18.07.2019

Морфология нервной ткани. Нервная ткань. Развитие нервной ткани


Типы тканей

Ткань - это группа клеток и межклеточное вещество, объединенные общим строением, функцией и происхождением. В теле человека различают четыре основных типа тканей: эпителиальную (покровную), соединительную, мышечную» нервную. Эпителиальная ткань образует покровы тела, железы, выстилает полости внутренних органов. Клетки ткани близко прилегают друг к другу, межклеточного вещества мало. Соз-

дается препятствие для проникновения микробов, вредных веществ, защита лежащих под эпителием тканей. Смена клеток происходит благодаря способности к быстрому размножению.

Соединительная ткань. Ее особенность - сильное развитие межклеточного вещества. Основные функции ткани - питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и клеток крови. Эти ткани обеспечивают связь между органами, перенося вещества и газы. Волокнистая соединительная ткань состоит из клеток,

связанных межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластичные волокна.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Ткань отличается твердостью.

Мышечная ткань образована мышечными волокнами. В их цитоплазме находятся нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная состоит из волокон вытяну

той формы, достигающих в длину 10-12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметров кровеносных сосудов. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим.

Нервная ткань. Структурной единицей нервной ткани является нервная клетка - нейрон. Нейрон состоит из тела и отростков. Основные свойства нейрона - способность возбуждаться и проводить это возбуждение по нервным волокнам. Нервная ткань составляет головной и спинной мозг, обеспечивает объединение функций всех частей организма.

Различные ткани соединяются между собой и образуют органы.

9.3.4. Нервные ткани

Нервная ткань состоит из нервных клеток – нейронов и клеток нейроглии. Кроме того, она содержит рецепторные клетки. Нервные клетки могут возбуждаться и передавать электрические импульсы.

Нейроны состоят из тела клетки диаметром 3–100 мкм, содержащего ядро и органоиды, и цитоплазматических отростков. Короткие отростки, проводящие импульсы к телу клетки, называются дендритами ; более длинные (до нескольких метров) и тонкие отростки, проводящие импульсы от тела клетки к другим клеткам, называются аксонами . Аксоны соединяются с соседними нейронами в синапсах.


Нейроны, передающие импульсы к эффекторам (органам, отвечающим на раздражения), называют моторными; нейроны, передающие импульсы в центральную нервную систему, называют сенсорными. Иногда сенсорные и моторные нейроны связаны между собой при помощи вставочных (промежуточных) нейронов.

Рисунок 9.3.4.4.

Строение сенсорного и моторного нервов.

Пучки нервных волокон собраны в нервы . Нервы покрыты оболочкой из соединительной ткани – эпиневрием . Собственная оболочка покрывает и каждое волокно в отдельности. Как и нейроны, нервы бывают сенсорными (афферентными) и моторными (эфферентными). Встречаются также смешанные нервы, передающие импульсы в обоих направлениях. Нервные волокна целиком или полностью окружены шванновскими клетками . Между миелиновыми оболочками шванновских клеток имеются разрывы, называемые перехватами Ранвье .

Клетки нейроглии сосредоточены в центральной нервной системе, где их количество в десять раз превышает количество нейронов. Они заполняют пространство между нейронами, обеспечивая их питательными веществами. Возможно, клетки нейролгии участвуют в сохранении информации в форме РНК-кодов. При повреждении клетки нейролгии активно делятся, образуя на месте повреждения рубец; клетки нейролгии другого типа превращаются в фагоциты и защищают организм от вирусов и бактерий.

Сигналы передаются по нервным клеткам в виде электрических импульсов. Электрофизиологические исследования показали, что мембрана аксона с внутренней стороны заряжена отрицательно по отношению к наружной стороне, и разность потенциалов составляет примерно –65 мВ. Этот потенциал, так называемый потенциал покоя , обусловлен разностью концентраций ионов калия и натрия по разные стороны мембраны.

