной перетяжки хромосома может иметь вторичную перетяжку, ко­торая связана с формированием ядрышка и называется яд-рышковым организатор о"м. Иногда вторичная пере­тяжка может быть очень длинной и тогда она отделяет от ос­новного тела хромосомы небольшой участок, называемый спут­ником. Такие хромосомы называются спутничными.

Хромосомы различаются не только по форме, но и по вели­чине. Длина их варьирует от 0,2 до 50 мкм, диаметр от 0,2 до

Спутник

хромонема

Центромера (первичная. перстята)

Рис. 16. Метафазные хромосомы:

К а -типы- 16 - метадентрические (равноплечие); 2 - субметацентрические (слабо не-Р: равноплечие)- 3, 4, 5 - акроцентричеСкие (резко неравноплечие); 7 - акроцентрическая * со вторичной перетяжкой; 8 - спутничная (светлыми кружками обозначены центромеры); б - схема строения: / - морфология; 2 - внутренняя структура хроматиды

Рис. 17. Схема спирализации хромонем в мистическом цикле (а):

/_ интерфаза, хромонемы слабо спирализованы (остаточные спирали); 2, 3, 4 - про­фаза усиление спирализации хромонем, образование двух хроматид; 5 - прометафаза, проявление четырех полухроматид; 6 - метафаза, максимальная спирализация, выявля­ются как большая, так и малая спираль; 7 - анафаза; 8 - телофаза (одна из дочерних

хромосом), деспирализация хромонем.

Относительные размеры хромосом дрозофилы (б):

/ - в ядрах слюнных желез (гигантские); 2 - в клетках ганглия (митотические) хромосом^: можно сосчитать и определить их форму.

Анафазой называют следующую фазу митоза, в которой центромеры хромосомы делятся и хроматиды расходятся к по­люсам. Центромеры оказываются впереди и увлекают за со­бой все хроматиды. Расхождение хромосом в анафазе начи­нается одновременно и завершается очень быстро. Количество их у каждого полюса оказывается одинаковым и точно соот­ветствует общему числу хромосом каждой клетки. Благодаря такому способу деления ядра обеспечивается постоянное число хромосом в клеточных поколениях.

В телофазе дочерние хромосомы удлиняются (деепи-рализуются) и утрачивают видимую индивидуальность. Обра­зуется оболочка дочерних ядер. Затем восстанавливается яд­рышко (или ядрышки), причем в том числе, в котором они при­сутствовали и в родительских ядрах. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, кото­рые оно претерпевало в профазе. Цитокинез - деление тел а клетки - начинается за делением ядра.

Продолжительность всего митотического цикла -от 30 мин до 3 ч - зависит от вида и физиологического состояния орга­низма, типа ткани, внешних факторов (температуры, света и др.). Скорость прохождения отдельных фаз митоза также различна.

3.3. Морфология хромосом. Она лучше всего выявляется на стадии метафазы или ранней анафазы, когда хромосомы наи­более укорочены и находятся в экваториальной плоскости. В это время отчетливо видно их различие по форме и вели­чине. Форма каждой хромосомы определяется положением пер­вичной перетяжки, где располагается центромера. Местополо­жение центромеры различно для разных хромосом и является постоянным, типичным для каждой хромосомы (рис. 16, 17). Если центромера располагается в хромосоме посередине, то в метафазе такая хромосома выглядит как равноплечая, или метацентрическая. Если центромера делит хромосому на два неравномерных участка, то образуется или слабо не­равноплечая, суб метацентрическая, или резко нерав­ноплечая, а кр о центрическая, хромосома. Центромера никогда не бывает на самом конце хромосомы. Концевые;, сег­менты хромосом названы теломерами. Кроме первичной перетяжки хромосома может иметь вторичную перетяжку, ко­торая связана с формированием ядрышка и называется яд-рышковым организатор о"м. Иногда вторичная пере­тяжка может быть очень длинной и тогда она отделяет от ос­новного тела хромосомы небольшой участок, называемый спут­ником. Такие хромосомы называются спутничными.

Хромосомы различаются не только по форме, но и по вели­чине. Длина их варьирует от 0,2 до 50 мкм, диаметр от 0,2 до

Спутник

хромонема

Центромера (первичная. перстята)

Рис. 16. Метафазные хромосомы:

К а -типы- 16 - метадентрические (равноплечие); 2 - субметацентрические (слабо не-Р: равноплечие)- 3, 4, 5 - акроцентричеСкие (резко неравноплечие); 7 - акроцентрическая * со вторичной перетяжкой; 8 - спутничная (светлыми кружками обозначены центромеры); б - схема строения: / - морфология; 2 - внутренняя структура хроматиды

Рис. 17. Схема спирализации хромонем в мистическом цикле (а):

/_ интерфаза, хромонемы слабо спирализованы (остаточные спирали); 2, 3, 4 - про­фаза усиление спирализации хромонем, образование двух хроматид; 5 - прометафаза, проявление четырех полухроматид; 6 - метафаза, максимальная спирализация, выявля­ются как большая, так и малая спираль; 7 - анафаза; 8 - телофаза (одна из дочерних

хромосом), деспирализация хромонем.

Относительные размеры хромосом дрозофилы (б):

/ - в ядрах слюнных желез (гигантские); 2 - в клетках ганглия (митотические)

5 мкм. Однако длина каждой определенной хромосомы отно­сительно постоянна и индивидуальна. Для удобства изучения им присваиваются определенные номера с учетом их морфо­логии и величины. Характерная черта соматических клеток огромного большинства видов - парное число хромосом. Пар­ные хромосомы, т. е. хромосомы с одинаковыми морфологией и размерами, но разного происхождения (одна от матери, дру­гая от отца) называются гомологичными

2 - ск«рда (Сгер!з сорШаг!з Ь.), 3 -

В результате изучения межвидовых различий по морфоло­гии хромосом были составлены обобщенные кариотипы семей-

5 мкм. Однако длина каждой определенной хромосомы отно­сительно постоянна и индивидуальна. Для удобства изучения им присваиваются определенные номера с учетом их морфо­логии и величины. Характерная черта соматических клеток огромного большинства видов - парное число хромосом. Пар­ные хромосомы, т. е. хромосомы с одинаковыми морфологией и размерами, но разного происхождения (одна от матери, дру­гая от отца) называются гомологичными.

I ж ш у г ж ж жл т им

Рис. 18. Кариотип (а) и идиограмма (б) хромосом (римские цифры - номера

пар хромосом) некоторых видов растений:

/ - сосна обыкновенная (Р!пиз 8у1уе81г1з Ь.), 2 - ск«рда (Сгер!з сорШаг!з Ь.), 3 - го­рох посевной (Р15ШП заНушп Ь.) .

3.4. Наркологические исследования лесных древесных рас­тений. С. Г. Навашин впервые показал значение изучения морфологии хромосом для понимания процессов эволюции рас и видов. Он обосновал важнейшее понятие об идиограмме ядра, характеризующей число хромосом и индивидуальную морфоло­гию каждой из них. Позднее был предложен более удобный термин - кариотип. Кариотипом называют хромосомный набор вида, характеризующий их форму и число, а идио-траммой - изображение хромосом на рисунке в виде диа­граммы (идиограммы кариотипа, рис. 18). По характеру ка-риотипов древесные растения можно разделить на четыре группы: 1) близкие виды и даже внутривидовые таксоны ха­рактеризуются разным количеством хромосом и различаются

одной, двумя и большим числом пар и отдельных хромосом; 2) виды представляют собой полиплоидные ряды, когда они отличаются друг от друга кратным числом хромосом; 3) роды, имеющие однообразное число хромосом, с различным количе­ством хромосом только у некоторых видов; 4) виды несколь­ких родов имеют одинаковое число хромосом, эволюция видов целого семейства протекает на фоне одного и того же числен­ного набора хромосом.

