22.09.2019

Классическое определение вероятности случайного события. Классическое и статистическое определение вероятности


Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Полезная страница? Сохрани или расскажи друзьям

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами или элементарными событиями . Исход называется благоприятствующим появлению события $А$, если появление этого исхода влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров...)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей...)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов...)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равно­возможных исходов опыта в котором может появиться это событие. Вероятность события А обозначают через Р(А) (здесь Р - первая буква французского слова probabilite - вероятность). В соответствии с определением
(1.2.1)
где - число элементарных исходов, благоприятствующих событию А; - число всех равновозможных элементарных исходов опыта, образующих полную группу событий.
Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Вероятность события имеет следующие свойства:
1. Вероятность достоверного события равна единице. Обозначим достоверное событие буквой . Для достоверного события , поэтому
(1.2.2)
2. Вероятность невозможного события равна нулю. Обозначим невозможное событие буквой . Для невозможного события , поэтому
(1.2.3)
3. Вероятность случайного события выражается положительным числом, меньшим единицы. Поскольку для случайного события выполняются неравенства , или , то
(1.2.4)
4. Вероятность любого события удовлетворяет неравенствам
(1.2.5)
Это следует из соотношений (1.2.2) -(1.2.4).

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из ко­торых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение . Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой (1.2.1) получаем

Пример 2. Все натуральные числа от 1 до 30 записаны на одинако­вых карточках и помещены в урну. После тщательного перемешивания карточек из урны извлекается одна карточка. Какова вероятность того,что число на взятой карточке окажется кратным 5?

Решение. Обозначим через А событие "число на взятой карточке кратно 5". В данном испытании имеется 30 равновозможных элементар­ных исходов, из которых событию А благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

Пример 3. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Найти вероятность события В, состоя­щего в том, что на верхних гранях кубиков в сумме будет 9 очков.

Решение. В этом испытании всего 6 2 = 36 равновозможных элемен­тарных исходов. Событию В благоприятствуют 4 исхода: (3;6), (4;5), (5;4), (6;3), поэтому

Пример 4 . Наудачу выбрано натуральное число, не превосходящее 10. Какова вероятность того, что это число является простым?

Решение. Обозначим буквой С событие "выбранное число является простым". В данном случае n = 10, m = 4 (простые числа 2, 3, 5, 7). Следовательно, искомая вероятность

Пример 5. Подбрасываются две симметричные монеты. Чему равна вероятность того, что на верхних сторонах обеих монет оказались цифры?

Решение. Обозначим буквой D событие "на верхней стороне каж­дой монеты оказалась цифра". В этом испытании 4 равновозможных элементарных исходов: (Г, Г), (Г, Ц), (Ц, Г), (Ц, Ц). (Запись (Г, Ц) озна­чает, что на первой монете герб, на второй - цифра). Событию D благо­приятствует один элементарный исход (Ц, Ц). Поскольку m = 1, n = 4 , то

Пример 6. Какова вероятность того, что в наудачу выбранном дву­значном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, 33, 44, 55, 66, 77, 88, 99). Так как в данном случае m = 9, n = 90, то
,
где А -событие "число с одинаковыми цифрами".

Пример 7. Из букв слова дифференциал наугад выбирается одна буква. Какова вероятность того, что эта буква будет: а) гласной, б) согласной, в) буквой ч ?

Решение . В слове дuфференцuал 12 букв, из них 5 гласных и 7 со­гласных. Буквы ч в этом слове нет. Обозначим события: А - "гласная буква", В - "согласная буква", С - "буква ч ". Число благоприятствующих элементарных исходов: -для события А, - для события В, - для события С. Поскольку n = 12 , то
, и .

Пример 8. Подбрасывается два игральных кубика, отмечается чис­ло очков на верхней грани каждого кубика. Найти вероятность того, на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой А. Событюо А благопри­ятствуют 6 элементарных исходов: (1;]), (2;2), (3;3), (4;4), (5;5), (6;6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n=6 2 =36. Значит, искомая вероятность

Пример 9. В книге 300 страниц. Чему равна вероятность того, что наугад открытая страница будет иметь порядковый номер, кратный 5?

