21.09.2019

Как выразить x из экспоненты. Возведение экспоненты в степень


В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Экспонента представляет собой показательную функцию \ производная которой равна самой функции. Экспоненту обозначают: \

Экспонента обладает свойствами показательной функции с основанием степени е > 1. Основанием степени экспоненты является число "е". Это иррациональное число. Оно примерно равно:

Выражение числа "е" через предел последовательности. Число "е" можно выразить через предел последовательности. Это, так называемый, второй замечательный предел:

Выражение числа е в виде ряда

График экспоненты

На графике представлена экспонента, \ в степени \

На графике видно, что экспонента монотонно возрастает.

Что касается основных формул, то они такие же, как и для показательной функции с основанием степени \[е.\]

\[ (e^p)^p=e{pq}=(e^p)^p\]

Выражение показательной функции через экспоненту:

Где можно решить уравнение с экспонентой онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Функция EXP в Excel используется для возведения числа Эйлера (константа e, которая примерно равна 2,718) в указанную степень и возвращает соответствующее числовое значение.

Примеры использования функции EXP в Excel

Вкладчику банка предложили два варианта вклада:

  1. Вклад с годовой ставкой 16% и ежемесячной капитализацией.
  2. Вклад с непрерывной капитализацией (число периодов капитализации – бесконечное множество за время действия депозитного договора) с годовой ставкой 16%.

Какое предложение является более выгодным? Сумма вклада – 50000 рублей, срок действия договора – 5 лет.

Вид исходной таблицы данных:

Формула для расчета будущей стоимости вклада для первого варианта депозитного договора:

БС(B3/B4;B4*B5;0;-B6)


Во втором случае капитализация происходит непрерывно, поэтому можно воспользоваться следующей функцией:

Описание аргументов:

  • C3 – годовая ставка;
  • C5 – срок действия договора;
  • C6 – начальная сумма вклада.

Полученные результаты:


Вариант с непрерывным ростом капитализации является более выгодным.



Расчет скорости деления клеток ткани в Excel

В начальный момент времени была только одна клетка живой материи. Каждые 5 минут такая клетка делится на 2 идентичные клетки. Определить, сколько клеток ткани образуется за 0,5 часа, 1,5 часа, сутки?

Исходная таблица имеет следующий вид:


Для расчета используем формулу массива:

EXP(A3*C3:C5/B3)

Описание аргументов:

  • A3 – прирост количества клеток (100%, то есть результатом деления одной клетки являются две новые клетки);
  • C3:C5/B3 – указанные по условию периоды, деленные на время жизни клетки до окончания процесса деления.

Полученные результаты:


Значение 1,E+125 эквивалентно 10 25 .

Скорость уменьшения массы радиоактивного вещества с течением времени

Количество радиоактивного вещества уменьшается вдвое за полгода. Сколько будет весить вещество спустя 2 года, если начальная масса составляла 18 кг.

Вид исходной таблицы:

Формула для расчета:

B5*EXP(B2*B4/B3)

Описание аргументов:

  • B5 – начальная масса вещества;
  • B2 – прирост (отрицательное значение, поскольку количество вещества уменьшается);
  • B4/B3 – количество периодов, за которые происходит полураспад.

Результат вычислений:

Спустя 2 года от 18 кг останется всего примерно 330 г.

Особенности использования функции EXP в Excel

Функция EXP имеет следующую синтаксическую запись:

EXP(число )

Единственным и обязательным для заполнения аргументом является число , которое характеризует числовое значение показателя степени, в которую необходимо возвести константу e.

Примечания 1:

  1. Функции LN и EXP являются противоположными друг другу по возвращаемому результату. Логарифм указывает, в какую степень необходимо возвести основание (в случае натурального логарифма lnx показатель равен примерно 2,718), чтобы получить показатель x. Функция EXP определяет показатель x.
  2. Аргумент число может быть задан любым числом из диапазона действительных чисел (целые и дробные отрицательные, положительные значения и 0). Результат выполнения =EXP(0) равен 1.
  3. В качестве аргумента EXP могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут автоматически преобразованы к числовым значениям 1 и 0 соответственно.
  4. Если в качестве аргумента число были переданы не преобразуемые к числовому значению имя или текстовая строка, функция EXP вернет код ошибки #ЗНАЧ!.
  5. Функцию можно использовать в качестве формулы массива.

