18.07.2019

Клетка мононуклеарная. Мононукпеарные фагоциты и иммунотерапия Система мононуклеарных фагоцитов


    - (моно + лат. nuclearis ядерный; син. клетка мононуклеарная) общее название одноядерных клеток крови … Большой медицинский словарь

    - (Моно + лат. nuclearis ядерный; син. клетка мононуклеарная) общее название одноядерных клеток крови. Мононуклеар атипичный см. Мононуклеар базофильный. Мононуклеар базофильный (син. М. атипичный) крупный полиморфный М., напоминающий лимфоцит,… … Медицинская энциклопедия

    МИЕЛОБЛАСТЫ - МИЕЛОБЛАСТЫ, материнская форма зернистых лейкоцитов. Носит различные названия: большой лимфоцит Эрлиха, миело бласт Негели Шридде Моссе (Nageli, Schrid de, Mosse), базофильный миелоцит Домини чи(Dominici), лимфоидоцит, лейкобластПап пенгейма… … Большая медицинская энциклопедия

    I Перикардит (pericarditis; анат. pericardium околосердечная сумка + itis) воспаление серозной оболочки сердца. В клинической практике к П. относят нередко и такие поражения Перикарда, в частности при заболеваниях крови и опухолях, которые в… … Медицинская энциклопедия

    МНК многозначная аббревиатура: Метод наименьших квадратов. Международный нефтяной картель (создан в 1928). Метод неразрушающего контроля. Мировой нефтяной конгресс. Мононуклеарная клетка, см. также ДНК. Молодёжный националистический… … Википедия

    МНК - метод наименьших квадратов МНК многонациональная компания многонациональная корпорация мультинациональная корпорация организация МНК Мяжейкяйский нефтеперерабатывающий комплекс Литва, энерг.

СИСТЕМА МОНОНУКЛЕАРНЫХ ФАГОЦИТОВ (син.: макрофагальная система, моноцитарно-макрофагальная система ) - система, объединяющая клетки, к-рые обладают способностью к эндоцитозу, имеют общее происхождение, морфологическое, цитохимическое и функциональное сходство. Концепция С. м. ф. впервые предложена в 1969 г. на конференции в Лейдене вместо устаревшей концепции ретикулоэндотелиальной системы (см. Ретикулоэндотелиальная система). На последующих конференциях в Лейдене (1973, 1978) представления о С. м. ф. продолжали совершенствоваться, и в настоящее время эта концепция принята большинством исследователей.

В основу концепции С. м. ф. положены современные представления об общности происхождения и кинетике этих клеток, их морфологическом, цитохимическом и функциональном сходстве. Мононуклеарные фагоциты присутствуют во всех тканях, но в нормальных условиях пролиферация их предшественников происходит только в костном мозге (см.). Наиболее рано распознаваемыми предшественниками ряда дифференцировки этих клеток являются монобласты - прямые «потомки» коммутированных стволовых клеток. В результате деления монобластов возникают промоноциты - прямые предшественники моноцитов (см. Кроветворение). Моноциты поступают в кровеносное русло, а затем мигрируют в различные ткани и полости тела, где становятся макрофагами (см.). Экспериментальные исследования подтвердили происхождение макрофагов самой разной локализации из циркулирующих в крови моноцитов. Было также показано, что деление макрофагов в тканях существенного значения для их обновления не имеет, тогда как ретикулярные клетки, дендритные ретикулярные клетки, фибробласты, эндотелиальные и мезотелиальные клетки не имеют предшественников в костном мозге, а обновляются путем локального деления в тканях. На схеме показаны происхождение клеток, входящих в систему мононуклеарных фагоцитов, и их локализация в органах и тканях, разновидности макрофагов в норме и при воспалении в зависимости от его характера (рис. 1).

Функция системы мононуклеарных фагоцитов контролируется сложными регуляторными механизмами, обеспечивающими поступление макрофагов в ткани в условиях нормы и патологии. Для описания функционального состояния макрофагов используются разнообразные определения (активированные, иммунные, вооруженные, индуцированные, стимулированные, экссудативные и т. д.). Активирование макрофагов происходит при культивировании in vitro, при фагоцитировании бактерий, контакте с антигеном, иммунными комплексами, бактериальными липополисахари-дами, полинуклеотидами и при взаимодействии с лимфокинами (см. Медиаторы клеточного иммунитета). В частности, in vitro показано участие в моноцитопоэзе (и гранулоцитопоэ-зе) гликопротеидов-регуляторов, или так наз. колониестимулирующих факторов, к-рые влияют на скорость дифференцировки предшественников макрофагов и относятся к аз-глобулинам с молекулярным весом (массой) от 13 000 до 93 000 . При различных патологических процессах, когда повышается потребность в моноцитах, продукция последних увеличивается за счет вступления в цикл непролиферирующих промоноцитов (в норме у человека активно пролиферирует только ок. 40% промоноцитов) и укорочения клеточного цикла, к-рый в норме составляет в среднем ок. 30 часов. В условиях воспаления макрофаги очага повреждения вырабатывают и освобождают в циркуляторное русло фактор, к-рый усиливает моноцитопоэз и, достигая костного мозга, стимулирует продукцию моноцитов. Этот фактор представляет собой белок с молекулярным весом (массой) ок. 20 000. После устранения повреждающего агента макрофаги начинают вырабатывать другой фактор - ингибитор моноцитопоэза с молекулярным весом (массой) ок. 50 000.

Активированные макрофаги характеризуются увеличенными размерами, усиленными фагоцитарной, переваривающей и бактерицидной функциями. В них повышаются активность кислых гидролаз, обменные процессы. Морфологически активированные макрофаги характеризуются увеличением числа и размеров лизосом, расширением комплекса Гольджи, увеличением складчатости плазматической мембраны. Активированные макрофаги с увеличенным числом рецепторов для IgG описаны у больных, страдающих саркоидозом (см.), болезнью Крона (см. Крона болезнь) и туберкулезом (см.).

Стимулятором, обладающим выраженным и направленным действием на макрофаги, является глюкан (сложный полисахарид из оболочек дрожжевых клеток Saccharomyces cerevisiae). Введение глюкана мышам приводит к резкому увеличению фагоцитарной активности макрофагов, стимуляции гуморального и клеточного иммунитета (см.). При этом ярко проявляется противоопухолевый эффект макрофагов. Параллельно отмечено накопление макрофагов в печени, селезенке и легких. Исследователи, применявшие глюкан, подчеркивают отсутствие у экспериментальных животных каких-либо побочных явлений.

Препараты, блокирующие, или элиминирующие, макрофаги, прежт де всего препятствуют их участию в различных иммунных реакциях. Так, частицы захваченного коллоидного угля приводят к потере способности макрофагов в процессе развития иммунного ответа перерабатывать антиген или подготавливать его для взаимодействия с соответствующими лимфоцитами. В основе иммунодепрессивного действия на макрофаги каррагинанов (высокомолекулярных полигалактоз) и частиц кварца лежит их избирательный токсический эффект. Эти же агенты используются для изучения участия макрофагов в тех или иных процессах.

Пути миграции моноцитов в ткани различны и не до конца изучены. В легких, напр., моноциты прямо дифференцируются в альвеолярные макрофаги, минуя фазу созревания в интерстиции. В брюшную полость часть макрофагов поступает из млечных пятен (см.), где они дифференцируются из моноцитов. Способность макрофагов к рециркуляции через кровеносные сосуды весьма ограничена, однако доказано, что они хмогут мигрировать в близлежащие лимф, узлы, где погибают.

Морфофизиология

Характерными качествами, присущими клеткам С. м. ф., в частности макрофагам (см.), являются способность к эндоци-тозу, включающему фагоцитоз (см.) и пиноцитоз (см.), адгезии, миграции. Макрофаги тканей и серозных полостей имеют более или менее сферическую форму, складчатую плазматическую мембрану (цитолемму) и характеризуются прежде всего присутствием в цитоплазме многочисленных лизосом (см.) и фаголизосом, или пищеварительных вакуолей (рис. 2). В сканирующем электронном микроскопе (см. Электронная микроскопия) хорошо видны поверхностные складки и гребни макрофагов (рис. 3). Обладая выраженной способностью к адгезии, в условиях культивирования макрофаги сильно распластываются на поверхности субстрата и приобретают уплощенную форму. При перемещении по субстрату они образуют множество полиморфных псевдоподий (см. Клетка), причем на сканограммах видны складчатый ведущий край, направленный в сторону перемещения клетки, и длинные отростки, фиксирующие клетку к субстрату. Наряду с этим макрофаги различной локализации, даже в пределах одного органа, напр. лимф, узла, отличаются как морфологически, так и функционально. Так, макрофаги светлых (герминативных) центров в отличие от фиксированных и свободных макрофагов синусов лимф, узлов не фагоцитируют антигены, но поглощают другие инородные частицы и лимфоциты. Их обычно выделяют как макрофаги с окрашивающимися включениями.