Так, все виды семейства сосновых, относящиеся к родам сосна," ель, пихта, лиственница и др., имеют 24 хромосомы в соматических клетках. Сек­войя дендрон гигантский имеет 22 хромосомы, а секврйя вечнозеленая 66. Виды березы представляют собой полиплоидный ряд по числу хромосом, в котором у берез бородавчатой и японской в соматических клетках 28 хро­мосом, у берез пушистой и даурской 56, а у берез желтой, граболистной и западной - 84.

У близких родов древесных растений в целом ряде случаев отмечается примерно одинаковое гаплоидное, основное число хромосом: у ивы и тополя 19, ореха и пекана 16, ольхи и березы 14, дуба и каштана съедобного 12. Однако исходя только из числа хромосом, нельзя делать заключение о месте того или иного рода в систематике растений. Существуют очень близкие роды растений, у которых число хромосом неодинаково, и, наоборот, роды растений с одинаковым числом хромосом могут находиться на далеком расстоянии в систематическом отношении (табл. 3).

Многочисленными исследованиями установлено, что в эво­люции растений имеют очень большое значение изменения, связанные с удвоением числа хромосом (полиплоидия). Среди древесных растений быстротой роста отличаются триплоидные растения.

Триплоидная исполинская осина (Зх=57), обнаруженная в СССР А. С. Яблоновым, и в Швеции Нильсоном-Эле, характеризуется мощностью роста и ценной древесиной, устойчивой к поражениям сердцевинной гнилью. В Швеции получена триплоидная береза (Злг=42) от искусственного скрещи­вания диплоидной березы бородавчатой (2дс=28) с тетраплоидной "березой пушистой (4х=56). Листья этого триплоида крупные, но опушенные как у бе­резы пушистой: В лесах Швеции обнаружен спонтанный тип триплоида, воз--никший от дишюидного вида березы бородавчатой (аутотриплоид). Он имеет листья типичные для березы бородавчатой, но более крупные. Клетки у ауто-триплоида на 30,1 % крупнее, нем у диплоидной березы бородавчатой, произ­растающей в тех же условиях. Триплоиды превосходят диплоидные деревья одного и того же возраста и из одинаковых условий произрастания по объ­ему древесины на 36%, по размерам листьев, пыльцы и сережек на 27,3- 31,7%. В Финляндии обнаружена триплоидная форма узорчатой карельской березы, обладающая быстрым ростом.

В настоящее время известны полиплоидные формы дуба, тетраплоидная форма секвойи гигантской, лиственницы, ели и других древесных пород. Отмечается, что тетраплоидные формы растений имеют угнетенный рост, но последующее их скрещивание с диплоидной формой дает потомство, в котором образуется много триплоидов, проявляющих положительный гетерозис.

В результате изучения межвидовых различий по морфоло­гии хромосом были составлены обобщенные кариотипы семей-5 мкм. Однако длина каждой определенной хромосомы отно­сительно постоянна и индивидуальна. Для удобства изучения им присваиваются определенные номера с учетом их морфо­логии и величины. Характерная черта соматических клеток огромного большинства видов - парное число хромосом. Пар­ные хромосомы, т. е. хромосомы с одинаковыми морфологией и размерами, но разного происхождения (одна от матери, дру­гая от отца) называются гомологичными.

Рис. 18. Кариотип (а) и идиограмма (б) хромосом (римские цифры - номера

пар хромосом) некоторых видов растений:

/ - сосна обыкновенная (Р!пиз 8у1уе81г1з Ь.), 2 - ск«рда (Сгер!з сорШаг!з Ь.), 3 - го­рох посевной (Р15ШП заНушп Ь.) .

3.4. Наркологические исследования лесных древесных рас­тений. С. Г. Навашин впервые показал значение изучения морфологии хромосом для понимания процессов эволюции рас и видов. Он обосновал важнейшее понятие об идиограмме ядра, характеризующей число хромосом и индивидуальную морфоло­гию каждой из них. Позднее был предложен более удобный термин - кариотип. Кариотипом называют хромосомный набор вида, характеризующий их форму и число, а идиограммой - изображение хромосом на рисунке в виде диа­граммы (идиограммы кариотипа, рис. 18). По характеру кариотипов древесные растения можно разделить на четыре группы: 1) близкие виды и даже внутривидовые таксоны ха­рактеризуются разным количеством хромосом и различаются одной, двумя и большим числом пар и отдельных хромосом; 2) виды представляют собой полиплоидные ряды, когда они отличаются друг от друга кратным числом хромосом; 3) роды, имеющие однообразное число хромосом, с различным количе­ством хромосом только у некоторых видов; 4) виды несколь­ких родов имеют одинаковое число хромосом, эволюция видов целого семейства протекает на фоне одного и того же числен­ного набора хромосом.

Так, все виды семейства сосновых, относящиеся к родам сосна," ель, пихта, лиственница и др., имеют 24 хромосомы в соматических клетках. Сек­войя дендрон гигантский имеет 22 хромосомы, а секврйя вечнозеленая 66. Виды березы представляют собой полиплоидный ряд по числу хромосом, в котором у берез бородавчатой и японской в соматических клетках 28 хро­мосом, у берез пушистой и даурской 56, а у берез желтой, граболистной и западной - 84.

У близких родов древесных растений в целом ряде случаев отмечается примерно одинаковое гаплоидное, основное число хромосом: у ивы и тополя 19, ореха и пекана 16, ольхи и березы 14, дуба и каштана съедобного 12. Однако исходя только из числа хромосом, нельзя делать заключение о месте того или иного рода в систематике растений. Существуют очень близкие роды растений, у которых число хромосом неодинаково, и, наоборот, роды растений с одинаковым числом хромосом могут находиться на далеком расстоянии в систематическом отношении (табл. 3).

Многочисленными исследованиями установлено, что в эво­люции растений имеют очень большое значение изменения, связанные с удвоением числа хромосом (полиплоидия). Среди древесных растений быстротой роста отличаются триплоидные растения.

Триплоидная исполинская осина (Зх=57), обнаруженная в СССР А. С. Яблоновым, и в Швеции Нильсоном-Эле, характеризуется мощностью роста и ценной древесиной, устойчивой к поражениям сердцевинной гнилью. В Швеции получена триплоидная береза (Злг=42) от искусственного скрещи­вания диплоидной березы бородавчатой (2дс=28) с тетраплоидной "березой пушистой (4х=56). Листья этого триплоида крупные, но опушенные как у бе­резы пушистой: В лесах Швеции обнаружен спонтанный тип триплоида, воз--никший от дишюидного вида березы бородавчатой (аутотриплоид). Он имеет листья типичные для березы бородавчатой, но более крупные. Клетки у ауто-триплоида на 30,1 % крупнее, нем у диплоидной березы бородавчатой, произ­растающей в тех же условиях. Триплоиды превосходят диплоидные деревья одного и того же возраста и из одинаковых условий произрастания по объ­ему древесины на 36%, по размерам листьев, пыльцы и сережек на 27,3- 31,7%. В Финляндии обнаружена триплоидная форма узорчатой карельской березы, обладающая быстрым ростом.

В настоящее время известны полиплоидные формы дуба, тетраплоидная форма секвойи гигантской, лиственницы, ели и других древесных пород. Отмечается, что тетраплоидные формы растений имеют угнетенный рост, но последующее их скрещивание с диплоидной формой дает потомство, в котором образуется много триплоидов, проявляющих положительный гетерозис.

