18.07.2019

Мононуклеарная фагоцитирующая система. Система мононуклеарных фагоцитов. Функции и рецепторы макрофагов Система мононуклеарных фагоцитов включает


Мононуклеарным фагоцитам (моноцитам и макрофагам) принадлежит важнейшая роль в иммунных реакциях, защите организма от инфекций, а также восстановлении и перестройке тканей. Не бывает человека, у которого отсутствовала бы эта линия клеток, поскольку макрофаги, по-видимому, необходимы для удаления примитивных тканей по мере их замещения новыми в процессе эмбрионального развития.

Моноциты и различные формы тканевых макрофагов составляют систему мононуклеарных фагоцитов. Это именно система, так как все мононуклеары имеют общее происхождение, сходное строение и одинаковые функции (фагоцитоз).

Основная локализация макрофагов в тканях :
Печень (купферовские клетки).
Легкие (интерстициальные и альвеолярные макрофаги).
Соединительная ткань.
Серозные полости (плевральные и перитонеальные макрофаги).
Кости (остеокласты).

Головной мозг (реактивные клетки микроглии).
Селезенка, лимфатические узлы, костный мозг.
Стенка кишечника.
Грудное молоко.
Плацента.
Гранулемы (многоядерные гигантские клетки).

Моноциты - циркулирующие в крови предшественники тканевых - развиваются в костном мозге быстрее и остаются в крови дольше нейтрофилов. Первый предшественник моноцита, монобласт, превращается в промоноцит, несколько более крупную клетку с цитоплазматическими гранулами и вдавленным ядром, состоящую из небольших глыбок хроматина, и, наконец, - в полностью развитый моноцит.

Зрелый моноцит по своим размерам больше нейтрофила, и его цитоплазма заполнена гранулами, содержащими гидролитические ферменты. Превращение монобласта в зрелый моноцит крови занимает около 6 сут. Моноциты сохраняют некоторую способность к делению и после попадания в ткани подвергаются дальнейшей дифференцировке; в тканях они могут оставаться в течение нескольких недель и месяцев.

В отсутствие воспаления моноциты , по-видимому, случайным образом попадают в ткани. Оказавшись там, они трансформируются в тканевые макрофаги, морфологические, а иногда и функциональные свойства которых зависят от конкретной ткани. Органоспецифические факторы влияют на дифференцировку моноцитов и определяют их метаболические и структурные особенности. В печени они превращаются в купферовские клетки, которые соединяют синусоиды, разделяющие соседние пластинки гепатоцитов.

В легких они представлены крупными эллипсоидными альвеолярными макрофагами , в костях - остеокластами. Все макрофаги обладают по крайней мере тремя основными функциями - антигенпредставляющей, фагоцитарной и иммуномодулирующей, связанной с секрецией многих цитокинов. В очагах воспаления моноциты и макрофаги могут сливаться друг с другом, образуя многоядерные гигантские клетки - последняя стадия развития мононуклеарных фагоцитов. Под действием некоторых цитокинов моноциты крови дифференцируются в дендритные клетки, которые особенно эффективно представляют антигены лимфоцитам.

Система мононуклеарных фагоцитов включает в себя монобласты, промоноциты, моноциты и тканевые макрофаги. В отличие от гранулоцитов, в костном мозге отсутствует существенный запас моноцитов. Созревшие клетки практически немедленно покидают костный мозг, в течение 20-40 часов циркулируют в крови, после чего мигрируют в ткани, где дифференцируются в макрофаги - долгоживущие клетки, способные к фагоцитозу и принимающие участие во многих иммунных и воспалительных реакциях. В частности, макрофаги участвуют в презентации чужеродного антигена иммунной системе и секретируют большое количество ростовых факторов (ИЛ-1, ФНО, ИЛ-3, ГМ-КСФ, Г-КСФ, М-КСФ, ИЛ-4, ИЛ-6). Продолжительность жизни макрофагов в тканях может достигать нескольких лет. Функции макрофагов различной локализации несколько различаются. К основным группам тканевых макрофагов относятся: 1) клетки почечного мезангия; 2)клетки микроглии; 3)альвеолярные макрофаги; 4) макрофаги серозных полостей; 5)купфферовские клетки печени; 6) клетки Лангерганса в коже; 7) макрофаги синусов селезенки; 8) макрофаги костного мозга; 9) макрофаги синусов лимфатических узлов.

