26.09.2019

Корни полного квадратного уравнения. Квадратное уравнение и его корни. Неполные квадратные уравнения. Итерационная формула Герона для нахождения значений корней квадратных


Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Дискриминант позволяет решать любые квадратные уравнения с помощью общей формулы, которая имеет следующий вид:

Формула дискриминанта зависит от степени многочлена. Вышеописанная формула подойдет для решения квадратных уравнений следующего вида:

Дискриминант имеет следующие свойства, которые необходимо знать:

* "D" равен 0, когда многочлен имеет кратные корни (равные корни);

* "D" является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.

Допустим, нам дано квадратное уравнение следующего вида:

1 уравнение

По формуле имеем:

Поскольку \, то уравнение имеет 2 корня. Определим их:

Где можно решить уравнение через дискриминант онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте.А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Более простым способом. Для этого вынесите z за скобки. Вы получите : z(аz + b) = 0. Множители можно расписать: z=0 и аz + b = 0, так как оба могут давать в результате ноль. В записи аz + b = 0 перенесем второй вправо с другим знаком. Отсюда получаем z1 = 0 и z2 = -b/а. Это и есть корни исходного .

Если же имеется неполное уравнение вида аz² + с = 0, в данном случае находятся простым переносом свободного члена в правую часть уравнения. Также поменяйте при этом его знак. Получится запись аz² = -с. Выразите z² = -с/а. Возьмите корень и запишите два решения - положительное и отрицательное значение корня квадратного.

Обратите внимание

При наличии в уравнении дробных коэффициентов помножьте все уравнение на соответствующий множитель так, чтобы избавиться от дробей.

Знание о том, как решать квадратные уравнения, необходимо и школьникам, и студентам, иногда это может помочь и взрослому человеку в обычной жизни. Существует несколько определенных методов решений.

Решение квадратных уравнений

Квадратным уравнение вида a*x^2+b*x+c=0. Коэффициент х является искомой переменной, a, b, c - числовые коэффициенты. Помните, что знак «+» может меняться на знак «-».

Для того чтобы решить данное уравнение, необходимо воспользоваться теоремой Виета или найти дискриминант. Самым распространенным способом является нахождение дискриминанта, так как при некоторых значениях a, b, c воспользоваться теоремой Виета не представляется возможным.

Чтобы найти дискриминант (D), необходимо записать формулу D=b^2 - 4*a*c. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корня будет два, если D=0, то остается всего один корень, более точно можно сказать, что D в этом случае имеет два равнозначных корня. Подставьте известные коэффициенты a, b, c в формулу и вычислите значение.

После того как вы нашли дискриминант, для нахождения х воспользуйтесь формулами: x(1) = (- b+sqrt{D})/2*a; x(2) = (- b-sqrt{D})/2*a, где sqrt - это функция, означающая извлечение квадратного корня из данного числа. Посчитав эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.

Если D меньше нуля, то он все равно имеет корни. В школе данный раздел практически не изучается. Студенты вузов должны знать о том, что появляется отрицательное число под корнем. От него избавляются выделяя мнимую часть, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с таким же положительным числом. К примеру, если D=sqrt{-20}, после преобразования получается D=sqrt{20}*i. После этого преобразования, решение уравнения сводится к такому же нахождению корней, как было описано выше.

Теорема Виета заключается в подборе значений x(1) и x(2). Используется два тождественных уравнения: x(1) + x(2)= -b; x(1)*x(2)=с. Причем очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, который стоит в уравнении. С первого взгляда кажется, что посчитать x(1) и x(2) очень просто, но при решении вы столкнетесь с тем, что числа придется именно подбирать.

Элементы решения квадратных уравнений

По правилам математики некоторые можно разложить на множители: (a+x(1))*(b-x(2))=0, если вам посредством формул математики удалось преобразовать подобным образом данное квадратное уравнение, то смело записывайте ответ. x(1) и x(2) будут равны рядом стоящим коэффициентам в скобках, но с противоположным знаком.

Также не стоит забывать про неполные квадратные уравнения. У вас может отсутствовать какое-то из слагаемых, если это так, то все его коэффициенты просто равны нулю. Если перед x^2 или x ничего не стоит, то коэффициенты а и b равны 1.

Некоторые задачи в математике требуют умения вычислять значение корня квадратного. К таким задачам относится решение уравнений второго порядка. В данной статье приведем эффективный метод вычисления квадратных корней и используем его при работе с формулами корней квадратного уравнения.

Что такое квадратный корень?

В математике этому понятию соответствует символ √. Исторические данные говорят, что он начал использоваться впервые приблизительно в первой половине XVI века в Германии (первый немецкий труд по алгебре Кристофа Рудольфа). Ученые полагают, что указанный символ является трансформированной латинской буквой r (radix означает "корень" на латыни).

Корень из какого-либо числа равен такому значению, квадрат которого соответствует подкоренному выражению. На языке математики это определение будет выглядеть так: √x = y, если y 2 = x.