В результате изучения межвидовых различий по морфоло­гии хромосом были составлены обобщенные кариотипы семейства Ршасеае (рис, 19). В кариотипе видов ели в большинстве случаев можно легко различить I, IX, X, XI пары хромосом, остальные объединяются в группы //-/// и IV-VIII. У ели сибирской (Ргсеа оЬоуа^а ЫЬ) и ели ситхинской (Р. зМ-спегшз С.) обнаружены добавочные хромосомы +В, +2В, +ЗВ. Для рода Ршиз в большинстве случаев известны три индиви

Рис. 19. Идиограммы хромосом некоторых родов семейства Ртасеае:

Л-Р1пи$; б -АЫез; в - Р1сеа; г-Ьаг!х

дуальные хромосомы - X, XI, XII, а остальные по линейным парамет­рам и дополнительным перетяж­кам образуют одну группу. Для рода Ьапх характерны две одно­родные (гомеоморфные) группы хромосом, объединяющие соответ­ственно в /-VI и VII-XII пары.

Изучение кариотипов пяти подвидов сосны обыкновенной, выделенных

Рис. 20. Идиограммы сосны кулундинской (Ршиз 8у1уе51пз ЗиЬвр. ки1ипаепз18 5ик.) в изолированных популяциях Казахстана:

а - кокчетав-мунфактинская популяция; б - по­пуляции западной и южной группы; в -. популя­ции восточной группы (по Будорагину, 1974)

Л. Ф. Правдивым по ряду морфологических, анатомических и физиологи­ческих характеристик, показало, что они отличаются друг от друга и по ко­личеству вторичных перетяжек на длинных и коротких плечах, а также по суммарной длине метафазных хромосом в диплоидном наборе. В. А. Будора-гин обратил внимание на то, что в хромосомном наборе подвида сосны кулундинской всегда легко идентифицируются три самые короткие хромо­сомы: X, XI и XII, остальные хромосомы по линейным-параметрам одно­родны. По числу хромосом со вторичными перетяжками популяции подвида сосны кулундинской дифференцированы на три группы (рис. 20).

При изучении кариотипов сосны обыкновенной по климатическим экотипам установлено наличие в хромосомном наборе двух пар коротких субме-тацёнтрических хромосом в кариотипе европейского подвида сосны обыкновенной. Они четко отличаются меньшими размерами от остальных десяти пар хромосом (рис. 21).

Таким образом, данные кариологических исследований сосны обыкновенной совпадают с данными внутривидовой так­сономии этого древнего вида Евразии и подтверждают целесо­образность деления этого вида на пять подвидов.

3.5. Мейоз. Новый организм при половом размножении воз­никает из зиготы (оплодотворенной яйцеклетки), которая обра­зуется при слиянии гамет, т. е. мужской и женской половых кле­ток. Если бы каждая гамета вносила в зиготу полный набор хромосом родительского организма, тогда бы их число увеличи-

Рис. 21. Идиограмма хромосом европейского подвида сосны обыкновенной из различных популяций европейской

части СССР:

а - Ленинградская область; б - Литовская ССР; в - Московская область; г - Полтав­ская область; д - Башкирская АССР; е - Белорусская ССР (по Абатуровой, 1978)

валось вдвое за каждое поколение. Мейоз, предшествующий об­разованию как женских, так и мужских половых клеток, явля­ется регулирующим механизмом, позволяющим сохранять по­стоянное число хромосом. мейоз- это процесс деления клетки, при котором наблюдается соединение гомологичных отцовских и материнских хромосом попарно и редукция (уменьшение) их числа. .При мейозе ядро делится дважды. В результате первого мейотического деления образуются два ядра с половинным (гаплоидным) числом Хромосом. Во втором делении каждое вновь образовавшееся ядро; делится еще раз, но уже митотическим путем - расходятся хромосомы, которые образовались из сестринских хроматид. Таким образом, из жаждой клетки ступившей в мейоз, после двух последовательных делений Образуются че­тыре клетки с половинным числом хромосом.

При мейозе не только уменьшается вдвое число хромосом но и происходит деление компонентов парных хромосом по разным клеткам При этом каждая пара ведет себя независимо поэтому при их слиянии возникают всевозможные комбинации Редукции хромосом в мейозе предшествует слияние (конъюгация) гомологов, которое позволяет каждой паре гомо­логичных хромосом обмениваться участками. Это создает до­полнительный резерв наследственных комбинаций при половом размножении организмов. Процесс обмена гомологичных хро­мосом своими частями получил название кроссинговера.

Таким образом, .генетическое значение меиоза через комби­наторику гомологов из разных пар и кроссинговер заключается вь резком { увеличении наследственной изменчивости ппганизмов. Весь процесс меиоза можно представить" в виде ряда- отдельных фаз (рис. 22). Фазы, или стадии, относящиеся к первому мейо-тическому делению, обозначаются римской цифрой I. Про­фаза I. Хромосомы готовятся к делению - сетчатая структура ядра переходит вначале в состояние отдельных тонких нитей, они спирализуются и утолщаются.

Становится заметным двойное строение каждой из хромосом (состоящих из двух сестринских хроматид, соединенных одной центромерой). Затем гомологические хромосомы притягиваются друг к другу (конъюгируют). Следовательно, две гомологичные хромосомы представлены теперь четырьмя хроматидами, объеди­ненными двумя неразделившимися центромерами - образуются тетрады. Дальше хромосомы перекручиваются, а идентичные участки парных хромосом начинают отталкиваться друг от друга. В этот момент происходит обмен между гомологичными хромосомами. Заканчивается профаза I сильным укорочением хроматид за счет их максимальной спирализации.

В метафазе I обе центромеры гомологичных хромосом тетрады ориентируются в плоскости веретена деления. В анфазе I гомологичные хромосомы отталкиваются своими цен­тромерами и расходятся к противоположным полюсам. В до-черных ядрах их в 2 раза меньше. При этом отцовская и ма­теринская хромосомы каждой пары могут отходить с равной вероятностью к любому из двух полюсов. В телофазе I го­мологичные хромосомы попадают в разные клетки. Так закан­чивается I мейотическое деление. Клетка находится некоторое время в переходном состоянии, называемом интеркинез. Дальше наступает второе деление, фазы которого условно обо­значаются через II.

В метафазе II хромосомы (их теперь гаплоидное число, т. е. в 2 раза меньше, чем в профазе I) вновь выстраиваются в экваториальной плоскости, располагаясь центромерами по экватору веретена. В анафазе II центромеры разделяются и каждая хроматида становится самостоятельной хромосомой. Телофазой II завершается расхождение хромосом к полю­сам-из каждой клетки, вступившей в мейоз, образуются че­тыре клетки с половинным числом хромосом. Таким образом, из каждой клетки, вступившей в мейоз, ^после двух последующих делений образуются четыре клетки с половинным числом хромосом. Набор хромосом становится гаплоидным, так как из каждой пары хромосом в гамету

в виде одиночной хроматиды попадает только один гомолог. Отличия меиоза от митоза состоят в том, что на протяжении двух последовательных делений меиоза происходит "одна реп­ликация хромосом, сдвинутая во времени, которая осуществля­ется не в интерфазе, а в профазе первого деления. Основное отличие мейоза от митоза заключается в наличии профазы I в мейозе, когда гомологичные хромосомы соединяются в пары и обмениваются участками. В митозе подобного процесса нет.