При стимуляции аксона электрическим током потенциал на внутренней стороне мембраны увеличивается до +40 мВ. Потенциал действия возникает за счет кратковременного увеличения проницаемости мембраны аксона для ионов натрия и входа последних в аксон (около 10 –6 % от общего числа ионов Na + в клетке). Примерно через 0,5 мс повышается проницаемость мембраны для ионов калия; они выходят из аксона, восстанавливая исходный потенциал.

Нервные импульсы пробегают по аксонам в виде незатухающей волны деполяризации. В течение 1 мс после импульса аксон возвращается в исходное состояние и не способен передавать импульсы. Ещё в течение 5–10 мс аксон может передавать только сильные импульсы. Скорость проведения сигнала зависит от толщины аксона: в тонких аксонах (до 0,1 мм) она составляет 0,5 м/с, в то время, как в гигантских аксонах кальмаров диаметром 1 мм может достигать 100 м/с. У позвоночных друг за другом возбуждаются не соседние участки аксона, а перехваты Ранвье; импульс перескакивает от одного перехвата к другому и идёт в целом быстрее (до 120 м/с), чем серия коротких токов по немиелиновому волокну. Повышение температуры увеличивает скорость прохождения нервных импульсов.

Амплитуда нервных импульсов не может изменяться, и для кодирования инфомации используется только их частота. Чем больше воздействующая сила, тем чаще следуют друг за другом импульсы.

Передача информации от одного нейрона к другому происходит в синапсах . Обычно посредством синапсов связаны между собой аксон одного нейрона и дендриты или тело другого. Синапсами связаны с нейронами также окончания мышечных волокон. Число синапсов очень велико: некоторые клетки головного мозга могут иметь до 10 000 синапсов.

По большинству синапсов сигнал передаётся химическим путём. Нервные окончания разделены между собой синаптической щелью шириной около 20 нм. Нервные окончания имеют утолщения, называемые синаптическими бляшками ; цитоплазма этих утолщений содержит многочисленные синаптические пузырьки диаметром около 50 нм, внутри которых находится медиатор – вещество, с помощью которого нервный сигнал передаётся через синапс. Прибытие нервного импульса вызывает слияние пузырька с мембраной и выход медиатора из клетки. Примерно через 0,5 мс молекулы медиатора попадают на мембрану второй нервной клетки, где связываются с молекулами рецептора и передают сигнал дальше.


Передача информации в химических синапсах происходит в одном направлении. Специальный механизм суммации позволяет отфильтровывать слабые фоновые импульсы, прежде чем они поступят, например, в мозг. Передача импульсов может также затормаживаться (например, в результате воздействия на синапс сигналов, приходящих от других нейронов). Некоторые химические вещества влияют на синапсы, вызывая ту или иную реакцию. После непрерывной работы запасы медиатора истощаются, и синапс временно перестаёт передавать сигнал.

Через некоторые синапсы передача происходит электрическим путём: ширина синаптической щели составляет всего 2 нм, и импульсы проходят через синапсы без задержки.

Мышечная ткань состоит из высокоспециализированных сократительных волокон. В организмах высших животных она составляет до 40 % массы тела.

Различают три типа мышц. Поперечно-полосатые (их также называют скелетными) мышцы являются основой двигательной системы организма. Очень длинные многоядерные клетки-волокна связаны друг с другом соединительной тканью, содержащей в себе множество кровеносных сосудов. Данный тип мышц отличают мощные и быстрые сокращения; в сочетании с коротким рефрактерным периодом это приводит к быстрой утомляемости. Активность поперечно-полосатых мышц определяется деятельностью головного и спинного мозга.

Гладкие (непроизвольные) мышцы образуют стенки дыхательных путей, кровеносных сосудов, пищеварительной и мочеполовой систем. Их отличают относительно медленные ритмичные сокращения; активность зависит от автономной нервной системы. Одноядерные клетки гладких мышц собраны в пучки или пласты.