Примечания 2:

  1. Как известно, число e является показателем степени натурального логарифма, который записывается, например, так: ln10, то есть, логарифм с основанием 2,718 из 10. Само число e является показателем роста для любого процесса, зависимые величины которого изменяются непрерывно с изменением независимых. В качестве примеров могут служить такие процессы, как деление живых клеток организма (через определенный период времени одна клетки делится на две, затем каждая из этих двух делится еще на две и так далее) или распад радиоактивных веществ (зная коэффициент распада можно узнать, сколько радиоактивного вещества уже распалось на более простые элементы).
  2. Число e используется для аппроксимации (создания упрощенной модели) систем, величины которых изменяются неравномерно.
  3. Чтобы понять физический смысл числа e, рассмотрим процесс роста капиталовложений в банке. Например, банк предложил 100%-е увеличение капитала по истечению определенного периода, например, 12 месяцев. То есть, прибыль вкладчика удвоится. Предположим, что процесс роста капитала является непрерывным на протяжении года. Тогда для расчета суммы капитала по истечению 6 месяцев можно использовать формулу R=(1+100%/2) 2 , где R – рост капитала, 2 – количество полупериодов роста. Если мы решим определить рост за 4 месяца, формула примет вид R=(1+100%/3) 3 , за 3 месяца - R=(1+100%/4) 4 и т. д. В общем случае имеем формулу R=(1+100%/x) x . Если x→∞ (стремится к бесконечности) R (рост) примет значение 2,718. Из этого следует, что максимально возможный 100%-й рост за мельчайший период времени не может превысить значение 2,718, которое и является числом e (числом Эйлера). В общем случае любой рост может быть выражен формулой R=e p*t , где p – прирост величины (например, не 100%, как в рассмотренном выше примеров, а 30%, то есть 0,3), а t – время (например, если депозитный договор рассчитан на 5 лет, то t=5). Тогда для расчета в Excel достаточно ввести формулу =EXP(0,3*5).

Вычислять значения математических функций. Ведите , экспоненту которого необходимо посчитать. Затем просто нажмите на кнопку экспоненты. На большинстве калькуляторов она выглядит как «ехр» или «е» с маленьким «иксом», расположенным немного выше и правее «е». На индикаторе калькулятора сразу же появится результат (нажимать на кнопку «=» не нужно).

Для подсчета экспоненты на компьютере воспользуйтесь стандартным калькулятором ОС Windows. Для этого запустите программу «калькулятор» (нажмите кнопку «Пуск», затем «Выполнить», наберите в появившемся окошке «calc» и нажмите «Ок»). Если на клавиатуре виртуального калькулятора нет клавиш для вычисления математических функций, то переключите в инженерный режим (выберите пункт меню «Вид», а затем укажите на «Инженерный»).

Теперь наберите число, экспоненту которого нужно посчитать. Затем поставьте «галку» в окошке «Inv» и нажмите на кнопку вычисления «ln». Обратите внимание, что после вычисления в окошке «Inv» автоматически сбрасывается и ее необходимо выставлять снова. Не пользуйтесь для вычисления экспоненты кнопкой с надписью «ехр»! В калькуляторе Windows эта кнопка используется совершенно для других целей.

Существует три вида инженерных ов: с обратной польской, арифметической и формульной записью. Бывают и такие калькуляторы, которые поддерживают переключения методов ввода выражений. Использование каждого из них имеет свои особенности.

Инструкция

Определите, какой метод ввода поддерживает ваш . Если на нем отсутствует клавиша со знаком равенства, но есть клавиша со стрелкой, направленной вверх, перед вами - машинка с обратной польской записью. Наличие клавиши со знаком равенства говорит о том, что в приборе используется метод ввода. Наконец, если индикатор калькулятора, помимо сегментных знакомест, имеет еще и матричные, то аппарат рассчитан на формульную запись. В последнем случае, вместо знака равенства на соответствующей клавише может быть нанесено "EXE" или "Enter".

Чтобы произвести расчет на калькуляторе с обратной польской записью, необходимо вначале определить очередность выполнения действий. Делается это по общепринятым математическим правилам.Действия с двумя операндами выполняйте следующим образом. Введите первый операнд. Нажмите кнопку со стрелкой вверх, чтобы его на один регистр стека вверх. Введите второй операнд, и лишь после этого нажмите на клавишу математического действия. На индикаторе отобразится результат вычисления.Для выполнения действия с одним операндом просто введите его, а затем нажмите на соответствующую этому кнопку.

На калькуляторе с арифметической записью действия с двумя операндами выполняйте так же, как на обычном калькуляторе. Действия же с одним операндом выполняйте так же, как на машинке с обратной польской записью.Если на клавиатуре присутствуют клавиши со скобками, необходимость в определении очередности вычислений отсутствует. Следует, однако, не допускать превышения уровня вложенности скобок, указанного в инструкции. При отсутствии инструкции определить этот можно опытным путем, нажав клавишу с открывающей скобкой несколько раз и отметив, после которого по счету нажатия возникло об ошибке.