В конце профазы I и начале метафазы I мейоза в экватори­альной плоскости располагаются пары гомологичных хромосом, называемые бивалентами В митозе же на экваториальной плос­кости располагаются отдельные хромосомы свободно, незави­симо. В анафазе I при редукционном делении к полюсам отхо­дят гомологичные хромосомы; из каждой пары гомологов одна из хромосом отходит к одному, другая - к другому полюсу, в результате число хромосом в дочерных клетках оказывается гаплоидным. В митозе же к полюсам отходят половинки хро­мосом всего набора, а поэтому число хромосом в дочерных клетках диплоидно. В митозе каждый цикл деления ядра связан с репродукцией хромосом, в мейозе - два деления "обеспе­чиваются одной репродукцией, предшествующей ему.

3.6. Микрогаметогенез у древесных растений: Мейоз - пер­вый этап процесса образования половых клеток (гамет), назы­ваемого гаметогенезом. Процесс формирования половых клеток у растений подразделяется на два этапа: первый этап - спорогенез-завершается образованием гаплоидных кле­ток - спор, второй этап - гаметогенез - включает образо­вание зрелых гамет. Процесс образования микроспор, или пыль­цевых зерен, у растений называется микроспорогенезом, а процесс образования мегаспор (или макроспор) называ­ется мега-или макроспор огенез ом.

Микроспорогенез и микрогаметогенез у лиственных и хвой­ных древесных растений протекает в субэпидермальной ткани молодого пыльника, называемой археспорием. Каждая клетка первичной ткани археспория после ряда делений стано­вится материнской клеткой пыльцы, которая проходит все фазы меиоза. В результате двух мейотических делений возни­кают четыре гаплоидных микроспоры. Они лежат четверками, их называют тетрадами спор. При созревании тетрады распада­ются на отдельные микроспоры, первичная оболочка которых (интина) покрывается вторичной оболочкой (экзиной). Экзина пыльцы (микроспоры) насекомоопыляемых растений клейкая. В отличие от гладкой поверхности ветроопыляемых она снаб­жена шипами и выростами. У некоторых хвойных пород (сосны, ели) между экзиной и интиной образуются воздушные мешки (рис. 23).

После образования одноядерной микроспоры начинается мик­рогаметогенез. У покрытосеменных растений он сводится к двум митотическим делениям микроспоры. Первое деление приводит к образованию вегетативной и генеративной клеток. В дальней­шем вегетативная клетка и ее ядро не делятся. В ней накапли­ваются питательные вещества, которые в последующем обеспе­чивают деление генеративной клетки и рост пыльцевой трубки. Генеративная клетка, содержащая меньшее количество цито­плазмы, вновь делится. Это деление может осуществляться еще в пыльцевом зерне или в пыльцевой трубке. В результате обра­зуются две мужские половые клетки, называемые спермиями.

Рис. 23. Общий вид пыльцы древесных растений под малым увеличением ми­кроскопа:

/ - ель; 2- пихта; 3 -сосна (здесь и в поз. 8, 13 - а- проросшая пыльца); 4 - лист­венница; 5 - дугласия; 6 - тсуга; 7 -ольха; 8 - береза; Я - лещина; 10 - ива; // - рябина; 12 - каштан конский; 13 - осина

Таким образом, у покрытосеменных растений в результате двух митотических делений в одной микроспоре с гаплоидным набором хромосом образуются три клетки: две из них - спер­мин и одна вегетативная.

Микрогаметогенез у хвойных включает несколько делений ядра микроспоры. У сосны, если и лиственницы они происхо­дят в микроспорангиях еще до вылета пыльцы. Хромосомы, как правило, сильно укорочены и в анафазе первого проталлиаль-ного деления четко наблюдается их гаплоидный набор (рис. 24, А). Первое деление длится 3-4 дня и завершается образова­нием антеридиальной и первой проталлиальной клеток (рис.24, Б), причем последняя через 2-3 дня разрушается. Наиболее быстро и сильно разрушаются проталлиальные клетки у сосны. Второе деление мужского гаметофита происходит через 1-2 дня после завершения первого. В это время у сосны проталли­альные клетки почти полностью разрушаются, а у ели и лист­венницы могут еще сохраняться.

В результате второго деления от антеридиальной клетки от-членяется вторая проталлиальная клетка. Третье деление муж­ского гаметофита обычно наступает вскоре за вторым, за 1-2 дня перед началом вылета пыльцы. После третьего деления об­разуется уже генеративная и сифоногенная клетки. На этом за­канчивается развитие мужского гаметофита на материнском растении. В результате четвертого деления, которое протекает

Рис. 24. Развитие муясского гаметофита лиственницы (А):

1 - анафаза первого проталлиального митотического деления и обособление первой про­таллиальной клетки; 2 - анафаза второго проталлиального деления и обособление вто­рой проталлиальной клетки; 3 - анафаза третьего проталлиального деления и зрелое пыльцевое зерно с тремя отмирающими проталлиальными клетками

мужской гаметофит сосны (Б):

I - мейоз микроспороцита; 2 -тетрада микроспор; 3 - мужской гаметофит (зрелое пыльцевое зерно) сосны после трех проталлиальных делении: а - дегенерирующие про-таллиальные - первая и вторая клетки; б - антеридиальное ядро; в - вегетативное

в пыльцевой трубке, в мужском гаметофите образуются ба-зальные и стебельковые клетки. Ядро стебельковой клетки опу­скается в пыльцевую трубку, обычно теряя при этом цито­плазму. Базальная клетка делится (пятое деление мужского гаметофита), и образуются два спермия. Вначале они одина­ковы по размерам. Затем один становится крупнее, он в даль­нейшем оплодотворяет яйцеклетку. Второй спермин обычно от­мирает (рис. 25).

3.7. Макрогаметогенез у древесных растений. В субэпидер-мальном слое семяпочки обособляется только одна археспори-

Рис. 25. Прорастание пыльцы сосны в пыльцевую трубку. "Четвертое деление мужского гаметофита (А):

Г - генеративное ядро; а - вегетативное ядро; б - базальное ядро; ст - стебельковое ядро; / - перемещение вегетативного ядра в верхний конец пыльцевой трубки; 2 - ана­фаза генеративного ядра и разрушение (лизис) вегетативного ядра; 3 - образование

Базального и стебелькового ядер; пятое деление мужского гаметофнта (Б)г ет - стебельковое ядро, сп - спермин; 4 - анафаза базального ядра и перемещение сте­белькового ядра в верхний конец пыльцевой трубки; 5 - образование двух спермиев; 6 - перемещение спермиев в верхний конец пыльцевой, трубки в момент оплодотворе­ния и лизис стебелькового ядра

альная клетка. Клетка археспоры растет, превращаясь в мате­ринскую клетку мегаспоры, или макроспоры. В результате двух делений мейоза материнской клетки мегаспоры образуется те­трада мегаспор. Каждая из клеток тетрады гаплоидна. Однако только одна из них продолжает развиваться, остальные три де­генерируют. На следующем этапе осуществляется макро- или мегагаметогенез покрытосеменных растений оставшаяся фун­кционировать мегаспора продолжает расти, затем ее ядро трижды делится и в результате образуются восемь одинаковых ядер. При этом сама клетка не делится, она образует зароды­шевый мешок (рис. 26).