Наконец, клетки сердечной мышцы разветвляются на концах и соединяются между собой при помощи поверхностных отростков – вставочных дисков. Клетки содержат несколько ядер и большое количество крупных митохондрий . Как следует из названия, сердечная мышца встречается только в стенке сердца.

Нервная ткань является основной тканью нервной системы и главные ее свойства – возбудимость и проводимость.

Нервная ткань состоит, в основном, из клеток. Ее клетки разделяют на 2 группы:

    нервные клетки (нейроны) – обеспечивают функции проведения и возбуждения;

    клетки нейроглии – обеспечивают вспомогательные функции (трофику, защиту и т.д.)

2. Эмбриогенез нервной ткани .

Эмбриональным источником ткани служит нейральный зачаток эктодермы, который образует нервную трубку. В составе трубки выделяют 3 слоя: внутренний (содержит камбиальные клетки и дает начало эпендимной глии); мантийный (плащевой) слой (сюда мигрируют клетки внутреннего слоя и дифференцируются в нейробласты и далее в нейроны и спонгиобласты, из которых образуется большинство клеток нейроглии; краевая вуаль (содержит отростки нижележащих клеток).

3. Морфо-функциональная характеристика нейрона.

Морфологический облик нейрона соответствует его функциям возбуждению и проведению нервного импульса, что обеспечивается механизмом деполяризации клеточных мембран. В основе этого явления лежит изменение разности потенциалов на внутренней и внешней поверхности мембран благодаря локальным токам Na + в цитоплазму иK + наружу через ионные каналы.

Клетка имеет тело или перикарион с крупным центрально расположенным ядром и отростки: дендриты (их может быть несколько и они проводят возбуждение к телу нейрона, получая его через многочисленные контакты с другими нейронами. В этих участках образуются особые выпячивания – дендритные шипики) и 1 аксон (проводит возбуждение от тела к следующему нейрону или рабочему органу). Есть все органеллы общего значения (даже клеточный центр). И есть специфические структуры. Базофильное вещество, скопления которого видны в перикарионе и в дендритах, но отсутствуют в аксоне. Это плотные скопления гранулярной ЭПС. А также нейрофибриллы, элементы цитоскелета, состоящие из промежуточных нейрофиламентов и микротрубочек. Они способствуют транспорту веществ внутри нейрона, что особенно актуально для отростков.

4. Синапсы и их классификация.

Для нейронов характерен особый вид межклеточных контактов – синапс. Наиболее характерен химический синапс между окончанием аксона и началом дендрита следующей клетки. Он состоит из: 1. пресинаптической части (аксона) 2. синаптической щели 3. постсинаптической мембраны (дендрита). Концевое расширение аксона содержит синаптические пузырьки с особым веществом – нейромедиатором, которое вырабатывается в теле нейрона и быстро транспортируется в аксонное расширение. Возбуждение первого нейрона приводит к быстрому поступлению кальция через персинаптическую щель в аксон, что инициирует экзоцитоза нейромедиатора в синаптическую щель. Постсинаптическая мембрана содержит рецепторы, связывающиеся с медиатором, что и вызывает ее деполяризацию и формирование нервного импульса, либо гиперполяризацию, обуславливая торможение. Возбуждающий медиатор – ацетилхолин, тормозной – глицин. Обратите внимание химические синапсы способны только к одностороннему проведению импульса.

В зависимости от положения синапсы могут быть аксо-дендритические, аксо-соматические и аксо-аксональные (тормозные).

5. Классификации нейронов .

Нейроны классифицируются морфологически: по числу отростков.

    Биохимически: по выделяемому медиатору (например, холинэргические)

    Функционально: чувствительные, двигательные, ассоциативные.

Эта классификация зависит от того, какое окончание имеет аксон либо дендрит данного нейрона, которое называется нервное окончание.

У чувствительных нейронов дендриты заканчиваются рецепторными нервными окончаниями, специализированными на восприятии внешних (экстерорецепторы) или внутренних раздражений (интерорецепторы).