Корень из положительного числа (x > 0) является также числом положительным (y > 0), однако если берут корень из отрицательного числа (x < 0), то его результатом уже будет комплексное число, включающее мнимую единицу i.

Приведем два простых примера:

√9 = 3, поскольку 3 2 = 9; √(-9) = 3i, поскольку i 2 = -1.

Итерационная формула Герона для нахождения значений корней квадратных

Приведенные выше примеры являются очень простыми, и вычисление корней в них не представляет никакого труда. Сложности начинают появляться уже при нахождении значений корня для любого значения, которое не может быть представлено в виде квадрата натурального числа, например √10, √11, √12, √13, не говоря уже о том, что на практике необходимо находить корни для нецелых чисел: например √(12,15), √(8,5) и так далее.

Во всех вышеназванных случаях следует применять специальный метод вычисления корня квадратного. В настоящее время таких методов известно несколько: например разложение в ряд Тейлора, деление столбиком и некоторые другие. Из всех известных методов, пожалуй, наиболее простым и эффективным является использование итерационной формулы Герона, которая также известна как вавилонский способ определения квадратных корней (существуют свидетельства, что древние вавилоняне применяли ее в своих практических вычислениях).

Пусть необходимо определить значение √x. Формула нахождения квадратного корня имеет следующий вид:

a n+1 = 1/2(a n +x/a n), где lim n->∞ (a n) => x.

Расшифруем эту математическую запись. Для вычисления √x следует взять некоторое число a 0 (оно может быть произвольным, однако для быстрого получения результата следует выбирать его таким, чтобы (a 0) 2 было максимально близко к x. Затем подставить его в указанную формулу вычисления квадратного корня и получить новое число a 1 , которое уже будет ближе к искомому значению. После этого необходимо уже a 1 подставить в выражение и получить a 2 . Эту процедуру следует повторять до получения необходимой точности.

Пример применения итерационной формулы Герона

Описанный выше алгоритм получения корня квадратного из некоторого заданного числа для многих может звучать достаточно сложно и запутанно, на деле же оказывается все гораздо проще, поскольку эта формула сходится очень быстро (особенно если выбрано удачное число a 0).

Приведем простой пример: необходимо вычислить √11. Выберем a 0 = 3, так как 3 2 = 9, что ближе к 11, чем 4 2 = 16. Подставляя в формулу, получим:

a 1 = 1/2(3 + 11/3) = 3,333333;

a 2 = 1/2(3,33333 + 11/3,33333) = 3,316668;

a 3 = 1/2(3,316668 + 11/3,316668) = 3,31662.

Дальше нет смысла продолжать вычисления, поскольку мы получили, что a 2 и a 3 начинают отличаться лишь в 5-м знаке после запятой. Таким образом, достаточно было применить всего 2 раза формулу, чтобы вычислить √11 с точностью до 0,0001.

В настоящее время широко используются калькуляторы и компьютеры для вычисления корней, тем не менее отмеченную формулу полезно запомнить, чтобы иметь возможность вручную вычислять их точное значение.

Уравнения второго порядка

Понимание того, что такое корень квадратный, и умение его вычислять используется при решении квадратных уравнений. Этими уравнениями называют равенства с одной неизвестной, общий вид которых приведен на рисунке ниже.

Здесь c, b и a представляют собой некоторые числа, причем a не должно равняться нулю, а значения c и b могут быть совершенно произвольными, в том числе и равными нулю.

Любые значения икса, удовлетворяющие указанному на рисунке равенству, называются его корнями (следует не путать это понятие с квадратным корнем √). Поскольку рассматриваемое уравнение имеет 2-й порядок (x 2), то корней для него не может быть больше, чем два числа. Рассмотрим далее в статье, как находить эти корни.

Нахождения корней квадратного уравнения (формула)

Этот способ решения рассматриваемого типа равенств также называется универсальным, или методом через дискриминант. Его можно применять для любых квадратных уравнений. Формула дискриминанта и корней квадратного уравнения имеет следующий вид:

Из нее видно, что корни зависят от значения каждого из трех коэффициентов уравнения. Более того, вычисление x 1 отличается от расчета x 2 только знаком перед корнем квадратным. Подкоренное выражение, которое равно b 2 - 4ac, является не чем иным, как дискриминантом рассматриваемого равенства. Дискриминант в формуле корней квадратного уравнения играет важную роль, поскольку он определяет число и тип решений. Так, если он равен нулю, то решение будет всего одно, если он положительный, то уравнение обладает двумя действительными корнями, наконец, отрицательный дискриминант приводит к двум комплексным корням x 1 и x 2 .

Теорема Виета или некоторые свойства корней уравнений второго порядка

В конце XVI века один из основоположников современной алгебры француз изучая уравнения второго порядка, смог получить свойства его корней. Математически их можно записать так:

x 1 + x 2 = -b / a и x 1 * x 2 = c / a.

Оба равенства легко может получить каждый, для этого необходимо лишь выполнить соответствующие математические операции с корнями, полученными через формулу с дискриминантом.