Развитие женского гаметофита (зародышевого мешка) начинается с полярной дифференциации мегаспоры. От­мечено, что синтез белков и нуклеиновых кислот идет интенсив­нее в верхней части мегаспоры. Деление ядер в зародышевом мешке всегда сопровождается их расхождением к полюсам и образованием центральной вакуоли. Деление ядер происходит

Рис. 26. Генеративный цикл у покрытосеменных древесных растений:

Пестик с семяпочкой (после мейотнческого деления); 2- тетрада мегаспор; 3 - об­разование зародышевого мешка в итоге трех последовательных митотических делений: нижней мегаспоры; 4 - два полярных ядра в центре зародышевого мешка; 5 - яйце­клетка с двумя синергидамн (спутниками); б-поперечный разрез пыльника с гнездами археспориальной ткани, из каждой клетки которого образуется тетрада микроспор; 7 - пыльца (микроспора) и первое ее деление; 8 - проросшая пыльца с вегетативной и, ан-терндиальной клетками; 9 - вегетативное ядро; 10 - два спермия; // - пыльцевая трубка проросшей пыльцы в тканях пестика, достигшая зародышевого мешка семяпочки; 12 - процесс созревания зародыша; 13 - семя с созревшим зародышем

Хромосомы – структуры клетки, хранящие и передающие наследственную информацию = ДНК(7) + белок (6).

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид (3) , удерживаемых центромерой (кинетохором ) в области первичной перетяжки (1) , которая делит хромосому на 2 плеча (2) . Иногда бывает вторичная перетяжка (4), в результате которой образуется спутник хромосомы (5).

Отдельные участки молекулы ДНК - гены - ответственны за каждый конкретный признак или свойство организма. Наследственная информация из клетки в клетку передается путем удвоения молекулы ДНК (репликации), транскрипции и трансляции. Главная функция хромосом - хранение и передача наследственной информации, носителем которой является молекула ДНК.

Под микроскопом видно, что хромосомы имеют поперечные полосы , которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение, светлых и темных полос (чередование АТ и ГЦ – пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Во всех соматических клетках любого растительного или животного организма число хромосом одинаково. Половые клетки (гаметы) всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.

В кариотипе человека 46 хромосом – 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (половые хромосомы ХУ), а женщины гомогаметны (половые хромосомы XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Хромосомы одной пары называются гомологичными , они в одинаковых локусах (местах расположения) несут аллельные гены.

У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково. Число хромосом не является видоспецифическим признаком. Однако хромосомный набор в целом видоспецифичен, т. е. свойствен только одному какому-то виду организмов растений или животных.

Кариотип - совокупность внешних количественных и качественных признаков хромосомного набора (число, форма, размер хромосом) соматической клетки, характерных для данного вида

Деление клеток - биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов, процесс увеличения числа клеток путем деления исходной клетки.

Способы деления клеток :

1. амитоз - прямое (простое) деление интерфазного ядра путем перетяжки, которое происходит вне митотического цикла, т. е. не сопровождается сложной перестройкой всей клетки, а также спирализацией хромосом. Амитоз может сопровождаться делением клетки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. По сравнению с митозом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, клетках, которым предстоит делиться: в эпителии и печени позвоночных, зародышевых оболочках млекопитающих, клетках эндосперма семян растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.

2 . митоз - непрямое деление, при котором исходно диплоидная клетка дает две дочерние, также диплоидные клетки; характерен для соматических клеток (клеток тела) всех эукариот (растений и животных); универсальный тип деления.

3. мейоз - осуществляется при образовании половых клеток у животных и спор у растений.

Жизненный цикл клетки (клеточный цикл) – время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.

В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:

часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);

редко делящиеся клетки (клетки печени – гепатоциты);

неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).

Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом . Такой клеточный цикл подразделяется на два основных периода :

митоз или период деления;

интерфаза – промежуток жизни клетки между двумя делениями.

Интерфаза – период между двумя делениями, когда клетка готовится к делению: удваивается количество ДНК в хромосомах, количество других органоидов, синтезируются белки, происходит рост клетки.

К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.

Периоды интерфазы:

1. Пресинтетический период (G 1) - период подготовки к синтезу ДНК после завершения митоза. Происходит образование РНК, белков, ферментов синтеза ДНК, увеличивается количество органоидов. Содержание хромосом (п) и ДНК (с) равно 2п2с.

2. Синтетический период (S-фаза) . Происходит репликация (удвоение, синтез ДНК). В результате работы ДНК-полимераз для каждой из хромосом хромосомный набор становится 2п4с. Так образуются двухроматидные хромосомы.

3. Постсинтетический период (G 2) - время от окончания синтеза ДНК до начала митоза. Завершается подготовка клетки к митозу, удваиваются центриоли, синтезируются белки, завершается рост клетки.

Митоз

это форма деления клеточного ядра, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имела родительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное.

Открыт с помощью светового микроскопа в 1874 г. русским ученым И. Д. Чистяковым в растительных клетках.

В 1878 г. В. Флеммингом и русским ученым П. П. Перемежко этот про­цесс обнаружен в животных клетках. У животных клеток митоз длится 30-60 мин, у растительных - 2-3 ч.

Митоз состоит из четырех фаз :

1. профаза - двухроматидные хромосомы спирализуются и становятся заметными, ядрышко и ядерная оболочка распадаются, образуются нити веретена деле­ния. Клеточный центр делится на две центриоли, расходящиеся к полюсам.

2 . метафаза - фаза скопления хромосом на экваторе клетки: нити веретена деления идут от полюсов и присоединяются к центромерам хромосом: к каждой хромосоме подходят две нити, идущие от двух полюсов.

3 . анафаза - фаза расхождения хромосом, в которой центромеры делятся, а однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки; самая короткая фаза митоза.

4 . т елофаза - окончание деления, движение хромосом заканчивается, и происходит их деспирализация (раскручивание в тонкие нити), формируется ядрышко, восстанавливается ядерная оболочка, на экваторе закладывается перегородка (у растительных кле­ток) или перетяжка (у животных клеток), нити веретена деле­ния растворяются.

Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.

В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.

В опухолевых клетках ход митоза нарушается.

В результате митоза из одной диплоидной клетки, имеющей двухроматидные хромосомы и удвоенное ко­личество ДНК (2n4с), образуются две дочерние диплоидные клетки с однохроматидными хромосомами и одинарным коли­чеством ДНК (2n2с), которые затем вступают интерфазу. Так образуются соматические клетки (клетки тела) организма расте­ния, животного или человека.

Фаза митоза, набор хромосом

(n-хромосомы,

с - ДНК)

Рисунок

Профаза

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.

Метафаза

Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

Тематические задания

А1. Хромосомы состоят из

1) ДНК и белка

2) РНК и белка

3) ДНК и РНК

4) ДНК и АТФ

А2. Сколько хромосом содержит клетка печени человека?

А3. Сколько нитей ДНК имеет удвоенная хромосома

А4. Если в зиготе человека содержится 46 хромосом, то сколько хромосом содержится в яйцеклетке человека?

А5. В чем заключается биологический смысл удвоения хромосом в интерфазе митоза?

1) В процессе удвоения изменяется наследственная информация

2) Удвоенные хромосомы лучше видны

3) В результате удвоения хромосом наследственная информация новых клеток сохраняется неизменной

4) В результате удвоения хромосом новые клетки содержат вдвое больше информации

А6. В какой из фаз митоза происходит расхождение хроматид к полюсам клетки? В:

1) профазе

2) метафазе

3) анафазе

4) телофазе

А7. Укажите процессы, происходящие в интерфазе

1) расхождение хромосом к полюсам клетки

2) синтез белков, репликация ДНК, рост клетки

3) формирование новых ядер, органоидов клетки

4) деспирализация хромосом, формирование веретена деления

А8. В результате митоза возникает

1) генетическое разнообразие видов

2) образование гамет

3) перекрест хромосом

4) прорастание спор мха

А9. Сколько хроматид имеет каждая хромосома до ее удвоения?