Контроль грануломонопоэза с помощью ростовых факторов.

На всех этапах созревания и дифференцировки клетки гранулоцитарного и моноцитарного рядов находятся под контролем ростовых факторов. Так, СКК превращается в полипотентную клетку-предшественницу миелопоэза под синергическим воздействием ИЛ-1, ИЛ-3 и ИЛ-6. Другие ростовые факторы стимулируют созревание и продукцию более дифференцированных клеток: ГМ-КСФ - гранулоцитов и моноцитов, Г-КСФ - гранулоцитов, М-КСФ-моноцитов, ИЛ-5 - эозинофилов. Ростовые факторы не только способствуют росту и дифференцировке клеток, но и повышают функциональную активность зрелых гранулоцитов (фагоцитоз, выработку супероксида и цитотоксичность) и моноцитов (фагоцитоз, цитотоксичность и продукцию других цитокинов моноцитами), а также нарушают целостность мембран и адгезивную способность клеток-мишеней.

Продукция ростовых факторов стромальными клетками (фибробласты, макрофаги, эндотелиальные клетки) и Т-лимфоцитами имеет большое значение в поддержании базального уровня гранулоцитов и моноцитов. Увеличение количества фагоцитов при инфекциях происходит в результате повышенного образования ростовых факторов вследствие воздействия эндотоксина, ИЛ-1 и ФНО на клетки стромы и Т-лимфоциты. В этой ситуации, а также при “выходе” из агранулоцитоза в крови больных могут обнаруживаться ростовые факторы (например, ГМ-КСФ), которые в нормальных условиях отсутствуют.

Клиническое применение ростовых факторов.

Внутривенная или подкожная инфузия ростовых факторов приводит к повышению продукции гранулоцитов (Г-КСФ), гранулоцитов и моноцитов (ГМ-КСФ), тромбоцитов, ретикулоцитов, гранулоцитов и моноцитов (ИЛ-3).

Сферы использования ростовых факторов:

1)после радио- и/или цитостатической терапии, либо трансплантации костного мозга или стволовых клеток периферической крови (Г-КСФ, ГМ-КСФ);

2)мобилизация стволовых клеток периферической крови перед трансплантацией (Г-КСФ, ГМ-КСФ);

3)миелодиспластический синдром (ГМ-КСФ и ИЛ-3);

4)апластическая анемия (ГМ-КСФ, ИЛ-3);

5)идиопатическая нейтропения (Г-КСФ);

6)тяжелые инфекции (для стимуляции функции фагоцитов, используются в сочетании с антибиотиками);

7)ВИЧ-инфекция (увеличение количества и повышение функции фагоцитов, уменьшение миелотоксичности проводимой терапии).

Клетка-предшественница - клетка, находящаяся на низком уровне дифференцировки, но уже коммитированная к развитию в клетки определенной линии.

Аксиомой современной теории онкогенеза является положение, что клеткой-предшественницей стволовой злокачественной клетки является нормальная пролиферирующая соматическая клетка. Однако какая соматическая клетка явилась клеткой-предшественницей для злокачественной клетки, данной конкретной солидной опухоли - не известно.

Достоверно доказаны очень важные и никем неоспоримые утверждения:

Злокачественные клетки имеют больше сходства между собой, чем нормальные клетки между собой;

Злокачественные клетки имеют меньше различий между собой, чем различия между злокачественными клетками и нормальными клетками;

Нормальные клетки имеют меньше различий между собой, чем различия между нормальными клетками и злокачественными клетками;

Основные принципы «зарождения» стволовой злокачественной клетки, роста злокачественного очага и развития злокачественного процесса различных органов и тканей совершенно идентичны.