Внутриклеточный метаболизм мононуклеарных фагоцитов зависит от стадии дифференцировки, тканевой локализации, активирования и эндоцитоза. Основными источниками энергии для мононуклеарных фагоцитов являются гликолиз, гек-созомонофосфатный шунт и аэробный метаболизм. Исследования последних лет показали, что макрофаги являются активными секреторными клетками, к-рые освобождают в окружающую их среду ферменты, ингибиторы, факторы и компоненты комплемента (см.). Основным секреторным продуктом макрофагов является лизоцим (см.), к-рый вырабатывается и секретирует-ся с постоянной скоростью. В отличие от лизоцима нек-рые нейтральные протеиназы секретируются в основном активированными макрофагами. Среди них лучше всего изучены эластаза (см.), коллагеназа (см.) и активаторы плазминогена (см. Фибринолиз), участвующие в разрушении и перестройке тканей (напр., при резорбции кости, инволюции молочных желез и послеродовой инволюции матки). Как фиксированные, так и свободные макрофаги секретируют нек-рые факторы комплемента, такие, как С2, СЗ, С4, С5, фактор В, а также интерферон (см.).

Методы исследования

Традиционные морфол. методы, особенно на светооптическом и даже на электронно-микроскопическом уровне, часто бывают недостаточными для идентификации мононуклеарных фагоцитов. Даже при изучении изолированных клеток иногда трудно отличить моноцит от лимфоцита или предшественников моноцита (монобласта и промоноцита), от предшественников гранулоцитов (миелобластов и промиелоцитов). Кроме того, тканевые макрофаги часто путают с ретикулярными клетками, фибробластами, эндотелиальными и мезотелиаль-ными клетками, хотя разделение этих клеток имеет принципиальное значение, т. к. их происхождение и функция совершенно различны.

Лишь использование специфических маркеров в сочетании с электронной микроскопией позволяет надежно идентифицировать и оценить участие мононуклеарных фагоцитов в тех или иных процессах. Одним из наиболее надежных маркеров для идентификации мононуклеарных фагоцитов человека и животных является фермент эстераза (КФ 3. 1. 1. 1.), к-рый определяется гистохимически при использовании в качестве субстрата а-нафтилбути-рата или а-нафтилацетата. При этом окрашиваются почти все моноциты и макрофаги, хотя интенсивность гистохим. реакции может варьировать в зависимости от вида и функционального состояния организма, а также от условий культивирования клеток. В мононуклеарных фагоцитах фермент локализуется диффузно, тогда как в Т-лимфоцитах выявляется в виде одной-двух точечных гранул.

Другой надежный маркер - лизоцим (КФ 3. 2. 1. 17.) - фермент, секретируемый макрофагами, к-рый может быть выявлен с помощью им-мунофлюоресцентного метода с использованием антител к лизоциму (см. Иммунофлюоресценция).

Выявлять различные стадии дифференцировки мононуклеарных фагоцитов позволяет пероксидаза (см.). Гранулы, содержащие фермент, окрашиваются положительно только в монобластах, промоноцитах, моноцитах и макрофагах экссудата; резидентные (т. е. постоянно присутствующие в нормальных тканях) макрофаги не окрашиваются.

В качестве ферментов-маркеров мононуклеарных фагоцитов используются также 51-нуклеотидаза, (КФ 3. 1. 3. 5), лейцинаминопептидаза (КФ 3. 4. 11. 1.), фосфодиэстёраза I (КФ 3. 1. 4. 1.), локализующиеся в плазматической мембране. Активность этих ферментов определяют либо в гомогенатах клеток, либо цитохимически. Выявление Б^нук-леотидазы позволяет отличать нормальные (резидентные) макрофаги от активированных (активность этого фермента высока в первых и низка во вторых). Активность лейцин-аминопептидазы и фосфодиэстеразы, наоборот, возрастает по мере активирования макрофагов.

Компоненты комплемента, в частности СЗ, также могут являться маркером, поскольку этот белок синтезируется только моноцитами и макрофагами. Он может быть выявлен в цитоплазме с помощью иммуно-цитохимических методов; компоненты комплемента у разных видов животных различаются по антигенным свойствам.

Весьма характерно для мононуклеарных фагоцитов наличие иммунол. рецепторов для Fc-фрагмента JgG (см. Иммуноглобулины) и для компонента СЗ комплемента. Мононук-леарные фагоциты несут названные рецепторы на всех стадиях развития, но среди незрелых клеток число мононуклеарных фагоцитов с рецепторами ниже, чем среди зрелых (моноцитов и макрофагов). Мононуклеарных фагоциты обладают способностью к эндоцитозу. Поэтому поглощение опсонизированных бактерий или покрытых IgG эритроцитов (иммунный фагоцитоз) является важным критерием, позволяющим отнести клетку к С. м. ф. Однако поглощения покрытых комплементом эритроцитов не происходит, если мо-нонуклеарные фагоциты не были предварительно активированы. Кроме фагоцитоза, все мононуклеар-ные фагоциты характеризуются интенсивным пиноцитозом. В макрофагах преобладает макропиноцитоз, к-рый лежит в основе захвата всех растворов; везикулы, образующиеся в результате интернализации мембраны (впячивания участка мембраны внутрь клетки), транспортируют вещества и за пределы клетки. Пи-ноцитоз отмечен и у других клеток (напр., у фибробластов), но в более слабой степени. Нетоксические витальные красители и коллоидный уголь мало подходят для характеристики эндоцитозной активности мононуклеарных фагоцитов, поскольку поглощаются и другими типами клеток.

Для выявления специфических для мононуклеарных фагоцитов антигенов могут быть использованы антисыворотки, однако получение антител, специфичных для этих клеток, все еще представляет большие трудности, т. к. многие из антисывороток содержат антитела, перекрестно реагирующие с другими типами клеток.

На клеточном уровне о способности клеток к делению судят по включению меченого предшественника ДНК 3Н-тимидина или по содержанию ДНК в ядрах.

Роль системы мононуклеарных фагоцитов в физиологических и патологических процессах

Мононуклеарные фагоциты - полифункциональ-ные клетки, к-рые, обладая выраженной способностью к эндоцитозу, выполняют в организме защитную функцию, принимают участие в процессах воспаления, иммунных реакциях, обладают противоопухолевой активностью, участвуют в регуляции кроветворения и обмена веществ.

Защитная функция

В основе защитной функции мононуклеарных фагоцитов лежит их способность избирательно поглощать и разрушать различные чужеродные агенты. За ними закрепился термин «профессиональные фагоциты», поскольку поглощение (эндоцитоз) - их основная функция. Моноциты и макрофаги способны к направленному движению, определяемому специфическими хемотаксическими факторами. Регуляция этих факторов сложна; в сыворотке крови человека выявлены их ингибиторы и инактиваторы. In vivo хемотаксис (см. Таксисы) вызывается компонентами комплемента СЗ и С4, калликреином, компонентами фибринолиза, продуктами лимфоцитов - лимфокинами. Привлекаются макрофаги также веществами, освобождающимися из бактерий. Благодаря хемотаксису макрофаги мигрируют в очаги инфекции и воспаления. После фагоцитоза микроорганизмов происходит их умерщвление и переваривание. По мере продвижения фагоцитарных вакуолей внутрь клетки в них освобождаются вещества, находящиеся в лизосомах, способные гидролизировать белки, липиды и углеводы, входящие в состав микроорганизмов. Нек-рые из освобождаемых компонентов макрофагов, такие, как пероксида-за, лизоцим и др., обладают антимикробной активностью. Лизоцим является антибактериальным агентом и вне клеток. Среда в фаго-лизосомах становится кислой, что способствует проявлению оптимальной активности ферментов лизосом. Одновременно в фагоцитирующих клетках происходит резкое повышение метаболизма. Переваривание завершается в течение одного-двух часов. Активированные макрофаги подобно нейтрофилам освобождают в окружающую среду перекись водорода и анионы супероксида и с их помощью могут лизировать различные клетки-мишени. Макрофаги захватывают также вирусы, причем нек-рые из них поступают в клетку путем пиноцитоза. Основной функцией клеток Купфера печени является клиренс (очищение) крови от бактерий и вирусов. Старые или поврежденные эритроциты фагоцитируются макрофагами костного мозга, селезенки и печени, а затем подвергаются внутриклеточному перевариванию (эритрофагоцитоз).

Участие в воспалении

Повреждающие агенты (агенты-раздражители) различной природы вызывают в общем однотипную реакцию организма - воспаление (см.). Однократное кратковременное раздражение индуцирует миграцию нейт-рофилов и их скопление в зоне повреждения. Через 6 час. приток нейт-рофилов постепенно ослабевает, после чего начинается миграция макрофагов, к-рая продолжается примерно в течение Зсут., а затем снижается. Макрофаги в очаге острого воспаления образуются только из циркулирующих моноцитов. При подостром и хроническом воспалении макрофаги часто становятся доминирующими клетками, причем если острый воспалительный процесс переходит в хрон. форму, то наблюдаются местная пролиферация и селекция долгоживущих макрофагов, направленные на поддержание численности макрофагов в очаге воспаления.