В калькулятор с формульной записью выражение вводят так же, как оно записывается на бумаге. Если поле ввода однострочное, формулы, содержащие дроби, преобразовывают в «одноэтажные» с помощью скобок и знака деления. При необходимости, введенное выражение можно откорректировать, пользуясь клавишами с горизонтальными стрелками, а также кнопками "Insert", "Backspace" и "Delete" (на разных калькуляторах их могут различаться). Затем нажимают клавишу "EXE" или "Enter" и результат. Если этот результат требуется поместить в следующую формулу, пользуются клавишей "ANS".

Во многих калькуляторах некоторые из клавиш способны выполнять более одной функции. Простое нажатие клавиши соответствует выполнению той операции, которой указано прямо на ней. Другие операции обозначены рядом с кнопкой тем или иным цветом. Чтобы заставить калькулятор выполнить такую функцию, следует сначала нажать регистровую клавишу, имеющую тот же цвет (она может называться "F", "2ndF", "S"), а затем - кнопку, рядом с которой указана нужная вам операция.

Видео по теме

Из общего ряда логарифмов два выделены особо - это логарифм по основанию 10 (десятичный) и по основанию, равному числу "e" - константе, которую называют «числом Эйлера». Эта константа является числом иррациональным, то есть не имеет точного значения, а представляет собой бесконечную дробь. Логарифм с таким основанием называется натуральным и имеет намного большее применение в интегральном и дифференциальном исчислении, чем десятичный логарифм.

Инструкция

Используйте -калькуляторы как наиболее быстрый способ вычисления натуральных

В этой же статье мы обсудим, что же такое экспонента в Excel и, самое главное, для чего она может пригодиться в обычной жизни или в бизнесе.

В студенческие годы часто приходилось слышать, фразы типа: «Зачем мы вообще учим ‘это’, в жизни нам ‘это’ никогда не пригодиться». Одним из таких ‘это’ часто была экспонента или, например, . У меня была слабая высшая математика при первом образовании, о чем я жалею. И вот сейчас приходиться догонять, темы что упустил раньше. Делюсь пересказом своих знаний.

Мы знаем, что наш мир описан точными науками — т.е. набором правил и законов более-менее точно описывающих происходящее. Для этого в большинстве случаев помогают функции/формулы. В природе довольно часто встречаются экспоненциальные явления (описываем экспонентой) формулой с числом e, а у = e в степени x уже будет экспоненциальной функцией:

Число e — это т.н. число Эйлера, приблизительно равное 2,72. Примечательно оно тем, что производная от этой функции равна самой функции exp(x)` = exp(x).

Что это вообще такое, и что для нас означает?

Лучше всего, действие экспоненты показывают графики ниже:

Две функции: y = 2 в x и y = e в степени x , где x = время, к примеру. Мы видим, что скорость роста экспоненциального графика увеличивается быстрее. А все почему? Потому, что производная (скорость роста или уменьшения) функции равна самой функции, т.е. скорость увеличения функции равна значению функции.


Если грубо, то в природе, это действительно встречается часто — чем больше клеток делятся, тем быстрее их становиться больше. Чем больше у вас денег в банке, тем большую прибыль они приносят. Например:

Вы вложили 1 000 руб. в банк, через год они принесли свои 100 руб. процентами, еще через год на вас работают уже 2 работника 1 000 руб. и 100 руб. и так далее пока вы не заберете деньги или не случится банковский кризис.

Кстати население на планете Земля тоже растет по экспоненте;)

Принцип Парето и экспонента

Слышали о таком принципе? Думаю да. «20% усилий приносят 80% результата». Это он. Лучшее определение для запоминания, мне кажется:

20% любителей пива употребляют 80% всего пива

На принципе Парето построен и ABC анализ запасов, например.

Этот принцип Парето — еще один пример экспоненты.

Кстати очень справедливый закон в реальной жизни, подтверждаю своим опытом.Когда-то на первом своем проекте я заметил, что примерно за 20% времени ты создаешь 80% продукта (в количественном эквиваленте), далее работаешь на качество. Т.е. еще 80% времени допиливаешь, ищешь ошибки, настраиваешь. Я даже слышал, что говорят «разработка в стадии экспоненты» — т.е. в стадии приближения к идеалу.

При таком «допиливании» проекта важно вовремя остановиться, ведь продукт никогда не будет идеальным. Поэтому заранее определитесь какое качество вы хотели бы получить в конце. Если делаете не себе, обязательно соберите требования с заказчика. Принцип выглядит примерно так:





© 2024
womanizers.ru - Журнал современной женщины