На этом основании можно говорить о злокачественных клетках, как об отдельной группе клеток, имеющих общее происхождение, а в совокупности со стромой, даже как об отдельной ткани в организме-носителе. В таком случае должна быть конкретная клетка, претендующая на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

При анализе всех клеток организма человека необходимо выбрать, прежде всего, те клетки, которые имеют следующие основные свойства:

1. Являются соматическими пролиферирующими клетками с продолжительным жизненным циклом (месяцы, годы).

2. Обладают автономностью: умеют свободно перемещаться по всему организму-носителю, проникать и мигрировать в органах и тканях.

3. Способны влиять на различные жизненно важные процессы: гемопоэз, гомеостаз, иммунитет, пролиферацию, созревание и дифференцировку клеток и др.

Клетками, обладающими вышеуказанными свойствами, в организме человека являются только клетки крови, из них:

Эритроциты, тромбоциты и лейкоциты - это тупиковый вариант с коротким сроком жизни (эритроциты 100-120 суток, тромбоциты около 7-10 суток, нейтрофилы менее 6-8 часов), к тому же, имеют специфические черты и достаточно ограниченные функции, поэтому не могут претендовать на роль «общего начала»;

Лимфоциты - относятся к Мононуклеарной фракции системы крови, имеют тропность к лимфоидной ткани и, как известно, унипотентные и полипотентные стволовые клетки лимфоцитопоэза являются клетками-предшественниками стволовых злокачественных клеток гемобластозов. Зрелые лимфоциты при воздействии на них специфических антигенов вновь способны трансформироваться в бластные клетки. Можно сказать однозначно, что лимфоциты прямо или косвенно участвуют в «зарождении» первичной стволовой злокачественной клетки, а также росте и развитии злокачественного процесса;

Моноциты - относятся к Мононуклеарной фракции системы крови - прослеживают свое начало от полипотентной клетки-предшественницы родоначальнице миелопоэза с последующим развитием в Моноцитарный росток (П класс), который включает в себя достаточно большое количество клеток различной потентности (полипотентные, унипотентные) и местоположения (костный мозг, сосудистое русло, ткани). Поэтому все клетки, относящиеся к Моноцитарному ростку удобнее называть Мононуклеарная фракция или Мононуклеары. С учетом особенностей Мононуклеар является наиболее вероятным кандидатом на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

Характеристика и возможности Мононуклеаров (Моноцитарный росток):

1. Морфологически недифференцируемые и дифференцируемые Мононуклеары подразделяются на три основные группы:

Костномозговые: полипотентная клетка-предшественница родоначальница миелопоэза с последующим развитием в Моноцитарный росток, унипотентная клетка-предшественница родоначальница Моноцитов, монобласт, промоноцит, моноцит;

Периферической крови: промоноцит, моноцит;

Тканевые: промоноцит, моноцит, макрофагальный бласт, промакрофаг, макрофаг.

Промоноцит и Моноцит присутствуют во всех трех группах клеток и являются промежуточным вариантом развития от костномозговой полипотентной клетки-предшественницы родоначальнице миелопоэза с последующим развитием в Моноцитарный росток (П класс) до органо- и тканеспецифического Макрофага, как конечного варианта развития.

2. Кроветворение в красном костном мозге, это единственный функционирующий очаг интенсивной пролиферации, который сохранился с эмбрионального периода развития и функционирует у взрослого человека.

3. Мононуклеары являются представителями клеток иммунокомпетентной системы и одновременно играют решающую роль в регуляции нормального гемопоэза. Мононуклеары могут ингибировать гемопоэз с помощью межклеточных взаимодействий и посредством выделения различных иммунных и не иммунных гуморальных факторов.

4. Образование клеток Моноцитарного ростка может происходить на любом этапе дифференциации от полипотентной стволовой кроветворной клетки до промиелоцита. Отличаются ли друг от друга Моноциты и Макрофаги, образовавшиеся из различных субпопуляций и каковы их специфические функции, пока не ясно.