Совокупность этих двух выражений можно по праву назвать второй формулой корней квадратного уравнения, которая предоставляет возможность угадывать его решения, не используя при этом дискриминант. Здесь следует оговориться, что хотя оба выражения справедливы всегда, применять их для решения уравнения удобно только в том случае, если оно может быть разложено на множители.

Задача на закрепление полученных знаний

Решим математическую задачу, в которой продемонстрируем все приемы, обсуждаемые в статье. Условия задачи следующие: необходимо найти два числа, для которых произведение равно -13, а сумма составляет 4.

Это условие сразу напоминает о теореме Виета, применяя формулы суммы квадратных корней и их произведения, записываем:

x 1 + x 2 = -b / a = 4;

x 1 * x 2 = c / a = -13.

Если предположить, что a = 1, тогда b = -4 и c = -13. Эти коэффициенты позволяют составить уравнение второго порядка:

x 2 - 4x - 13 = 0.

Воспользуемся формулой с дискриминантом, получим следующие корни:

x 1,2 = (4 ± √D)/2, D = 16 - 4 * 1 * (-13) = 68.

То есть задача свелась к нахождению числа √68. Заметим, что 68 = 4 * 17, тогда, используя свойство квадратного корня, получим: √68 = 2√17.

Теперь воспользуемся рассмотренной формулой квадратного корня: a 0 = 4, тогда:

a 1 = 1/2(4 + 17/4) = 4,125;

a 2 = 1/2(4,125 + 17/4,125) = 4,1231.

В вычислении a 3 нет необходимости, поскольку найденные значения отличаются всего на 0,02. Таким образом, √68 = 8,246. Подставляя его в формулу для x 1,2 , получим:

x 1 = (4 + 8,246)/2 = 6,123 и x 2 = (4 - 8,246)/2 = -2,123.

Как видим, сумма найденных чисел действительно равна 4, если же найти их произведение, то оно будет равно -12,999, что удовлетворяет условию задачи с точностью до 0,001.

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье "Решение неполных квадратных уравнений".

Какие же квадратные уравнения называются полными? Это уравнения вида ах 2 + b x + c = 0 , где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b 2 – 4ас.

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D < 0),то корней нет.

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х 1 = (-b - √D)/2a , и х 2 = (-b + √D)/2a .

Например. Решить уравнение х 2 – 4х + 4= 0.

D = 4 2 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х 2 + х + 3 = 0.

D = 1 2 – 4 · 2 · 3 = – 23

Ответ: корней нет .

Решить уравнение 2х 2 + 5х – 7 = 0 .

D = 5 2 – 4 · 2 · (–7) = 81

х 1 = (-5 - √81)/(2·2)= (-5 - 9)/4= – 3,5

х 2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1 .

Итак представим решение полных квадратных уравнений схемой на рисунке1.

По этим формулам можно решать любое полное квадратное уравнение. Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах 2 + bx + c, иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х 2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 3 2 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах 2 , затем с меньшим bx , а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2.

Полное квадратное уравнение называется приведенным, если коэффициент при х 2 равен единице и уравнение примет вид х 2 + px + q = 0 . Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а , стоящий при х 2 .

На рисунке 3 приведена схема решения приведенных квадратных
уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х 2 + 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 6 2 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам, приведенным на схеме рисунка D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3 . Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного
уравнения рисунок 3.

D 2 = 2 2 – 4 · (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Превращение полного квадратного уравнения в неполное выглядит так (для случая \(b=0\)):

Для случаев, когда \(с=0\) или когда оба коэффициента равны нулю - всё аналогично.

Обратите внимание, что про равенство нулю \(a\) речи не идет, оно равно нулю быть не может, так как в этом случае превратиться в :

Решение неполных квадратных уравнений.

Прежде всего, надо понимать, что неполное квадратное уравнение все-таки является , поэтому может быть решено также как и обычное квадратное (через ). Для этого просто дописываем недостающий компонент уравнения с нулевым коэффициентом.

Пример : Найдите корни уравнения \(3x^2-27=0\)
Решение :

У нас неполное квадратное уравнение с коэффициентом \(b=0\). То есть, мы можем записать уравнение в следующем виде:

\(3x^2+0\cdot x-27=0\)

Фактически здесь то же самое уравнение, что и в начале, но теперь его можно решать как обычное квадратное. Сначала выписываем коэффициенты.

\(a=3;\) \(b=0;\) \(c=-27;\)

Вычислим дискриминант по формуле \(D=b^2-4ac\)

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Найдем корни уравнения по формулам
\(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) и \(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\)

\(x_{1}=\)\(\frac{-0+\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{18}{6}\) \(=3\)

\(x_{2}=\)\(\frac{-0-\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{-18}{6}\) \(=-3\)


Записываем ответ

Ответ : \(x_{1}=3\); \(x_{2}=-3\)


Пример : Найдите корни уравнения \(-x^2+x=0\)
Решение :

Опять неполное квадратное уравнение, но теперь нулю равен коэффициент \(c\). Записываем уравнение как полное.




© 2024
womanizers.ru - Журнал современной женщины