От природы раздражающего агента зависит сменяемость макрофагов в очаге повреждения. В случае устранения провоцирующего агента они исчезают (гибнут или мигрируют в лимф. узлы). При сохранении действия возбудителя воспаления макрофагальный инфильтрат остается. Если в процессе ответной реакции, направленной на устранение токсического и устойчивого раздражителя (напр., двуокиси кремния, бактерий), происходит потеря большого числа макрофагов, то формируется гранулема (см.) с высоким уровнем сменяемости клеток. Если раздражитель устойчив к действию макрофагов и в то же время нетоксичен, возникает гранулема с низким уровнем сменяемости клеток; в такой гранулеме преобладают долгоживущие макрофаги. Во многих специфических гранулемах (напр., при туберкулезе, саркоидо-зе, лепре) мононуклеарные фагоциты превращаются в эпителиоидные клетки (рис. 4) со слабой фагоцитарной активностью, но сильно выраженным пиноцитозом и способностью к секреции. В очагах хрон. воспаления мононуклеарные фагоциты при слиянии дают начало так наз. макрофагальным поликарионам, или многоядерным гигантским клеткам инородных тел (рис. 5) и клеткам типа Пирогова - Лангханса (см. Гигантские клетки). Последние обычно сохраняют очень слабую фагоцитарную активность, напр, по отношению к бактериям туберкулеза. В хрон. гранулемах, вызванных частицами кварца, происходит непрерывная гибель макрофагов в результате разрушения лизосом и са-мопереваривания клеток. При этом из клеток освобождается фиброгенный фактор, стимулирующий синтез коллагена фибробластами. Кроме того, активированные макрофаги вырабатывают фибронектин-гликопротеид с высокой молекулярной массой, являющийся, в частности, хемо-аттрактантом (привлекающим агентом) для фибробластов.

Участие в иммунных процессах

Клетки С. м. ф. принимают участие в иммунных процессах. Первичное взаимодействие макрофага с антигеном (см.) - непременное условие развития направленного и максимального иммунного ответа (см. Иммунитет). В результате такого взаимодействия антиген поглощается и перерабатывается внутри макрофага (процессинг), после чего секретируется в иммуно-генной форме, оказываясь фиксированным на его плазматической мембране. Иммунная стимуляция лимфоцитов происходит в результате их непосредственного контакта с макрофагами. В дальнейшем иммунная реакция протекает с участием В-лимфоцитов, Т-лимфоцитов и макрофагов (см. Иммунокомпетентные клетки).

Противоопухолевая активность

Макрофаги обладают противоопухолевой активностью и проявляют специфические и неспецифические цитотоксиче-ские свойства благодаря присутствию цитофильных антител или факторов, продуцируемых сенсибилизированными Т-лимфоцитами. Разрушение клеток-мишеней обычно оценивается по освобождению связанного с ними радиоактивного хрома после ицкубации с цито-токсическими макрофагами - эффекторами. Проявляемая макрофагами цитотоксичность имеет отношение к ряду иммунных реакций, таких, как отторжение аллотрансплантатов (см. Иммунитет трансплантационный) и противоопухолевый иммунитет (см. Иммунитет противоопухолевый) .

Цитотоксическими свойствами обладают две категории макрофагов- эффекторов: иммунные, или так наз. вооруженные, макрофаги, активно разрушающие специфические клет-ки-мишени, и неспецифические активированные макрофаги с менее избирательными свойствами. Цитотоксичность иммунных макрофагов по отношению к опухолевым клеткам продемонстрирована в опытах in vitro, в к-рых использовали макрофаги от мышей, иммунизированных син-генными (генетически идентичными) опухолевыми клетками. В то же время макрофаги не были способны разрушать опухолевые клетки, если были получены от мышей, иммунизированных аллогенными опухолевыми клетками (взятыми от другого животного того же вида). Специфическая подготовка (вооружение) макрофагов зависит от продукции специфического фактора сенсибилизированными Т-лимфоцитами. Точный механизм деструкции клеток вооруженными макрофагами пока неизвестен. Для лизиса опухолевых клеток необходим контакт между ними и макрофагами. Процесс разрушения опухолевых клеток включает в себя остановку их пролиферации и лизис. После специфической иммунной реакции между макрофагом и опухолевой клеткой-мишенью макрофаг может потерять специфичность. В этом случае он превращается в неспецифическую клетку-эффектор. Неспецифическая цитотоксичность может наблюдаться после инкубации макрофагов с различными веществами: эндотоксином, двуцепочечной РНК и адъювантом Фрейнда (см. Адъюванты).

Участие в регуляции кроветворения

Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения (см.). В красном костном мозге, селезенке, печени и желточном мешке эмбриона описан так наз. центральный макрофаг, окруженный одним-двумя рядами эрит-робластов. Тонкие цитоплазматические отростки центрального макрофага проникают между эрит-робластами, а иногда их полностью окружают. Центральный макрофаг всегда становится центром эритропоэза, вместе с прилежащими к нему эритробластами он получил название эритробластического островка, к-рый рассматривается как функционально-анатомическая единица очагов эритропоэза. Центральный макрофаг поглощает ядра эрит-робластов, переваривает старые эритроциты и переносит накапливаемое железо в развивающиеся эритробласты. Нек-рые продукты распада поглощенных ядер могут реутилизироваться для нового синтеза ДНК кроветворными клетками. Центральный макрофаг отличается высокой устойчивостью к воздействию ионизирующего облучения и гипоксии. Центральные макрофаги являются стромальны-ми элементами и выполняют регулирующую функцию при созревании эритроидных клеток-предшественни-ков, напр. при фенилгидразино-вой анемии (см. Анемия, анемия экспериментальная). Появление новых интраваскулярных эритроб-ластических островков в костном мозге, печени и селезенке всегда связано с наличием фагоцитирующих макрофагов, дифференцирующихся из циркулирующих в крови моноцитов.

Клетки Купфера печени участвуют в регуляции эритропоэза посредством выработки эритропоэтина (см.).

С помощью агаровых культур установлено, что моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов, а также пролиферацию макрофагов, в результате чего возникают дискретные клеточные колонии. С другой стороны, они могут оказывать ингибирующий эффект на рост колоний, синтезируя простагландин Е (см. Простагландины) .

В мозговом веществе и внутренней зоне коркового вещества долек тимуса и тимусзависимых зонах всех периферических лимф, органов (лимф, узлов, селезенки, скоплениях лимф, ткани жел.-киш. тракта) сравнительно недавно были описаны так наз. интердигитирующие клетки. Они характеризуются неправильной формой ядер и наличием в цитоплазме тубуловезикулярных структур. Их плазматическая мембрана образует многочисленные выпячивания, проникающие между аналогичными образованиями соседних клеток того же типа или лимфоцитов. Эти клетки морфологически очень сходны с макрофагами, а также клетками Лангерганса, локализующимися в эпидермисе (см. Кожа). В настоящее время большинство исследователей склоняется к тому, что интердигитирующие клетки - специфические стромальные элементы тимусзависимых зон, ответственные за миграцию и дифференцировку Т-лим-фоцитов.

Макрофаги участвуют в синтезе веществ, модулирующих пролиферацию и дифференцировку лимфоидных клеток. К ним относится фактор, активирующий лимфоциты и обеспечивающий митогенный (бластогенный) ответ Т-лимфоцитов на лектин и антигены гистосовместимости (см. Бластотрансформация лимфоцитов), а также факторы, усиливающие хелперную функцию Т-лимфоцитов (усиление антитело-образования в В-лимфоцитах). С помощью клонирования В-лимфоцитов показано, что макрофаги вырабатывают диффузный фактор, способствующий образованию колоний субпопуляцией В-лимфоцитов. Избыточное число макрофагов, наоборот, приводит к подавлению роста колоний в результате выработки простаг-ландина Е.

Обменная функция

Обменным процессом, в к-ром достоверно доказана роль макрофагов, является обмен железа. В результате эритрофагоцитоза в макрофагах костного мозга и селезенки происходит накопление железа в виде специфических игольчатых или палочковидных включений ферритина и гемосидерина. Ферритин затем поступает путем пиноцитоза (см.) в прилежащие эритробласты. При фе-нилгидразиновой анемии в макрофагах наблюдается увеличение палочковидных включений, содержащих ферритин.

Библиография: Mononuclear phagocytes, ed. by R. van Furth, Oxford - Edinburgh, 1970; Mononuclear phagocytes, In immunity, infection and pathology, ed. by R. van Furth, Oxford a. o., 1975; Mononuclear phagocytes, Functional aspects, ed. by R. van Furth, pt 1-2, Hague a. o., 1980.

H. Г. Хрущов, В. И. Старостин.

1218 0

Макрофаги и моноциты относятся к так называемым профессиональным антигенпрезентирующим клеткам и, согласно современным представлениям, объединены в систему мононуклеарных фагоцитов, в которую также входят монобласты и промоноциты.

Подобно нейтрофилам они участвуют в обеспечении первой линии защиты против различных чужеродных воздействий.

Наряду со своими основными функциями - представление антигена, фагоцитоз и цитотоксичность - эти клетки осуществляют и различные регуляторные влияния. Современные представления о мононуклеарных фагоцитах свидетельствуют об их участии как во врожденном, так и приобретенном иммунитете.