А10. В результате митоза образуются

1) зигота у сфагнума

2) сперматозоиды у мухи

3) почки у дуба

4) яйцеклетки у подсолнечника

В1. Выберите процессы, происходящие в интерфазе митоза

1) синтез белков

2) уменьшение количества ДНК

3) рост клетки

4) удвоение хромосом

5) расхождение хромосом

6) деление ядра

В2. Укажите процессы, в основе которых лежит митоз

1) мутации

3) дробление зиготы

4) образование спермиев

5) регенерация тканей

6) оплодотворение

ВЗ. Установите правильную последовательность фаз жизненного цикла клетки

А) анафаза

Б) интерфаза

В) телофаза

Г) профаза

Д) метафаза

Е) цитокинез

Мейоз

это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое и образованию гамет, при этом происходит обмен гомологичными участками парных (гомологичных) хромосом, а, следовательно, и ДНК, прежде чем они разойдутся в дочерние клетки.

В результате мейоза из одной диплоидной клетки (2n) образуется четыре гаплоидные клетки (n).

Открыт в 1882 г. В. Флеммингом у животных, в 1888 г. Э. Страсбургером у растений.

Мейозу предше­ствует интерфаза , поэтому вступают в мейоз хромосомы двухроматидные (2n4с).

Мейоз проходит в два этапа :

1. редукционное деление - наиболее сложный и важный процесс. Он подразделяется на фазы:

А) профаза I : парные хромосомы диплоидной клетки подходят друг к другу, перекрещиваются, образуя мостики (хиазмы), затем обменива­ются участками (кроссинговер), при этом осуществляется пере­комбинация генов, после чего хромосомы расходятся

Б) в метафазе I эти парные хромосомы располагаются по экватору клетки, к каждой из них присоединяется нить веретена деления: к одной хромосоме от одного полюса, ко второй - от другого

В) в анафазе I к полюсам клетки расходятся двухроматидные хромосомы; од­на из каждой пары к одному полюсу, вторая - к другому. При этом число хромосом у полюсов становится вдвое меньше, чем в материнской клетке, но они остаются двухроматидными (n2с)

Г) затем проходит телофаза I, которая сразу же переходит в профа­зу II второго этапа деления мейоза, идущего по типу митоза:

2. эквационное деление . Ин­терфазы в данном случае нет, так как хромосомы двухроматид­ные, молекулы ДНК удвоены.

А) профаза II

Б) в метафазе II двухроматидные хромосомы располагаются по экватору, при этом деление происходит сразу в двух дочерних клетках

В) в анафазе II к полю­сам отходят уже однохроматидные хромосомы

Г) в телофазе II в четырех дочерних клетках формируются ядра и перегородки между клетками.

Таким образом, в результате мейоза получаются четыре гаплоидные клетки с однохроматидными хромосомами (nc): это либо половые клетки (гаметы) животных, либо споры растений.

Фаза мейоза,

набор хромосом

хромосомы,
с - ДНК)

Рисунок

Характеристика фазы, расположение хромосом

Профаза 1
2n4c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.

Метафаза 1
2n4c

Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 1
2n4c

Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.

Телофаза 1
в обеих клетках по 1n2c

Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.

Профаза 2
1n2c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2
1n2c

Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 2
2n2c

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.

Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше.

Однако это противоречит правилу постоянства числа хромосом.

Развитие половых клеток.

Процесс формирования половых клеток называется гаметогенезом . У многоклеточных организмов различают сперматогенез – формирование мужских половых клеток и овогенез – формирование женских половых клеток.

Рассмотрим гаметогенез, происходящий в половых железах животных – семенниках и яичниках.

Сперматогенез – процесс превращения диплоидных предшественников половых клеток – сперматогониев в сперматозоиды.

1. Сперматогонии делятся митозом на две дочерние клетки – сперматоциты первого порядка.

2. Сперматоциты первого порядка делятся мейозом (1-е деление) на две дочерние клетки – сперматоциты второго порядка.

3. Сперматоциты второго порядка приступают ко второму мейотическому делению, в результате которого образуются 4 гаплоидные сперматиды.

4. Сперматиды после дифференцировки превращаются в зрелые сперматозоиды.

Сперматозоид состоит из головки, шейки и хвоста. Он подвижен и благодаря этому вероятность встречи его с гаметами увеличивается.

У мхов и папоротников спермии развиваются в антеридиях, у покрытосеменных растений они образуются в пыльцевых трубках.

Овогенез – образование яйцеклеток у особей женского пола. У животных он происходит в яичниках. В зоне размножения находятся овогонии – первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут. Яйцеклетки неподвижны, имеют шаровидную форму. Они крупнее других клеток и содержат запас питательных веществ для развития зародыша.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений – в семяпочках, локализованных в завязи цветка.

Развитие половых клеток и двойное оплодотворение у цветковых растений.

Схема жизненного цикла цветкового растения.

Взрослая особь диплоидна. В жизненном цикле преобладает спорофит (С > Г).

Взрослое растение здесь является спорофитом, образующим макро (женские ) и микроспоры (мужские) , которые развиваются соответственно в зародышевый мешок и зрелое пыльцевое зерно , являющиеся гаметофитами.

Женский гаметофит у растений – зародышевый мешок.

Мужской гаметофит у растений – пыльцевое зерно.

Чашечка + венчик = ОКОЛОЦВЕТНИК

Тычинка и пестик – репродуктивные органы цветка

Мужские половые клетки созревают в пыльнике (пыльцевом мешке или микроспорангии), расположенном на тычинке.

В нем содержится множество диплоидных клеток, каждая из которых делится путем мейоза и образует 4 гаплоидных пыльцевых зерна (микроспоры), из всех них затем развивается мужской гаметофит .

Каждое пыльцевое зерно делится путем митоза и образует 2 клетки - вегетативную и генеративную . Генеративная клетка еще раз делится путем митоза и образует 2 спермия.

Таким образом, пыльца (проросшая микроспора, созревшее пыльцевое зерно) содержит три клетки - 1 вегетативную и 2 спермия , покрытых оболочкой.

Женские половые клетки развиваются в семязачатке (семяпочке или мегаспорангии), располагающемся в завязи пестика.

Одна из ее диплоидных клеток делится путем мейоза и образует 4 гаплоидных клетки. Из них только одна гаплоидная клетка (мегаспора) трижды делится путем митоза и прорастает в зародышевый мешок (женский гаметофит ),

три другие гаплоидные клетки отмирают.

В результате деления мегаспоры образуются 8 гаплоидных ядер зародышевого мешка, в котором 4 ядра располагаются на одном полюсе, а 4- на противоположном.

Затем от каждого полюса в центр зародышевого мешка мигрирует по одному ядру, сливаясь, они образуют центральное диплоидное ядро зародышевого мешка.

Одна из трех гаплоидных клеток, расположенных у пыльцевхода, является крупной яйцеклеткой, 2 другие - вспомогательные клетки-синергиды.

Опыление - перенос пыльцы с пыльников на рыльце пестика.

Оплодотворение - это процесс слияния яйцеклетки и сперматозоида, в результате чего образуется зигота – зародышевая клетка или первая клетка нового организма

При оплодотворении пыльцевое зерно, попав на рыльце пестика, прорастает по направлению к семязачаткам, расположенным в завязи, за счет своей вегетативной клетки, образующей пыльцевую трубку. На переднем конце пыльцевой трубки находятся 2 спермия (спермии сами двигаться не могут, поэтому продвигаются за счет роста пыльцевой трубки). Проникая в зародышевый мешок через канал в покровах - пыльцевход (микропиле), один спермий оплодотворяет яйцеклетку, а второй сливается с 2n центральной клеткой (диплоидным ядром зародышевого мешка) с образованием 3n триплоидного ядра. Этот процесс получил название двойного оплодотворения , был открыт С.Г. Навашиным в 1898 г. у лилейных. В дальнейшем из оплодотворенной яйцеклетки - зиготы развивается зародыш семени, а из триплоидного ядра - питательная ткань - эндосперм . Так, из семязачатка образуется семя, а из его покровов - семенная кожура. Вокруг семени из завязи и других частей цветка формируется плод .