5. Костномозговые Мононуклеары способны выходить из костного мозга в периферическую кровь, циркулировать в периферической крови по всему организму, проникать из кровеносного русла в любые органы и ткани и мигрировать в них - перемещаться в межклеточном пространстве.

6. Мононуклеар периферической крови в нормальных условиях созревает, перед тем как проникнуть в ткани, но при воспалении сроки пребывания его в периферической крови значительно сокращены, поэтому в ткани проникают его не зрелые формы, способные к активной пролиферации.

7. Тканевые Мононуклеары, это единственные клетки в организме человека, которые в нормальных условиях могут трансформироваться в другую бластную клетку - макрофаальный бласт с последующей дифференцировкой в Макрофаг.

8. Мононуклеар периферической крови, попадая в ткани, не обязательно трансформируется в Макрофаг, он может превратиться и в клетки микроокружения, например, в эпителиоидную клетку (мезенхимально-эпителиальный переход).

9. Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков кроветворения, поэтому изначально Мононуклеары характеризуются независимостью поведения - автономностью.

10. Мононуклеары сохраняют способность к делению на всех этапах своего развития и имеют возможность трансформироваться в первичную стволовую злокачественную клетку.

11. Злокачественные клетки, подобно Мононуклеарам, обладают многими активными свойствами: влияют на пролиферацию, дифференцировку и функциональную активность различных клеток; выработку факторов роста; размножение в геле без подложки; сниженную адгезию; пониженное контактное торможение; влияние на гемопоэз; влияние на свертывающую систему крови; влияние на клеточный и гуморальный иммунитет и др.

Таким образом, тканевые Мононуклеары (Промоноцит и Моноцит), вполне могут претендовать на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

Мононуклеарная фагоцитарная (МФ) система - это совокупность клеток, происходящих из моноцитов, обладающих фагоцитарной активностью. Кроме того, к фагоцитирующим клеткам относятся полинуклеарные фагоциты (ПМЯЛ) - нейтрофилы, эозинофилы, базофилы, микроглия (на рис. затушеваны).

Важную роль в механизмах неспецифичкской защиты играют также ретикулярные, эндотелиальные клетки, которые не выполняют фагоцитарной функции, а поддерживают целостность лимфоидной ткани и кровеносных сосудов (Эндотелиальные клетки выстилают сосуды, ретикурные является основой кроветворных органов, образуются из мезенхимы).

Фагоцит, описанный И.И. Мечниковым, состоит из 7 следующих фаз:

1) Хемотаксис - движение клеток в направлении градиента молекул, выделенных микроорганизмами.

Хемотаксические факторы упорядочивают движения фагоцитов. Они воздействуют на специфические рецепторы на плазмолемме фагоцитов стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию адгезивных молекул. Вследствие этого формируются псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток.

2) Адгезия (прикрепление) клетки к объекту фагоцитоза Происходит при взаимодействии её рецепторного аппарата с молекулами на поверхности бактерии. Протекает в две стадии: -обратимая и непрочная -необратимая, прочная.

3) Захват бактерии клетки с формированием фагосомы Псевдоподии охватывают бактерию, заключая ее в мембранный пузырек - фагосому. Если бактерия инкапсулирована, то на нее садятся IgG или СЗВ. В таком случае бактерия опсонизирована.

4) Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы Содержимое гранул выливается в просвет фаголизосомы (рН кислая).

5) Повреждение и внутриклеточное переваривание бактерии Гибель бактерии наступает вследствие действия на нее антимикробных веществ, далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается действием токсичных реактивных биоокислителей (перикисью водорода, молекул. Кислородом, супероксидными радикалами, гипохлоритом...)