Решение. Из условия задачи следует, что всех равновозможных элементарных исходов, образующих полную группу событий, будет n = 300. Из них m = 60 благоприятствуют наступлению указанного со­бытия. Действительно, номер, кратный 5, имеет вид 5k, где k -натураль­ное число, причем , откуда . Следовательно,
, где А - событие "страница" имеет порядковый номер, кратный 5".

Пример 10 . Подбрасываются два игральных кубика, подсчитыва­ется сумма очков на верхних гранях. Что вероятнее -получить в сумме 7 или 8?

Решение . Обозначим события: А - "выпало 7 очков", В - "выпало 8 очков". Событию А благоприятствуют 6 элементарных исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2), (6; 1), а событию В - 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Всех равновозможных элементарных исходов n = 6 2 = 36. Значит, и .

Итак, Р(А)>Р(В), то есть получить в сумме 7 очков - более вероятное собы­тие, чем получить в сумме 8 очков.

Задачи

1. Наудачу выбрано натуральное число, не превосходящее 30. Како­ва вероятность того, что это число кратно 3?
2. В урне a красных и b голубых шаров, одинаковых по размерам и весу. Чему равна вероятность того, что наудачу извлеченный шар из этой урны окажется голубым?
3. Наудачу· выбрано число, не превосходящее 30. Какова вероятность того, что это число является делителем зо?
4. В урне а голубых и b красных шаров, одинаковых по размерам и весу. Из этой урны извлекают один шар и откладывают в сторону. Этот шар оказался красным. После этого из урны вынимают еще один шар. Найти вероятность того, что второй шар также красный.
5. Наудачу выбрано наryральное число, не превосходящее 50. Какова вероятность того, что это число является простым?
6. Подбрасывается три игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее - получить в сумме 9 или 10 оч­ков?
7. Подбрасывается три игральных кубика, подсчитывается сумма выпавших очков. Что вероятнее - получить в сумме 11 (событие А) или 12 очков (событие В)?

Ответы

1. 1/3. 2 . b /(a +b ). 3 . 0,2. 4 . (b -1)/(a +b -1). 5 .0,3.6 . p 1 = 25/216 - вероятность получить в сумме 9 очков; p 2 = 27/216 - вероятность получить в сумме 10 очков; p 2 > p 1 7 . Р(А) = 27/216, Р(В) = 25/216, Р(А) > Р(В).

Вопросы

1. Что называют вероятностью события?
2. Чему равна вероятность достоверного события?
3. Чему равна вероятность невозможного события?
4. В каких пределах заключена вероятность случайного события?
5. В каких пределах заключена вероятность любого события?
6. Какое определение вероятности называют классическим?

Разберём классическое определение вероятности при помощи формул и примеров.

Случайные события называются несовместимыми , если они не могут происходить одновременно. Например, когда мы подкидываем монету, выпадет что-то одно – «герб» или число» и они не могут появится одновременно, так как логично, что это невозможно. Несовместимыми могут быть такие события, как попадание и промах после сделанного выстрела.

Случайные события конечного множества образовывают полную группу попарно несовместимых событий, если при каждом испытании появляется одна, и только одна из этих событий – единственно возможные.

Рассмотрим всё тот же пример с подкидыванием монеты:

Первая монета Вторая монета События

1) «герб» «герб»

2) «герб» «число»

3) «число» «герб»

4) «число» «число»

Или сокращённо – «ГГ», – «ГЧ», – «ЧГ», – «ЧЧ».

События называются равновозможными , если условия исследования обеспечивают одинаковую возможность появления каждой из них.

Как вы понимаете, когда подбрасываете симметричную монету, тогда у неё одинаковые возможности, и есть вероятность, что выпадет как «герб», так и «число». Это же касается подбрасывания симметричного игрального кубика, так как есть вероятность того, что могут появится грани с любым числом 1, 2, 3, 4, 5, 6.