В отличие от других клеток, обладающих выраженной способностью к фагоцитозу (нейтрофилы, тучные клетки, базофилы, эозинофилы), как моноциты периферической крови, так и тканевые макрофаги являются предметом интенсивного изучения, что нашло отражение во множестве публикаций. Не осталось в стороне и изучение роли мононуклеарных фагоцитов при опухолевом процессе, что способствовало накоплению множества данных, расширяющих информацию по этому вопросу.

Характеристика макрофагов

Сегодня известно, что роль мононуклеарных фагоцитов проявляется не только в фагоцитировании и презентации антигена - функциях, которые наиболее изучены, но и регуляторными влияниями, которые они оказывают на функции других клеток, что в целом определяет разностороннюю форму участия моноцитов и макрофагов в поддержании как иммунологического, так и тканевого гомеостаза.

Характеристика мононуклеарных фагоцитов как антигенпрезентирующих клеток была дана в первой части монографии. В связи с этим нам представляется целесообразным ограничить изложение данных этой главы, во-первых, сведениями, которые отражены в литературе последних лет, а во-вторых, теми, которые могут иметь значение для понимания их роли в опухолевом процессе.

Макрофаги - долгоживущая популяция клеток, их максимальное количество находится в соединительной и лимфоидной тканях, особенно ассоциированных со слизистой оболочкой. Как известно, своеобразным аналогом макрофагов в печени являются клетки Купфера, которые фагоцитируют, осуществляют процессинг и представление различных антигенов, а в мозгу - клетки микроглии и астроциты.

Контроль созревания моноцитов в костном мозгу осуществляется такими цитокинами, как IL-3, GM-CSF, M-CSF, IFNa/в; избирательным фактором роста мононуклеарных фагоцитов является M-CSF.

Известно, что моноцитопоэз усиливается провоспалительными цитокинами макрофагов по принципу обратной связи: после дифференцировки моноцитов в макрофаги последние начинают продуцировать цитокины, которые, в свою очередь, усиливают моноцитопоэз.

На различных его стадиях превалирующая роль принадлежит различным цитокинам, однако в конечном счете основными в этом процессе являются IL-3, GM-CSF, M-CSF, IL-9, IL-11, IFNy, IL-4. Моноциты могут быть прямыми предшественниками дендритных клеток in vivo, которые стали известны как CD8a+дендритные клетки (ДК) и могут осуществлять перекрестную презентацию антигена CD8+ Т-лимфоцитам.

Поверхностная мембрана макрофагов в высшей степени мозаична, так как формируется большим количеством различных соединений (белками, углеводами, липидами), ее наружная и внутренняя поверхности связаны и характеризуются способностью быстро и постоянно синтезировать вещества, которые ее формируют, что обеспечивает надежность реализации мононуклеарными фагоцитами их важнейших функций (фагоцитоза, цитотоксичности и др.). Такая мобильность, очевидно, является результатом сложного эволюционного пути, который прошли фагоцитирующие клетки.

Поверхность мембраны мононуклеарных фагоцитов изобилует различными рецепторами, из которых наиболее разносторонне изучены FcR для иммуноглобулинов, а также рецепторы к цитокинам, гормонам, различным фракциям комплемента. Интерес к изучению рецептора к Fc-фрагменту иммуноглобулина обусловлен тем, что эти рецепторы играют одну из главных ролей в осуществлении практически всех функций фагоцитирующих клеток.

Известны три типа рецепторов для иммуноглобулинов, которые были идентифицированы при изучении макрофагов мышей:

1) высокоаффинный рецептор для IgG - FcyRI (CD64), обладающий способностью связываться с мономерным агрегированным IgG, а также входящий в состав иммунных комплексов; экспрессируется исключительно на макрофагах и нейтрофилах и опосредует фагоцитоз и антителозависимую цитотоксичность;

2) низкоаффинный рецептор для IgG - FcyRII (CD32);

3) FcyRIII (CD16), который связывает IgG только в составе иммунных комплексов и экспрессируется макрофагами, нейтрофилами, тучными клетками и естественными киллерами.

Некоторые FcyR обладают повышенным сродством к отдельным подклассам IgG (IgGp IgG2a, IgG3, IgG4). FcR могут связываться и с иммуноглобулинами других изотипов (М, А, Е). В частности, связывание с IgM особенно характерно для перитонеальных макрофагов крыс, IgA - моноцитов человека и IgE - альвеолярных и перитонеальных макрофагов крыс, моноцитов человека. Низкоаффинный Fc-рецептор связывается с IgE (FceR), что сопровождается усилением транскрипции генов TNFa и IL-ip с резким усилением продукции этих цитокинов макрофагами.

FcRI могут экспрессировать как покоящиеся макрофаги, так и активированные IFNy. Практически все антигенпрезентирующие клетки, включая и макрофаги, способны экспрессировать высокий уровень FcRI параллельно с экспрессией антигенов II класса главного комплекса гистосовместимости (ГКГ) , CD40, CD88. Новый взгляд на антигенпрезентирующие клетки позволяет рассматривать FcRI как связующее звено между врожденным и адоптивным иммунитетом в результате поглощения иммунных комплексов, что в последующем имеет значение для индукции Т-зависимого ответа.

Одной из важных характеристик FcR, обеспечивающих их быструю реакцию на различные воздействия, является способность к перераспределению на мембране и взаимодействию с в2-интегринами (молекулярные основы этого взаимодействия остаются неизвестными).

Наряду с Fc-рецепторами, участвующими в активации макрофагов, описан еще один - FcRIIb - уникальный ингибиторный рецептор, который ингибирует внутриклеточные сигналы при взаимодействии с иммунными комплексами, содержащими IgG.

Благодаря изучению этого рецептора получены новые и очень важные данные, согласно которым антиген способен взаимодействовать с активационными и ингибиторными Fc-рецепторами как макрофагов костного мозга, так и клеток Лангерганса и дендритных клеток, что способствует усилению Т-клеточной пролиферации и индукции гуморального иммунитета.

Эти данные свидетельствуют о том, что FcRIIb, несмотря на то что он является инги-биторным рецептором, способен осуществлять и позитивную регуляцию презентацией иммунных комплексов, в состав которых входит IgG, что уже сегодня подтверждено при исследовании дендритных клеток.

Только мононуклеарные фагоциты экспрессируют трансмембранный белок CD163, который является членом семейства рецепторов-скавенджеров (рецепторы-мусорщики - scavenger receptor family), и его экспрессия регулируется антивоспалительными медиаторами.

Интерес к изучению роли этого рецептора в последнее время возрастает в связи с доказательствами его участия в различных патологических процессах и его способностью связываться с системой гаптоглобина-гемоглобина (Hb-Hp), что вызывало активацию продукции IL-10 и ингибировалось анти-СD163-антителами. Имеющиеся по этому вопросу данные с полным основанием рассматриваются как идентификация нового пути защитного противовоспалительного эффекта моноцитами и макрофагами человека.

Как отмечалось, естественные киллеры и активированные цитотоксические лимфоциты (ЦТЛ) экспрессируют рецепторы NKG2D. Макрогфаги также экспрессируют этот рецептор, который способен распознавать некоторые поверхностные лиганды, связанные с антигенами I класса ГКГ.

Такие лиганды активно экспрессируются клетками при ряде патологических процессов, а также опухолевыми клетками, и связывание с ними сопровождается активацией макрофагов; не исключено, что экспрессия NKG2D и их перераспределение на поверхности клеток играет роль в нерестрикти-рованном (естественном) лизисе.

Мононуклеарные фагоциты экспрессируют также: антигены I и II классов главного комплекса гистосовместимости; МАС-1; la-антигены; различные адгезивные молекулы (LFA-1, LFA-3, ICAM-1, ICAM-2, интегрины и др.); рецепторы для компонентов комплемента (CR1, CR3, CR4, CR5, CD35, CD88 и др.); рецепторы для цитокинов (IL-1 - CDwl25, TNF - CD120a/b, IFNy - CDwll9); рецепторы для хемокинов (СС1, СС2, ССЗ, СС4, СС5, СС6, СС7, СС8), которые связываются с различными хемоаттрактантами (MIP-1, MIP-la, МIР-1р, МСР, RANTES и др.); маннозные, маннозофруктозные или лектиноподобные рецепторные молекулы, а также рецепторы для фибронектина. Поверхность макрофагов имеет и TOLL-подобные рецепторы - TLR-2 и TLR-4, с участием которых осуществляются защитный эффект макрофагов и апоптоз макрофагов, нагруженных бактериями.

Наряду с экспрессией классических антигенов I и II классов ГКГ при активации макрофагов экспрессируются антигены HLA-G. Их экспрессия обнаружена на клетках, инфильтрирующих карциному легкого, и в значительно меньшей степени - при незлокачественных заболеваниях легких.

Предполагается, что при экспрессии HLA-G может нарушаться презентация антигена, что приводит к ослаблению иммунологического ответа и таким образом благоприятствует развитию как злокачественного, так и воспалительного процесса.