Фагоцитоз, являясь механизмом неспецифической защиты (фагоцитироваться могут любые инородные частицы независимо от наличия иммунизации), в то же время способствует иммунологическим механизмам защиты. Это связано, во-первых, с тем, что поглощая макромолекулы и расщепляя их, фагоцит как бы раскрывает структурные части молекул, отличающиеся чужеродностью. Во-вторых, фагоцитоз в условиях иммунологической защиты протекает быстрее и эффективнее. Таким образом, явление фагоцитоза занимает промежуточное место между механизмами специфической и неспецифической защиты. Это еще раз подчеркивает условность деления механизмов защиты клеточного гомеостаза на специфические и неспецифические.

Нефагоцитарный механизм разрушения микробов характерен для ситуаций, когда микроорганизмы имеют столь большие размеры, что клетки не могут их поглощать. В таких случаях фагоциты скапливаются вокруг бактерии и выбрасывают содержимое своих гранул, уничтожая микроб большими концентрациями антимикробных веществ.

Воспалительная реакциия также относится к клеточным неспецифическим реакциям. Она является эволюционно выработанным процессом защиты внутренней среды от проникновения чужеродных макромолекул, поскольку внедрившиеся в ткань чужеродные начала, например, микроорганизмы, фиксируются в месте внедрения, разрушаются и даже удаляются из ткани во внешнюю среду с жидкой средой очага воспаления - экссудатом. Клеточные элементы как тканевого происхождения, так и выходящие в очаг из крови (лейкоциты), образуют вокруг места внедрения своеобразный защитный вал, препятствующий распространению чужеродных частиц по внутренней среде. В очаге воспаления особенно эффективно протекает процесс фагоцитоза

Гуморальные факторы внутренней среды, обеспечивающие механизмы неспецифической защиты, представлены пропердиновой системой и системой комплемента, осуществляющие лизис чужеродных клеток. При этом система комплемента, хотя и может активироваться неиммунологическим путем, обычно вовлекается в иммунологические процессы и поэтому скорее должна относиться к специфическим механизмам защиты.

Пропердиновая система реализует свой защитный эффект независимо от иммунных реакций.

К числу гуморальных факторов неспецифической защиты относят также содержащиеся в плазме крови и тканевой жидкости лейкин ы, плакины, бетализины, л и з о ц м и т.д.. Лейкины выделяются лейкоцитами, плакины - тромбоцитами крови, они оказывают отчетливое бактериолитическое действие. Еще большим литическим эффектом на стафилококки и анаэробные микроорганизмы обладают бета-лизины плазмы крови. Содержание и активность этих гуморальных факторов не меняются при иммунизации, что дает основание считать их неспецифическими факторами защиты. К числу последних следует также отнести и довольно большой спектр веществ тканевой жидкости, обладающих способностью подавлять ферментативную активность микроорганизмов и жизнедеятельность вирусов. Это ингибиторы гиалуронидазы, фосфолипаз, коллагеназы, плазмина и интерферон лейкоцитов.

Система мононуклеарных фагоцитов (греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система) - физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

Основой современного представления о cистема мононуклеарных фагоцитов является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (РЭС). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать витальный краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов.

По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и эндотелий сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие «ретикулоэндотелиальная система» было признано устаревшим. Вместо него принято понятие «система мононуклеарных фагоцитов».

К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.

Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные псевдоподии. Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей. Лизосомы содержат различные гидролитические ферменты, обеспечивающие переваривание поглощенного материала.

Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является лизоцим. Активированные макрофаги секретируют нейтральные протеиназы (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также интерферон.

Клетки cистема мононуклеарных фагоцитовобладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой способности они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют фагоцитоз микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) и гигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных тел. которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку. В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.

Клетки cистема мононуклеарных фагоцитов принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом антиген поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная стимуляция лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в целом осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.

Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта активность особенно выражена у так называемых иммунных макрофагов, осуществляющих лизис опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные антитела (лимфокины).

Клетки cистема мононуклеарных фагоцитов принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритропоэз эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к cистемs мононуклеарных фагоцитов, ответственные за миграцию и дифференцировку лимфоцитов.