Допустим, что теперь кубик подбрасываем со смещением центра тяжести, например, в сторону грани с цифрой 1, тогда чаще всего будет выпадать противоположная грань, то есть грань с другой цифрой. Таким образом, в этой модели возможности появления для каждой из цифр от 1 до 6 будут разными.

Равновозможные и единственно возможные случайные события называются случаями.

Есть случайные события, которые относятся к случаям, а есть случайные события, которые не относятся к случаям. Ниже на примерах рассмотрим эти события.

Те случаи, в результате которых случайное событие появляется, называются благоприятными случаями для этого события.

Если обозначить через , которые влияют на событие при всех возможных случаях, а через – вероятность случайного события , тогда можно записать известное классическое определение вероятности:

Определение

Вероятность события называют отношения числа благоприятных этому событию случаев, к общему числу всех возможных случаев, то есть:

Свойства вероятности

Классическая вероятность рассмотрена, а теперь разберём основные и важные свойства вероятности.

Свойство 1. Вероятность достоверного события равняется единице.

Например, если в ведёрке все шариков белые, тогда событию , наугад выбрать белый шарик, влияют случаев, .

Свойство 2. Вероятность невозможного события равняется нулю.

Свойство 3. Вероятностью случайного события есть положительное число:

Значит, вероятность любого события удовлетворяет неравенство:

Теперь решим несколько примеров на классическое определение вероятности.

Примеры классического определения вероятности

Пример 1

Задача

В корзине 20 шариков, из них 10 белых, 7 красных и 3 чёрных. Наугад выбирается один шарик. Выбран белый шарик (событие ), красный шарик (событие ) и чёрный шарик (событие ). Найти вероятность случайных событий .

Решение

Согласно условию задачи, способствуют , а случаев из возможных, поэтому по формуле (1):

– вероятность белого шарика.

Аналогично для красного:

И для чёрного: .

Ответ

Вероятность случайного события , , .

Пример 2

Задача

В ящике лежат 25 одинаковых электроламп, из них 2 бракованные. Найти вероятность того, что наугад выбранная электролампа не бракованная.

Решение

По условию задачи все лампы одинаковые и выбирается только одна. Всего возможностей выбрать . Среди всех 25 лампа две бракованные, значит, оставшихся пригодных лампа . Поэтому по формуле (1) вероятность выбора пригодной электролампы (событие ) равняется:

Ответ

Вероятность того, что наугад выбранная электролампа не бракованная = .

Пример 3

Задача

Наугад подбрасываются две монеты. Найти вероятность таких событий:

1) – на обеих монетах выпало по гербу;

2) – на одной из монет выпал герб, а на второй – число;

3) – на обеих монетах выпали числа;

4) – хотя бы один раз выпал герб.

Решение

Здесь имеем дело с четырьмя событиями . Установим, какие случаи способствуют каждой из них. Событию способствует один случай, это когда на обеих монетах выпал герб (сокращённо «ГГ»).

Чтобы разобраться с событием , представим, что одна монета серебряная, а вторая – медная. При подбрасывании монет могут быть случаи:

1) на серебряной герб, на медной – число (обозначим – «ГЧ»);

2) на серебряной число, на медной – герб ( – «ЧГ»).

Значит, событию способствуют случаи и .

Событию способствует один случай: на обеих монетах выпали числа – «ЧЧ».

Таким образом, события или (ГГ, ГЧ, ЧГ, ЧЧ) образовывают полную группу событий, все эти события несовместимы, так как в результате подбрасывания происходит только одна из них. Кроме того, для симметричных монет все четыре события равновозможные, поэтому их можно считать случаями. Всех возможных событий – четыре .