На поверхности макрофагов экспрессируются рецепторы и для различных гормонов (инсулина, тиреотропина, р-адренергических, эстрогенов, глюкокортикоидов, соматостатина, гонадотропина и др.), что делает возможным их участие во взаимодействии с нервной и эндокринной системами, а также в репродуктивных процессах. Так, эстрогены проявляют защитный эффект против нейродегенерации при острых и хронических повреждениях мозга, и именно макрофаги головного мозга принимают участие в эффектах 17b-эстрадиола (Е2) на нейроны.

Наряду с этим данные, полученные в последнее время, показывают, что макрофаги и моноциты участвуют в патогенезе различных нейровоспалительных процессов (множественный склероз, болезнь Альцгеймера, церебральная ишемия), что связано с выделением ими различных цитокинов, металлопротеиназ, экспрессией CD40 и связыванием его со своим лигандом CD40L.

Макрофаги экспрессируют ко-стимулирующие молекулы (CD80, CD86 и др.), что, как правило, сочетается с индукцией ответа Тh2-лимфоцитов. Аналогичные ко-стимулирующие молекулы экспрессируют и клетки Купфера.

Характерным для мононуклеарных фагоцитов является и экспрессия рецептора для трансферина, который активно связывается с трансферином сыворотки крови (участок связывания находится внутри макрофагов). Предполагается, что появление этого рецептора соответствует стадии активации макрофагов и характерным для активации изменениям мембраны.

В функционировании макрофагов существенную роль играет и гистамин, рецепторы для которого экспрессируют мононуклеарные фагоциты. В этом аспекте наиболее изучены моноциты периферической крови, которые гетерогенны по способности экспрессировать указанные рецепторы.

Исследование макрофагоподобных клеток линии Р38821 показало, что добавление гистамина в культуральную среду увеличивает количество внутриклеточного кальция и циклического гуанозинмонофосфата (цГМФ) . Эти эффекты реализуются через H1-рецепторы - доказательство того, что именно через эти рецепторы осуществляется модуляция некоторых биологических функций макрофагов, а Са2+ и цГМФ выполняют при этом роль вторичных мессенджеров.

Гистамин, а также серотонин активируют альвеолярные и пери-тонеальные макрофаги. Совсем недавно было показано, что макрофаги поглощают гистамин и таким образом включаются в нейтрализацию его отрицательных эффектов в очагах воспаления. Гистамин вместе с ПГЕ-2 (вазапростан) и катехоламинами регулирует врожденный и приобретенный иммунитет, усиливая взаимодействие между моноцитами и другими клетками.

Функции макрофагов

В реализации ряда функций макрофагов большую роль играют и рецепторы к лактоферину - железосвязывающему белку, который присутствует в различных секретах и наряду с бактерицидными свойствами обладает иммуномодулирующими эффектами, угнетая продукцию IL-2, IL-1, TNFa, усиливая цитотоксичность моноцитов и естественных киллеров.

Практически все антигенпрезентирующие клетки имеют рецептор для gp96 - белка теплового шока. Этот рецептор - а2-макроглобулин (CD91) - располагается интрацеллюлярно и выделяется только при некротической, но не апоптической смерти, что предполагает его участие как сенсора некротической клеточной смерти.

На макрофагах печени идентифицирован рецептор М-4, который является рецептором для раково-эмбриональных антигенов. Установлено, что на клетках рака кишечника MIP101 также экспрессируется этот рецептор, который существует в различных изоформах и регулируется тканеспецифически.

Далее, макрофаги и моноциты экспрессируют рецептор к меланокортину (MC-1R) и в результате взаимодействия этого рецептора с меланоцитстимулирующим гормоном, который функционирует как медиатор иммунитета и воспаления, снижается продукция IL-1, IL-2, IL-6, IL-13, IL-24, TNFa, IFNy и повышается IL-10.

По количеству продуктов, синтезируемых и выделяемых макрофагами, они занимают одно из ведущих мест по сравнению с другими клетками системы иммунитета, и их конкурентами могут быть только тучные клетки и нейтрофилы.

Мононуклеарные фагоциты экспрессируют Fas и FasL, что может вызывать спонтанный апоптоз, осуществляемый как аутокринным, так и паракринным путем. При активации моноциты быстро выделяют растворимую форму FasL, что свидетельствует об их способности реагировать на изменение окружающей среды.

Экспрессия Fas и связывание с FasL мононуклеарными фагоцитами индуцирует активационные сигналы, в результате чего как моноциты, так и макрофаги выделяют TNFa и IL-8, а культуральная среда этих клеток содержит факторы, стимулирующие миграцию нейтрофилов.

Однако в процессах, индуцированных Fas-лигацией, в моноцитах и макрофагах наблюдаются некоторые различия. Эти различия проявляются в том, что продукция указанных цитокинов моноцитами сопровождается последующим апоптозом и блокируется ингибитором каспаз, а цитокиновый ответ макрофагов происходит в отсутствие апоптоза и является каспазонезависимым.

Эти данные достаточно демонстративно показывают, что Fas-лигация моноцитами может индуцировать провоспалительный ответ, что приводит к острому воспалению и тканевому повреждению. Такой провоспалительный ответ проявляют и преапопто-тические нейтрофилы, что предполагает ряд общих проявлений Fas-лигации различными фагоцитирующими клетками.

Макрофаги продуцируют IL-1, IL-6, IL-8, IL-12, IL-18, TNFa, IFNa, IFNp, МСР-1, TGFP, фактор роста фибробластов (FGF) , тромбоцитозависимый ростовой фактор (PDGF) и др. Недавно было установлено, что макрофаги продуцируют MIF (macrophage migration inhibitory factor) - цитокин, который впервые был идентифицирован как Т-клеточный цитокин; MIF рассматривается как активный кандидат в провоспалительные цитокины, включающийся в гормональную регуляцию и воспаление.

Н аряду с указанными, а также другими цитокинами макрофаги содержат и при определенных условиях могут выделять:

1) лизосомальные ферменты (протеиназы, дезоксирибонуклеазы, липазы, лизоцим, коллагеназу, эластазу, миелопероксидазу и др.);
2) кислородные радикалы (Н2O2, супероксид, нитрооксид и др.);
3) гормоны (антидиуретический гормон (АДКГ) , тимозин, андрофин);
4) компоненты комплемента (C1, С2, С3, С4, С5); а также витамин D3, простагландины, лейкотриены, факторы В и D, пропердин, фибронектин, хондриотин сульфат, трансферин, авидин, амилопротеин Е и др.

Важное значение в понимании особенностей функционирования макрофагов имеют появившиеся новые данные о том, что в регуляции усиления дифференцировки макрофагов принимает участие ген, контролирующий р53; наличие мутаций в указанном гене лишает его такой способности. Этот факт представляет особый интерес при развитии злокачественных новообразований, для которых характерно появление мутаций в гене р53, что лишает его возможности усиливать дифференцировку макрофагов.

Обсуждая значение макрофагов в поддержании иммунологического и тканевого гомеостаза, нельзя обойти вниманием еще один и, как представляется, очень важный вопрос. Речь идет о том, что макрофаги обладают способностью к дифференцированному распознаванию и фагоцитированию апоптотических телец и некротических частиц.

Несмотря на то что этой способностью обладают и некоторые другие клетки, у макрофагов она выражена наиболее сильно. Это направление исследований активно разрабатывается V. Fadok и соавторами, в результате чего в настоящее время стали известны механизмы и условия фагоцитирования апоптотических телец. Макрофаги появляются и распознают апоптотические тельца, используя различные механизмы, включая интегрины, фосфатидилсерин (PS)-3, лектины и др.

Моноцитозависимые и альвеолярные макрофаги человека, костномозговые макрофаги мышей распознают и фагоцитируют апоптотические тельца через систему интегрина vb3, которая на макрофагах человека ассоциируется с CD36 - SR-B суперсемейство рецепторов-скавенджеров; его лиганды: коллаген I, IV, V, тромбоспондин, фосфолипиды, длинная цепь жирных кислот.

Клонирован ген, который кодирует этот рецептор, и показано, что в течение апоптоза макрофагами наблюдается асимметрия в расположении мембранных фосфолипидов, что особенно выражено тогда, когда макрофаги экспрессируют фосфатидилсерин.

При изучении альвеолярных макрофагов было установлено, что экспрессия рецептора-скавенджера и CD14 регулируется IL-6 и IL-10. Однако при этом отмечается различный характер регуляторных влияний этих цитокинов на указанные рецепторы: IL-6 усиливает экспрессию CD14 и подавляет экспрессию мРНК рецептора-скавенджера; в отличие от этого IL-10 снижает экспрессию CD14 и увеличивает экспрессию рецептора-скавенджера (все эффекты дозозависимы и определяются временем культивирования).

Моноцитозависимые макрофаги человека при фагоцитировании апоптотических телец используют CD14 - рецептор липополисахарида, функция которого в полной мере не выяснена.