Тематические задания

А1. Мейозом называется процесс

1) изменения числа хромосом в клетке

2) удвоения числа хромосом в клетке

3) образования гамет

4) конъюгации хромосом

А2. В основе изменения наследственной информации детей

по сравнению с родительской информацией лежат процессы

1) удвоения числа хромосом

2) уменьшения количества хромосом вдвое

3) удвоения количества ДНК в клетках

4) конъюгации и кроссинговера

А3. Первое деление мейоза заканчивается образованием:

2) клеток с гаплоидным набором хромосом

3) диплоидных клеток

4) клеток разной плоидности

А4. В результате мейоза образуются:

1) споры папоротников

2) клетки стенок антеридия папоротника

3) клетки стенок архегония папоротника

4) соматические клетки трутней пчел

А5. Метафазу мейоза от метафазы митоза можно отличить по

1) расположению бивалентов в плоскости экватора

2) удвоению хромосом и их скрученности

3) формированию гаплоидных клеток

4) расхождению хроматид к полюсам

А6. Телофазу второго деления мейоза можно узнать по

1) формированию двух диплоидных ядер

2) расхождению хромосом к полюсам клетки

3) формированию четырех гаплоидных ядер

4) увеличению числа хроматид в клетке вдвое

А7. Сколько хроматид будет содержаться в ядре сперматозоидов крысы, если известно, что в ядрах ее соматических клеток содержится 42 хромосомы

А8. В гаметы, образовавшиеся в результате мейоза попадают

1) копии полного набора родительских хромосом

2) копии половинного набора родительских хромосом

3) полный набор рекомбинированных родительских хромосомы

4) половина рекомбинированного набора родительских хромосом

В1. Установите правильную последовательность процессов, происходящих в мейозе

A) Расположение бивалентов в плоскости экватора

Б) Образование бивалентов и кроссинговер

B) Расхождение гомологичных хромосом к полюсам клетки

Г) формирование четырех гаплоидных ядер

Д) формирование двух гаплоидных ядер, содержащих по две хроматиды

Образовательные задачи:

  • продолжить формирование знаний о размножении, охарактеризовать мейоз,
  • сформировать знания об изменении молекул ДНК и хромосом на протяжении мейоза, раскрыть биологическое значение мейоза.

Воспитательные задачи:

  • продолжить нравственное, гигиеническое воспитание, доказывая опасность наркотиков, алкоголя и курения на формирование веретена деления.

Развивающие задачи:

  • обсуждая проблемные вопросы, применяя сравнение,
  • анализ, синтез при самостоятельной работе с учебником и заполнении таблицы, развивать у учащихся логическое мышление и интеллектуальные, творческие способности.

Оборудование урока:

  • динамическое пособие “Перекрест хромосом”, “Деление клетки”,
  • таблицы, иллюстрирующие стадии мейоза,
  • презентация, посвященная стадиям мейоза.

Этапы урока

I. Актуализация знаний учащихся (стадия вызова).

Проверка знаний о непрямом делении клетки в процессе беседы на следующие вопросы:

1.Что такое диплоидный набор хромосом? (Двойной набор хромосом, характерен для соматических клеток).

2. Что такое гаплоидный набор хромосом? (Одинарный набор хромосом, характерен для половых клеток).

3. Какой набор хромосом и ДНК в пресинтетический период интерфазы? (2п2с).

4. Какой набор хромосом и ДНК в постсинтетический период интерфазы? (2п4с).

5. Какой набор хромосом и ДНК в профазе и метафазе митоза? (2п4с).

6. Какой набор хромосом и ДНК в анафазе митоза? (4п4с).

7. Какой набор хромосом и ДНК в телофазе митоза? (2п2с).

8. Сколько молекул ДНК в ядре соматической клетки человека перед митозом? (92 молекулы).

9. Сколько молекул ДНК в ядре соматической клетки после митоза? (46).

10. Как называются хромосомы в интерфазный период? (Хроматин).

II. Изучение нового материала. Стадия осмысления.

1. Рассказ учителя о мейозе – особом виде деления клеток, результатом которого является уменьшение в два раза числа хромосом в новых образующихся специальных клетках.

2.Беседа о сложном механизме мейоза и особенностях двух его этапов, о превращении хромосом в хроматиды, о конъюгации и кроссинговере.

Особенности первого мейотического деления

Интерфаза 1.

Предсинтетический период (G1-период).

Особенности:

а) дочерние клетки, начинающие жизненный цикл, по объему и общему содержанию белков и РНК вдвое меньше, чем исходная родительская клетка;

б) в начале периода возобновляется синтез РНК;

в) наступает активный синтез белка, ферментов метаболизма РНК и ферментов, необходимых для образования предшественников ДНК;

г) синтез пуриновых и пиримидиновых нуклеотидов и четырех нуклеозидтрифосфатов, входящих в состав молекулы ДНК;

д) идет рост клетки, необходимый для достижения определенной “критической массы” цитоплазмы, определяющий начало синтеза ДНК;

е) накопление АТФ в виде резервуара энергии, обеспечивающей механическую и химическую работу митотического аппарата;

ж) в этом периоде клетки имеют диплоидное содержание ДНК (2п2с)

Синтетический период (S-период). Это отрезок времени, в течение которого происходит редупликация ДНК (2п4с).

Особенности:

а) продолжает возрастать уровень синтеза РНК в соответствии с увеличением количества ДНК;

б) параллельно синтезу ДНК в клетке идет интенсивный синтез гистонов в цитоплазме и происходит их миграция в ядро, где они связываются с ДНК.

Постсинтетический период (G-период,2п4с). Это отрезок времени, характеризующийся процессами, направленными на подготовку клетки к делению.

Особенности:

а) интенсивный синтез белка, который идет на цитоплазматический белки дочерних клеток;

б) образование митотического аппарата;

в) усиленный синтез общего белка,РНК, синтез белков, которые определяют деление клетки;

г) масса цитоплазмы удваивается;

д) резко возрастает объем ядра.

Профаза 1. Самаяпродолжительная фаза, поэтому ее делят на пятьстадий.

1 .Лептотена.

Происходит спирализация хромосом, они укорачиваются и становятся видимыми как обособленные структуры.

2. Зиготена .

Гомологичные хромосомы сближаются по длине и образуют пары. Эти хромосомы имеют одинаковую длину, их центромеры занимают одинаковое положение, и они обычно содержат одинаковое число генов, расположенных в одной и той же линейной последовательности. Начинается синапс (конъюгация) хромосом.

Конъюгация начинается в нескольких точках хромосом, а затем хромосомы соединяются по всей длине. Пару конъюгировавших гомологичных хромосом называют бивалентами. При этом происходит как более плотная упаковка на молекулярном уровне, так и внешне заметное скручивание (спирализация). Так как каждая из гомологичных хромосом обладает своей центромерой, то в биваленте имеются две центромеры.

3 . Пахитена.

Каждая гомологичная хромосома на стадии пахитены продольно расщепляется в плоскости, перпендикулярной плоскости конъюгации. Таким образом, каждый элемент теперь уже состоит из четырех хроматид. Эти точки называются хиазмами (перекрест). В результате гены из одной хромосомы оказываются связанными с генами из другой хромосомы, что приводит к новым генным комбинациям в образующихся хроматидах. Этот процесс называют кроссинговером.