Событию способствует только одно событие, поэтому его вероятность равняется:

Событию способствуют два случая , поэтому:

Вероятность события такая же, как и для :

Событию способствуют три случая: ГГ, ГЧ, ЧГ и поэтому:

Так как рассмотрены события ГГ, ГЧ, ЧГ, ЧЧ, которые равновозможные и создают полную группу событий, тогда появление любой из них – это достоверное событие (обозначим её буквой , которой способствуют все 4 случая . Поэтому вероятность:

Значит, подтверждается первое свойство вероятности.

Ответ

Вероятность события .

Вероятность события .

Вероятность события .

Вероятность события .

Пример 4

Задача

Подкидываются два игральных кубика с одинаковой и правильной геометрической формой. Найти вероятность всех возможных сумм на обеих гранях, что выпадают.

Решение

Чтобы было удобнее решать задачу, представьте, что один кубик белый, а второй – чёрный. С каждой из шести граней белого кубика и также может выпасть одна из шести граней чёрного кубика, поэтому всех возможных пар будет .

Так как возможность появления граней на отдельном кубике одинаковая (кубики правильной геометрической формы!), тогда одинаковой будет возможность появления каждой пары граней, причём, в результате подбрасывания выпадает только одна из пар. Значи события несовместимы, единовозможные. Это случаи, и всех возможных случаев – 36.

Теперь рассмотрим возможность значения суммы на гранях. Очевидно, что самая маленькая сумма 1 + 1 = 2, а самая большая 6 + 6 = 12. Оставшаяся часть суммы вырастает на единицу, начиная со второй. Обозначим событий, индексы которых равняются сумме очков, что выпали на гранях кубиков. Для каждой из этих событий выпишем благоприятные случаи при помощи обозначений , где – сумма, – очки на верхней грани белого кубика и – очки на грани чёрного кубика.

Значит, для события:

для – один случай (1 + 1);

для – два случая (1 + 2; 2 + 1);

для – три случая (1 + 3; 2 + 2; 3 + 1);

для – четыре случая (1 + 4; 2 + 3; 3 + 2; 4 + 1);

для – пять случаев (1 + 5; 2 + 4; 3 + 3; 4 + 2; 5 + 1);

для – шесть случаев (1 + 6; 2 + 5; 3 + 4; 4 + 3; 5 + 2; 6 + 1);

для – пять случаев (2 + 6; 3 + 5; 4 + 4; 5 + 3; 6 + 2);

для – четыре случая (3 + 6; 4 + 5; 5 + 4; 6 + 3);

для – три случая (4 + 6; 5 + 5; 6 + 4);

для – два случая (5 + 6; 6 + 5);

для – один случай (6 + 6).

Таким образом значения вероятности такие:

Ответ

Пример 5

Задача

Троим участникам перед фестивалем предложили тянуть жребий: каждый из участников по очереди подходит к ведёрку и наугад выбирает одну из трёх карточек с номерами 1, 2 и 3, что означает порядковый номер выступления данного участника.

Найти вероятность таких событий:

1) – порядковый номер в очереди совпадает с номером карточки, то есть порядковым номером выступления;

2) – ни один номер в очереди не совпадает с номером выступления;

3) – только один из номеров в очереди совпадает с номером выступления;

4) – хотя бы один из номеров в очереди совпадёт с номером выступления.

Решение

Возможными результатами выбора карточек – это перестановки из трёх элементов , количество таких перестановок равняется . Каждая из перестановок и есть событие. Обозначим эти события через . Каждому событию припишем в скобках соответствующую перестановку:

; ; ; ; ; .

Перечисленные события равновозможные и единовозможные, то есть, это и есть случаи. Обозначим так: (1ч, 2ч, 3ч) – соответствующие номера в очереди.

Начнём с события . Благоприятный только один случай поэтому:

Благоприятными для события – два случая и , поэтому:

Событию способствуют 3 случая: , поэтому:

Событию , кроме , способствует ещё и , то есть:

Ответ

Вероятность события – .

Вероятность события – .

Вероятность события – обновлено: Сентябрь 15, 2017 автором: Научные Статьи.Ру




© 2024
womanizers.ru - Журнал современной женщины