Процесс связывания и фагоцитирования апоптотических телец сопровождается противовоспалительным действием, что происходит с участием аутокринных и/или паракринных механизмов, которые включают TGF|3, ПГЕ-2 и фактор активации тромбоцитов (PAF). При фагоцитозе апоптотических телец макрофагами человека ингибируется продукция IL-4, IL-8, IL-10, GM-CSF, TNFa, лейкотриена С-4, тромбоксана В-2; параллельно с этим увеличивается продукция TGFpi, ПГЕ-2 и PAF.

Следует подчеркнуть, что многие рецепторы, необходимые для распознавания апоптотических телец, имеют очень важное значение и для врожденного иммунитета. Эти рецепторы включают интегрины, рецепторы-скавенджеры классов А и В, лектиноподобный рецептор LOX1 (lectinlike oxidized), некоторые рецепторы для комплемента и CD14.

Несколько неожиданно, а возможно, даже парадоксально, что когда эти рецепторы связываются с микроорганизмами или их продуктами, то во многих случаях развивается провоспалительная реакция и наблюдается стимуляция приобретенного иммунитета. В отличие от этого поглощение апоптотических телец не связано с воспалением, при этом приобретенный иммунитет не активируется. В связи с этим следует объяснить такую диаметральную противоположность процессов, которые происходят при активации одних и тех же рецепторов.

Эти данные независимо от того, какая интерпретация будет дана им в будущем, являются в высшей степени важными и интересными, так как раскрывают неизвестные ранее формы участия макрофагов в воспалении и приобретенном иммунитете.

Далее, в опытах, проведенных на костномозговых макрофагах, было показано, что после поглощения некротических нейтрофилов они стимулировали пролиферацию Т-лимфоцитов in vitro, увеличивали экспрессию CD40 и такие макрофаги содержали высокий уровень TGFP, но низкий TNFa; аналогичных эффектов при фагоцитировании апоптотических нейтрофилов не наблюдали.

Высокий уровень содержания TGFP в макрофагах при фагоцитировании апоптотических телец рассматривается как защита от провоспалительных цитокинов, этот процесс происходит при участии р38, митогенактивирующей киназы (МАРС) и NF-kappaB.

Накопленные данные свидетельствуют о том, что поглощение и переваривание некротических или лизированных клеток индуцируют иммунологический ответ и воспаление, чего не происходит при фагоцитировании апоптотических телец.

В связи с этим очень правомочен вопрос, который ставят V. Fadok и соавторы в названии одной из своих статей: "Может ли фосфатидилсериновый рецептор быть молекулярным переключателем, который устанавливает, кто должен уйти?". Поставленный вопрос не лишен дискуссионной направленности и предполагает не только сложность ответа, но и тот трудный путь, который нужно пройти для его получения.

Глубокий биологический смысл феномена, который заключается в особенностях фагоцитирования некротических и апоптотических клеток, очевиден. Нарушение механизмов очищения организма путем апоптоза может быть причиной перехода острого воспаления в хронические воспалительные заболевания, включая и аутоиммунную патологию.

К сожалению, этот в высшей степени интересный вопрос еще очень мало изучен при опухолевом процессе. Имеющиеся работы единичны. В качестве примера можно привести данные о фагоцитозе апоптотических клеток линии НТ-29 карциномы толстой кишки человека.

Эти исследования показывают, что экспрессия молекул фосфатидилсерина и углеводных цепей изменяется в зависимости от стадии фагоцитоза: экспрессия галактозы была в равной степени важна для всех стадий апоптоза, экспрессия фосфатидилсерина - на последующих и поздних стадиях.

Изучение этого вопроса при опухолевом процессе может представить интерес по различным соображениям. Вполне реально предположить, что, с одной стороны, поглощение апоптотических телец при определенных условиях может создать резервуар опухолевых антигенов в макрофагах с последующей их презентацией, с другой - фагоцитирование некротизированных опухолевых клеток может быть одной из причин супрессирующих влияний макрофагов на клетки системы иммунитета.

Наконец, нельзя не согласиться с предположением, что выделение макрофагами супрессирующих цитокинов при фагоцитировании лизированных опухолевых клеток может быть одной из причин ухода опухоли из-под иммунологического контроля.

Обсуждая вопрос о фагоцитировании макрофагами апоптотических и некротических телец, следует также отметить, что макрофаги , экспрессирующие FasL, способны фагоцитировать апоптотические опухолевые клетки, не экспрессирующие указанный антиген.

Бережная Н.М., Чехун В.Ф.

Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!

Атипичные мононуклеары, также называемые вироцитами, представляют собой клетки крови, имеющие аналогию строения с лимфоцитами и моноцитами. Возникновение вироцитов в крови говорит о распространении в организме инфекции различного происхождения. Превышение допустимой концентрации — признак прогрессирующего инфекционного заболевания, в частности мононуклеоза.

Атипичные мононуклеары или вироциты — разновидность лимфоцитов, клеточная структура которых имеет сходство с . Они имеют одноядерное строение. Появление в крови может указывать на развитие инфекционного вирусного заболевания. Если при этом наблюдается изменение количественного показателя крови, это указывает на прогресс вируса в организме.

Важно! В данном случае проводится дополнительное обследование, так как атипичные мононуклеары характерны для инфекционного мононуклеоза.

Факторы появления вироцитов в крови

Причиной возникновения мононуклеарных клеток в крови является попадание в организм человека вирусной инфекции.

Важно! Когда человек полностью здоров, атипичные мононуклеары в крови составляют минимальный процент или вовсе отсутствуют.

Когда уровень вироцитов в анализе крови составляет более 10%, данное состояние может спровоцировать:

  • инфекционное, вирусное заболевание в острой форме (в частности, мононуклеоз, ветряная оспа);
  • вакцинация (как ответная реакция организма на введение фрагментов вируса).

Примечание: мононуклеары атипичные в начале развития патологии увеличивают свою численность вместе с другими видами клеток (палочкоядерными нейтрофилами), в то время как концентрация сегментоядерных клеток уменьшается.

Атипичные мононуклеары в крови у ребенка, как правило, вызваны вирусом Эпштейна-Барра, поражающим верхние дыхательные пути, шейные лимфоузлы. Высокая концентрация вирусных клеток наблюдается на поверхности глотки, в тканях печени, селезенки, лимфоузлах. Поэтому после инкубационного периода, длящегося от 5 до 15 суток, нередко отмечается увеличение размеров селезенки и печени.

Инфекционный мононуклеоз причисляют к вирусам группы герпесов 4 типа.

Симптомы, характерные при увеличении уровня мононуклеарных клеток у детей

Дети первого года жизни наименее подвержены заболеванию Эпштейна-Барра. Объясняется это наличием врожденного пассивного иммунитета к данному вирусу. Однако у детей в 7-10 лет отмечается снижение защитных функций организма, в связи с чем у пациентов данной возрастной группы нередко обнаруживаются атипичные мононуклеары в общем анализе крови. В этом возрасте зарегистрировано наибольшее число заболеваний инфекционным мононуклеозом.

Симптомы, которые являются признаком повышения вироцитов в крови у ребенка:

  • гипертермия (высокая температура тела — 38 0 и выше);
  • усиленное потоотделение;
  • уплотнение, увеличение лимфатических узлов (в шейной области);
  • налет белого цвета на миндалинах;
  • набухание небных миндалин;
  • количественное изменение химического состава крови (изменение лимфоцитарной формулы);
  • увеличение размеров печени, селезенки.

Примечание: согласно статистическим данным более подвержены инфекционному мононуклеозу мальчики в возрасте до 10 лет.

Признаками инфицирования может быть кожная сыпь, имеющая петихиальный характер и различную локацию.

Признаки повышения атипичных мононуклеаров у взрослых

Клинические проявления начальной стадии патологии у взрослых:

  • упадок сил;
  • тошнота;
  • катаральные явления — отечность носоглотки, затрудненное носовое дыхание, сиплость голоса, прочее;
  • гнойные образования на задней стенке гортани;

  • озноб, резкое повышение температуры;
  • ноющая боль в суставах, мышцах.

Основными проявлениями патологий, при которых возрастает численность атипичных мононуклеаров, являются:

  • проявления интоксикации (тошнота, потоотделение, озноб, прочее);
  • набухание лимфоузлов;
  • одновременно увеличение размеров селезенки, печени;
  • мигрень;
  • усиление боли в суставах, мышцах;
  • появление симптомов ангины (гиперемии слизистой неба, желтый налет рыхлой структуры на небных миндалинах, боль в горле).

Примечание: может наблюдаться отечность лица по причине нарушенного лимфооттока. Лимфоузлы могут увеличиваться до 5 см в диаметре. При пальпации болезненные ощущения либо незначительны, либо вовсе отсутствуют.

В активной фазе мононуклеоза увеличивается печень и селезенка. При этом нередко возникает желтушный синдром со следующими проявлениями:

  • тошнота, доходящая до рвоты;
  • снижение, отсутствие аппетита;
  • изменение цвета мочи (потемнение, мутность);
  • тянущая боль, чувство распирания в подреберье с правой стороны;
  • желтый оттенок кожных покровов, глазного белка;
  • расстройство стула (запор, диарея).

Спустя 10-12 дней после появления первых симптомов по телу может распространиться пятнисто-папулезная сыпь неопределенной локализации, которая не вызывает зуда.