4. Диплотена.

Гомологичные хромосомычастично деспирализуются и несколько отходят друг от друга. Вместе с тем они сохраняют взаимосвязь с помощью мостиков – хиазм, которые служат структурным выражением кроссинговера, имеющего место в предыдущую стадию.

5. Диакинез.

На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышко исчезают. Центриоли, если они есть, мигрируют к полюсам и затем образуют нити веретена.

Метафаза1.

Гомологичные хромосомы (биваленты) выстраиваются в экваториальной плоскости. Их центромеры выглядят двойными, но ведут себя как единые структуры.

Анафаза 1 .

По нитям веретена расходятся к полюсам центромеры, каждая из которых связана с двумя хроматидами. Таким образом, в анафазе первого деления расходятся не дочерние хроматиды гомологичных хромосом , как при митозе, а непосредственно гомологичные хромосомы и на каждом полюсе имеется гаплоидный набор п2с, а во всей клетке 2п4с.

Телофаза 1.

Расхождение гомологичных хромосом к противоположным полюсам означает завершение первого мейотического деления. Число хромосом в наборе стало вдвое меньше, но каждая хромосома состоит из двух хроматид. У животных и у некоторых растений хроматиды деспирализуются.

Особенности второго мейотического деления.

Интерфаза 2.

Эта стадия наблюдается только в животных клетках. Синтетический период отсутствует и дальнейшей репликации ДНК не происходит. После короткой интерфазы 2 наступает профаза 2.

Профаза 2.

В клетках, где выпадает интерфаза 2, эта стадия тоже отсутствует, В профазе 2 ядрышки и ядерные мембраны разрушаются, а хроматиды укорачиваются и утолщаются, Происходит образование веретена, которое знаменует начало метафазы 2.

Метафаза 2.

На этой стадии число хромосом меньше, чем в соматических клетках. Хромосомы выстраиваются в плоскости экватора, а центромеры ведут себя как двойные структуры.

Анафаза 2.

Центромеры делятся, и две сестринские хроматиды направляются к противоположным полюсам. Отделившиеся друг о друга хроматиды называются хромосомами и на каждом полюсе клетки формируется гаплоидный набор (пс).

Телофаза 2.

Эта стадия схожа с телофазой митоза. Хромосомы деспирализуются. Нити веретена исчезают, а центриоли реплицируются, Вокруг каждого ядра, которое содержит теперь гаплоидное число хромосом исходной родительской клетки, вновь образуется ядерная мембрана. Таким образом, из исходной родительской клетки получается четыре дочерние клетки.

III. Стадия рефлексии.

Подведение итогов урока с обсуждением результата мейоза, образования особых гаплоидных клеток с уменьшенным вдвое набором хромосом и стихийно обмененными участками гомологичных хромосом, просмотр презентации, посвященной стадиям мейоза, заполнение таблицы. Сообщение ученика об отклонениях, обусловленных не расхождением хромосом у человека.

Сравнительная диаграмма.

МИТОЗ СХОДСТВО МЕЙОЗ
1.Одно деление. 1. Энергия и вещества, необходимые для деления накапливаются во время интерфазы. 1. Два деления.
2.При делении материнской клетки получается две дочерние клетки с таким же набором хромосом. 2. Стадии деления:

1. кариокинез:

Профаза

Метафаза

Анафаза

Телофаза;

2. цитокинез.

2.При делении диплоидном материнской клетки получается четыре гаплоидные клетки.
3. Митоз необходим для нормального роста и развития многоклеточного организма. Митоз лежит в основе процессов заживления повреждений и бесполого размножения. 3. Интерфаза 2 практически отсутствует.

В профазе 1 деления происходит конъюгация и кроссинговер.

4. Мейоз увеличивает генетическое разнообразие половых клеток, так как в результате этого процесса образуются хромосомы, несущие гены и отца и матери.

5. У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом новом поколении.

Отклонения, обусловленные не расхождением хромосом у человека.

СИНДРОМ ГЕНОТИП СИМПТОМЫ
Клайнефельтера 44+хху=47 Мужчина, женоподобный,

умственная отсталость,бесплоден.

Шерешевского-Тернера 44+хо=45 Женщина, низкий рост,

незначительная умственная отсталость, вторичные половые признаки слабо выражены, бесплодна.

Трисомия по половым признакам 44+ххх=47 Женщина, норма, плодовита, умственно слаборазвита.

Мужчина, высокий рост, повышена агрессивность.

Синдром Дауна 47 (в 21 паре трисомия) Умственная отсталость, пониженная жизнеспособность, монголовидные глаза, опущенные уголки губ.
“Волчья пасть” 47 (в 15 паре трисомия) Незарастание твердого неба, уродства на лице.

Пониженная жизнеспособность

Трисомия в других парах 47 Летальность гамет или эмбриона.

Заключительная беседа по теме “Мейоз”.

1. Какой набор хромосом и ДНК перед первым делением мейоза? (2п4с).

2. Какой набор хромосом и ДНК перед вторым делением мейоза? (п2с).

3. Какие хромосомы называют гомологичными? (Парные одинаковые хромосомы, несущие одинаковые гены.)

4. Какие важнейшие процессы происходят в профазу I мейоза? (Конъюгация и кроссинговер.)

5. Что характерно для интерфазы между первым и вторым делениями мейоза? (Отсутствует S – период.)

6. Какой набор хромосом и ДНК в профазу II и метафазу II? (п2с.)

7. Какой набор хромосом и ДНК в конце второго мейотического деления? (пс.)

Тест “Митотический цикл”. “Мейоз”

1. В интерфазе митотического цикла ДНК удваивается:

б) в синтетический период;

в) в постсинтетический период;

г) в метафазе.

2. Активный рост клетки происходит:

а) в предсинтетический период;

б) в синтетический период;

в) в постсинтетический период

г) в метафазе.

3. Клетка имеет набор хромосом и ДНК 2п4с и готовится к делению:

а) в предсинтетический период;

б) в синтетический период;

в) в постсинтетический период

г) в метафазе.

4. Начинается спирализация хромосом, растворяется ядерная оболочка:

а) в профазе;

б) в анафазе;

в) в телофазе;

г) в метафазе.

5. Хромосомы выстраиваются по экватору клетки:

а) в профазе;

б) в анафазе;

в) в телофазе;

г) в метафазе.

6. Хроматиды отходят друг от друга и становятся самостоятельными хромосомами:

а) в профазе;

б) в анафазе;

в) в телофазе;

г) в метафазе.

7. Конъюгация гомологичных хромосом происходит в период:

а) профазы 1;

б) метафазы 1;

в) анафазы 1;

г) телофазы 1;

д) профазы 2;

е) метафазы 2;

ж) анафазы 2;

з) телофазы 2.

8. Кроссинговер в мейозе происходит во время периода:

а) профазы 1;

б) метафазы 1;

в) анафазы 1;

г) телофазы 1;

д) профазы 2;

е) метафазы 2;

ж) анафазы 2;

з) телофазы 2.

9. Какой набор хромосом получается при митотическом делении диплоидного ядра?

а) гаплоидный;

б) диплоидный.

10. Какой набор хромосом будет в клетках после деления митозом, если в материнской было 6 хромосом?

11. Какой набор хромосом будет в клетках после деления мейозом, если в материнской было 6 хромосом?

1V. Домашнее задание: изучить параграф 30.

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.




© 2024
womanizers.ru - Журнал современной женщины