Обменная функция макрофагов заключается в их участии в обмене железа. В селезенке и костном мозге макрофаги осуществляют эритрофагоцитоз, при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.

Моноцитарно-макрофагальная система)

физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

Основой современного представления о С. м. ф. является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов. По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие « » было признано устаревшим. Вместо него принято понятие « ». К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.

Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные . Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей (рис. 1 ). Лизосомы содержат различные гидролитические , обеспечивающие переваривание поглощенного материала. Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является . Активированные макрофаги секретируют нейтральные (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также .

Клетки С. м. ф. обладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) игигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных . которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку (рис. 2 ). В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.

Клетки С. м. ф. принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.

Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта особенно выражена у так называемых иммунных макрофагов, осуществляющих опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные ().

Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к С. м. ф., ответственные за миграцию и дифференцировку Т лимфоцитов.

Обменная макрофагов заключается в их участии в обмене . В селезенке и костном мозге макрофаги осуществляют , при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.

Библиогр.: Карр Ян. Макрофаги: обзор ультраструктуры и функции, . с англ., М., 1978; Персина И.С. Клетки Лангерганса - структура, функция, роль в патологии, . патол., т. 47, вып. 2, с. 86, 1985.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Система мононуклеарных фагоцитов" в других словарях:

    См. Система макрофагов … Большой медицинский словарь

    I Система (греч. systēma целое, составленное из частей; соединение) совокупность каких либо элементов, связанных между собой и рассматриваемых как единое и функциональное структурное целое. II Система организма совокупность органов и (или) тканей … Медицинская энциклопедия

    - (s. macrophagorum, LNH; син.: аппарат ретикулоэндотелиальный, ретикулоэндотелий, ретотелий, система мононуклеарных фагоцитов, С. ретикулоэндотелиальная (РЭС), ткань ретикулоэндотелиальна) С., включающая все клетки организма, способные поглощать… … Большой медицинский словарь

    Совокупность всех встречающихся в организме фагоцитов. К ним относятся как макрофаги, так и моноциты. Ретикулоэндотелиальная система обеспечивает защиту организма от микробной инфекции и удаление старых клеток крови из циркулирующего кровотока.… … Медицинские термины

    СИСТЕМА РЕТИКУЛОЭНДОТЕЛИАЛЬНАЯ - (reticuloendothelial system), РЭС (RES) совокупность всех встречающихся в организме фагоцитов. К ним относятся как макрофаги, так и моноциты. Ретикулоэндотелиальная система обеспечивает защиту организма от микробной инфекции и удаление старых… … Толковый словарь по медицине

    РЭС, макрофагическая система, совокупность клеток мезенхимного происхождения, объединяемых на основе способности к фагоцитозу; свойственна позвоночным животным и человеку. К РЭС относят клетки ретикулярной ткани, эндотелия синусоидов (расширенных … Биологический энциклопедический словарь

    СМФ - система мононуклеарных фагоцитов Специальный межгосударственный форум … Словарь сокращений русского языка

    - (греч. hēpar, hēpat печень + лат. lien селезенка; синоним печеночно селезеночный синдром) сочетанное увеличение печени (гепатомегалия) и селезенки (спленомегалия), обусловленное вовлечением в патологический процесс обоих органов. Встречается… … Медицинская энциклопедия

    I Кроветворение (синоним гемопоэз) процесс, заключающийся а серии клеточных дифференцировок, в результате которых образуются зрелые клетки крови. Во взрослом организме существуют родоначальные кроветворные, или стволовые, клетки. Предполагают,… … Медицинская энциклопедия

    I Агранулоцитоз (agranulocytosis; греч. отрицательная приставка а + лат. granulum зернышко + гистологическое cytus клетка + ōsis; синоним: гранулоцитопения, нейтропения) полное или почти полное исчезновение из крови гранулоцитов. Число остальных… … Медицинская энциклопедия




© 2024
womanizers.ru - Журнал современной женщины