Болезни, при которых возрастает уровень атипичных клеток

Атипичные мононуклеары в общем анализе крови являются признаком инфекции в организме. Точный диагноз можно установить исходя из следующих критериев форменных клеток:

  • изменение структуры и формы;
  • увеличение количества;
  • изменение процентного соотношения между разными видами клеток.

Примечание: содержание вироцитов в пределах 10-15% с большой вероятностью указывает на развитие инфекционного мононуклеоза.

При каких заболеваниях характерны атипичные мононуклеары? Это может быть токсоплазмоз, вирус герпесной группы, ВИЧ, онкологические патологии, прочее.

Министерство здравоохранения социального развития РФ
Волгоградский государственный медицинский университет
Кафедра гистологии, эмбриологии, цитологии
Зав. каф. д.м.н. профессор М.Ю. Капитонова

Самостоятельная работа студента.
«Система мононуклеарных фагоцитов в организме человека»

                Выполнил:
                Студент I курса 4 группы
                Медико-биологического факультета
                Никулин Д.А.
                Проверил: Загребин В. Л.
Волгоград 2011
Содержание

Введение………………………………………………………… ……..…2
1. Фагоциты………………………………………………………… …….3
2. Моноциты………………………………………………………… ……5
3. Макрофаги……………………………………………………… ……...6
3.1 Макрофаги: общие сведения ……………………………………7
3.2 Макрофаги: роль в инициации клеточного иммунитета..11
3.3 Макрофаги: роль в иммунологическом процессе ……….13
4. Моноциты и фагоциты: патология……………………………..14
5.Клетки Купфера в печени………………………………………….16
6.Макрофаги селезёнки…………………………………………….... 18
7. Система мононуклеарных фагоцитов ……………................19
7.1 Распознавание и представление антигенов макрофагами………………………………………………… …………21
7.1.1 Нейтрофилы…………………………………………………… ..23
7.1.2 Базофилы………………………………………………………… 25
7.1.3 Эозинофилы…………………………………………………… ..27
Заключение…………………………………………………… ………..29
Литература…………………………………………………… …………31

Введение
Ретикулоэндотелиальная система, макрофагическая система, совокупность клеток мезенхимного происхождения, объединяемых на основе способности к фагоцитозу; свойственна позвоночным животным и человеку. К РЭС относят клетки ретикулярной ткани, эндотелия синусоидов (расширенных капилляров) кроветворных и др. органов, а также все виды макрофагов, объединяемых на основании общего происхождения из стволовой кроветворной клетки в систему мононуклеарных (одноядерных) фагоцитов. Выполняет защитную функцию, играет существ, роль во внутр. обмене веществ организма.
Система мононуклеарных фагоцитов (греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система) - физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

          1. Фагоциты
Фагоци?ты - клетки иммунной системы, которые защищают организм путём поглощения (фагоцитоза) вредных чужеродных частиц, бактерий, а также мёртвых или погибающих клеток . Их название произошло от греческого phagein , «есть» или «поедать», и «-cyte», суффикс, в биологии означающий «клетка». Они важны для борьбы с инфекцией и постинфекционного иммунитета. Фагоцитоз важен для всего животного мира и высоко развит у позвоночных . Фагоциты и фагоцитоз как способ пищеварения у животных были открыты И.И. Мечниковым при изучении губок и плоских червей. Роль фагоцитов в защите от бактерий была впервые открыта И. И. Мечниковым в 1882 году, когда он изучал личинок морских звёзд. Мечников был удостоен в 1908 году Нобелевской премии по физиологии за создание клеточной теории иммунитета. Фагоциты присутствуют в организмах многих видов; некоторые амёбы по многим деталям поведения похожи на макрофаги, что указывает на то, что фагоциты появились на ранних этапах эволюции.
Фагоциты человека и других животных называют «профессиональными» или «непрофессиональными» в зависимости от того, насколько эффективно они фагоцитируют. К профессиональным фагоцитам относятся нейтрофилы, моноциты, макрофаги, дендритные клетки и тучные клетки. Основное отличие профессиональных фагоцитов от непрофессиональных в том, что профессиональные имеют молекулы, называемые рецепторы, на своей поверхности, которые обнаруживают чужеродные объекты, например бактерии. Один литр крови взрослого человека в норме содержит около 2,5-7,5 млрд нейтрофилов, 200-900 млн моноцитов.
При инфекции химические сигналы привлекают фагоциты к месту, где патоген проник в организм. Эти сигналы могут исходить от бактерий или от других фагоцитов, уже присутствующих там. Фагоциты перемещаются путём хемотаксиса. Когда фагоциты контактируют с бактериями, рецепторы на их поверхности связываются с ними. Эта связь приводит к поглощению бактерий фагоцитами. Некоторые фагоциты убивают проникших патогенов с помощью оксидантов и оксида азота. После фагоцитоза, макрофаги и дендритные клетки могут также участвовать в презентации антигена - процессе, при котором фагоциты перемещают патогенный материал обратно на свою поверхность. Этот материал затем отображается (презентируется) для других клеток иммунной системы. Некоторые фагоциты поступают в лимфатические узлы и презентируют материал лимфоцитам. Этот процесс важен в формировании иммунитета. Тем не менее, многие болезнетворные микроорганизмы устойчивы к атакам фагоцитов.


2. Моноциты
Моноциты - это лейкоциты , не содержащие гранул. Их диаметр в сухом мазке составляет 12 - 20 мкм. На долю моноцитов приходится 4 - 8% всех лейкоцитов крови (примерно 450 клеток в 1 мкл). Моноциты образуются в костном мозге , а не в ретикулоэндотелиальной системе , как считалось ранее. В кровь выходят не окончательно созревшие клетки, которые обладают самой высокой способностью к фагоцитозу . Моноциты, выходя из кровяного русла, становятся макрофагами , которые наряду с нейтрофилами являются главными "профессиональными фагоцитами". Макрофаги, однако, значительно больше по размерам и дольше живут, чем нейтрофилы. Клетки-предшественицы макрофагов - моноциты, выйдя из костного мозга , в течение нескольких суток циркулируют в крови, а затем мигрируют в ткани и растут там. В это время в них увеличивается содержание лизосом и митохондрий . Достигнув зрелости, моноциты превращаются в неподвижные клетки - гистоциты , или тканевые макрофаги. Вблизи воспалительного очага они могут размножаться делением. Они образуют отграничивающий вал вокруг инородных тел, которые не могут быть разрушены. Эти клетки всегда присутствуют в больших количествах в лимфатических узлах , стенках альвеол и синусах печени , селезенки и костного мозга . Моноциты также являются предшественниками клеток Лангерганса , клеток микроглии и других клеток, способных к переработке и представлению антигена . В отличие от В - и Т-лимфоцитов, макрофаги и моноциты не способны к специфическому распознаванию антигена.

3. Макрофаги
Макрофаги - клетки системы мононуклеарных фагоцитов (до 15-80 мкм). Образуются из моноцитов крови. Обладают фагоцитарной, секреторной и регуляторной активностью. Способны перерабатывать и презентировать чужеродный антиген.
Мигрируют в различные ткани. Локальные факторы существенно влияют на их морфологию и функциональную специализацию. Различают альвеолярные, перитонеальные, соединительнотканные, Купферовские клетки печени, остеокласты костной ткани, микроглиальные клетки ЦНС, многоядерные гигантские клетки гранулемы (клетки Микулича).
Макрофаги - долгоживущие клетки, играющие важную роль в формировании естественного и приобретенного иммунитета. Они синтезируют цитокины (ИЛ-1, ФИО, ИЛ-12) и белки комплемента. На их мембране локализуются диференцировочные поверхностные маркеры: молекула CD 14 - рецептор для ЛПС; молекула CD35 - рецептор для C3b фрагмента комплемента; CD11b/CD18 (LFA-1) - адгезивные молекулы; CD64 (FcR1) - рецептор Fc-фрагмента иммуноглобулинов; CD4 антиген - корецептор; HLA-DR молекулы распознавания II класса.

Табл. Основные функции макрофагов

T-лимфоциты распознают инфицированный макрофаг по экспонированию на его поверхности микробного антигена, находящегося в комплексе с гликопротеином MHC класса II, который в данном случае служит сигналом макрофага. В результате распознавания T-клетки выделяютлимфокины, стимулирующие внутриклеточное уничтожение возбудителя макрофагом.
В отличие от лимфоцитов, макрофаги не обладают способностью специфичного узнавания. Кроме того, макрофаги, по-видимому, отвечают за индукцию толерантности.
При аутоиммунных заболеваниях макрофаги удаляют из крови иммунные комплексы и другие иммунологически активные вещества.
Макрофаги участвуют в заживлении ран, удалении отживших клеток и образовании атеросклеротических бляшек.


3.2 Макрофаги: роль в инициации клеточного иммунитета
Макрофаги помимо участия в реакциях неспецифического иммунитета проявляют себя и в реакциях специфической иммунной защиты от инфекции в качестве антигенпрезентирующих клеток.
В процессе активации T-лимфоцитов, клетки, представляющие антиген в иммуногенной форме на своей поверхности (антигенпрезентирующие клетки), должны обладать, по крайней мере, двумя основными свойствами:
- способностью образовывать комплекс антигенного пептида с молекулами I или II классов МНС, что является первым сигналом к пролиферации и дифференцировке наивных T-клеток, и
- экспрессировать костимуляторы, обеспечивающие прохождение второго сигнала активации Т-клеток.
Макрофаги в состоянии покоя обладают очень незначительным количеством молекул MHC II класса и полностью лишены костимулятора В7 на своей поверхности. Выраженное представительство этих молекул на мембране макрофага начинается после захвата и внутриклеточного переваривания микроорганизмов.
Один из способов поглощения бактерий связан с рецепторами к маннозе, которые способны взаимодействовать с углеводами бактериальной стенки. Захваченные микроорганизмы деградируют в фаголизосомах, образуя отдельные пептиды, которые выносятся на клеточную поверхность в комплексе с молекулами MHC.
Именно в процессе внутриклеточного переваривания корпускулярого антигена происходит индукция синтеза и экспрессии на клеточной поверхности молекул MHC класса II и костимулятора В7. Факторами индукции, возможно, являются рецепторы клеточной поверхности, взаимодействующие с микроорганизмами, поскольку синтез В7 можно индуцировать простой инкубацией макрофагов с отдельными компонентами (углеводами, липополисахаридами) бактериальной стенки.
Индукция костимулирующей активности к общим микробным компонентам позволяет иммунной системе отличать бактериальные антигены от собственных антигенов организма или безвредных, хотя и чужеродных белков. Из практической работы известно, что получение иммунного ответа к некоторым белкам возможно только с использованием адъювантов, включающих убитые микроорганизмы или продукты их бактериальной стенки. Схема возможных отношений в данном случае выглядит следующим образом.
Если белковые антигены захватываются и презентируются макрофагами в отсутствие бактериальных компонентов, которые инициируют синтез В7, то Т-клетка специфически распознает антиген, однако остается рефрактерной, так как отсутствует действие второго сигнала для запуска пролиферации и дифференцировки. Внесение в систему бактериальных компонентов - индукторов костимулятора В7 - обеспечивает полноценное включение в иммунный ответ Т-клеток. В условиях эксперимента аутоиммунное заболевание легко индуцируется смесью собственных тканевых антигенов с компонентами бактериальной стенки, иллюстрируя тем самым значение костимуляции в процессе разграничения "своего" от "чужого".
Понимание того факта, что запуск Т-клеточного ответа связан с двухсигнальной системой активации, внесло ясность в работу макрофагов в качестве "мусорщиков". Купферовские клетки печени и макрофаги селезенки постоянно захватывают и разрушают отжившие клетки этих органов. При этом в отсутствие бактериальных стимуляторов экспрессируемые на поверхности фагоцитирующих клеток собственные антигены как результат деградации захваченных отживших клеток не в состоянии развить аутоиммунный ответ.
В представленных примерах иммуногенность связана не со структурными особенностями антигена, а с реактивностью организма, с потенциальными возможностями его иммунокомпетентных клеток.

3.3 Макрофаги: роль в иммунологическом надзоре
В опытах in vitro установлено, что макрофаги, активированные цитокинами Т-клеток, оказывают определенное противоопухолевое действие. Оно может быть связано как с явлением прямого фагоцитоза опухолевых клеток, так и с процессом, опосредованным ФНО-альфа, секретируемым фагоцитирующими мононуклеарами.
Какого-либо бесспорного доказательства противоопухолевой активности макрофагов in vivo пока не получено.


5. Клетки Купфера в печени
Наибольшее количество тканевых макрофагов находится в печени. Купферовские клетки печени являются типичными фагоцитами и имеют решающее значение для реализации фагоцитарной функции организма в целом. По литературным данным, от 85 до 95% внутрисосудистого фагоцитарного клиренса является функцией макрофагов печени (Зубовский Г.А. 1978; Маянский Д.Н. 1992). Фагоцитарная функция Купферовских клеток печени в значительной степени зависит от параметров печеночного кровотока. Развитие портокавальных анастомозов приводит к транзиту крови из воротной вены в нижнюю полую вену, минуя печень и снижая, таким образом, количество фагоцитированных частиц. Без учета изменений параметром печеночного кровотока невозможно достоверно оценить функцию печеночных макрофагов.
Известные методики определения печеночного кровотока с помощью меченых соединений основаны на принципах разведения недиффундирующего индикатора, проходящего через печень (Джилмукашев У.К. 1983, 2000; Георгиеску Б. и Брасле Б. 1967). Недостатком этих методик является, во-первых: неполная оценка величины портокавальных анастомозов, т.к. авторами не разделяются селезеночная и кишечная составляющие портального кровотока, во-вторых, невозможность оценить нарушения функции ретикулоэндотелиальной системы печени.
Методики определения функции ретикулоэндотелиальных клеток печени основаны на способностикупферовских клеток фагоцитировать коллоидные частицы, приходящие через орган. Получаемые при этом результаты отмечают не истинное поражения ретикулоэндотелия, а некий усредненный параметр, состоящий, как минимум, из трех составляющих: нарушения портального кровотока и развитие портокавальныханастомозов; нарушение структуры печеночного ацинуса и, как следствие, снижение кровотока в синусах; и собственно поражение или уменьшение количества купферовских клеток. Причем доля первой из вышеперечисленных составляющих значительно превышает остальные. Решающее значение при этом имеет не истинное поражение печеночного ретикулоэндотелия, а изменение печеночного и портальногокровотоков.
При исследовании макрофагальной активности органов и тканей необходимо учитывать влияние изменениягемодинамики и функции ретикулоэндотелиальной системы печени, что обусловлено тесной взаимосвязью процессов нарушения кровотока, изменения архитектоники и поражения печеночных клеток.
Радионуклидная диагностика гемодинамики печени и активности системы мононуклеарных фагоцитов позволяет определить наличие и величину портокавальных анастомозов и исключить влияние изменения печеночного и портального кровотоков при проведении исследования функции СМФ.


6. Макрофаги селезёнки
Селезенка - вторичный паренхиматозный орган иммунной системы, локализующийся в левой верхней области брюшной полости. Является главным местом развития адаптивного иммунитета на действие экзогенных антигенов, поступающих в организм через кровь. Поддерживает процесс репродуцирования иммунокомпетентных клеток (Т- и В-лимфоцитов) в строго определенных участках, так называемых Т- и В-зависимых зонах.
Т-лимфоциты в виде скоплений располагаются вокруг артериол и образуют периваскулярные муфты. Последние на 75 % состоят из CD4+ Т-лимфоцитов и на 25% - из CD8+ Т-лимфоцитов. В-лимфоциты формируют фолликулы с зародышевыми центрами - В-зависимую зону. Этот слой селезенки получил название белой пульпы. Артериолы заканчиваются сосудистыми синусами, содержащими большое количество макрофагов и ДК (красная пульпа).
Местом развития специфического ГИО на действие чужеродных антигенов, поступающих с кровью, является белая пульпа. Красная пульпа выполняет функцию фильтра крови, улавливающего чужеродные организму частицы и молекулы, эритроциты, иммунные комплексы. Многие микроорганизмы распознаются непосредственно фагоцитами в красной пульпе. Некоторые транспортируются в белую пульпу, где в результате стимуляции В-лимфоцитов образуются зародышевые центры (ЗЦ). Последние являются местом накопления плазматических клеток и синтеза антител. Строма красной и белой пульпы состоит из фагоцитирующих и перерабатывающих антиген клеток.
Ежедневно примерно половина общего объема крови проходит через селезенку. Макрофаги селезенки выполняют важную функцию по распознаванию и элиминации поврежденных и неполноценных клеток крови.


7. Система мононуклеарных фагоцитов

В систему мононуклеарных фагоцитов входят моноциты крови и различные макрофаги (купферовские клетки печени, альвеолярные макрофаги, макрофаги соединительной ткани, клетки Лангерганса, астроциты глии, остеокласты). Все они возникают из гемопоэтической стволовой клетки и проходят ряд стадий: монобласт-промоноцит-моноцит- макрофаг.
Созревают под влиянием четырех гранулоцитарно-макрофагальных колониестимулирующих факторов (ГМ-КСФ), выделяемых Т-лимфоцитами, фибробластами и макрофагами. В зависимости от последующей локализации макрофаги приобретают специфические структурные и морфологические черты. Они несут на поверхности маркеры: CD14, Fc-рецепторы для иммуноглобулинов, рецепторы для СЗ-компонента комплемента и HLA-DR антигены. CD14 молекулы связывают липополисахариды бактерий вместе с белком сыворотки крови, при активации макрофагов они сбрасываются с клетки.
Фагоциты обладают развитым лизосомальным аппаратом, где содержится большое количество ферментов.
Функции макрофагов:
фагоцитоз,
распознавание и представление (презентация) антигенов,
секреция медиаторов системы иммунитета (монокинов).
и т.д.................




© 2024
womanizers.ru - Журнал современной женщины