6. Чувствительные нервные окончания.

Чувствительные нервные окончания подразделяются на: свободные и несвободные. Свободные – это просто ветвления дендрита в эпителии или соединительной ткани. Они воспринимают температуре, механические и болевые сигналы.

Несвободные окончания бывают неинкапсулированные и инкапсулированные. Первые представляют собой ветвления дендритов, окруженные особыми клетками нейроглии. Встречаются в дерме и слизистых оболочках. Несвободные инкапсулированные окончания снаружи покрыты еще и соединительно-тканной капсулой. К ним относится ряд механорецепторов, воспринимающих давление и вибрацию (пластинчатые тельца Фатер-Пачини, осязательные тельца Мейснера, тельца Руффини и т.п.), а также нервно-мышечные веретена – это рецепторы, которые располагаются внутри скелетных мышц и оценивают степень растяжения мышечных волокон. Веретена содержат интрафузальные волокна двух типов: волокна с ядерной сумкой и волокна с ядерной цепочкой. Чувствительные окончания дендритов образуют кольцеспиральные и гроздьевидные окончания на этих волокнах и реагируют на изменение их толщины. На этих волокнах есть и двигательные окончания аксонов, которые заставляют их сокращаться в момент сокращения всей мышцы.

7. Эфферентные нервные окончания.

Аксоны двигательных нейронов образуют эффекторные нервные окончания двух типов: секреторные (на клетках желез) и двигательные (в поперечно-полосатых и гладких мышцах). В скелетных мышцах это нейро-мышечный синапс или моторная бляшка. По строению как известный вам синапс, но постсинаптическая мембрана представлена участком плазмолеммы мышечного волокна. Один аксон, разветвляясь на конце, образует моторные бляшки сразу на целой группе мышечных волокон. В сердечной и гладкой мышечной тканях веточки аксонов образуют расширения – варикозы, в которых и находятся пузырьки с нейромедиатором. Как правило здесь иннервируются только некоторые клетки, а от них возбуждение передается на соседние с помощью нексусов.

Секреторные нервные окончания оканчиваются варикозными расширениями вблизи секреторных клеток и стимулируют синтез секретов либо процесс экзоцитоза.

8. Нейроглия.

Нейроглия – это группа вспомогательных клеток, которые обеспечивают деятельность нейронов. В ткани головного мозга их число в 5-10 раз больше, чем нейронов.

Выделяют микроглию и макроглию. Микроглия – это мелкие звездчатые клетки, которые образуются из моноцитов и являются специализированными макрофагами ЦНС. Они выполняют защитную, в том числе и антигенпредставляющую функцию. Выяснена ведущая роль этих клеток в поражении нервной системы при СПИДе. Они разносят вирус, а также инициируют усиленный апоптоз нейронов.

9. Характеристика и классификация макроглии.

Макроглия включает разные клетки, относящиеся к трем разновидностям: астроглия, олигодендроглия и эпендимная глия. Клетки эпендимной глии (эпендимоциты) Эпендимоциты.

Образуют выстилку полостей желудочков головного мозга и центрального канала спинного мозга. Они образуют пласт, соединенный межклеточными контактами и лежащий на базальной мембране, поэтому их одновременно относят и к эпителиям. Они разделяют нейроны и спинномозговую жидкость, образуя нейро-ликворный барьер (высокопроницаемый). А в области сосудистых сплетений входят в состав гемато-ликворного барьера (между кровью и спинномозговой жидкостью). Этот барьер включает: эндотелий сосудов, рвст, которая окружает сосуды, базальную мембрану эпендимоцитов и слой эпендимных клеток.

Олигодендроглия – разнообразные мелкие клетки с короткими и малочисленными отростками, которые окружают нейроны. В нервных узлах они охватывают тела нейронов, обеспечивая барьерную функцию. Другая группа образует оболочки вдоль отростков нейронов, вместе с ними формируя нервные волокна. В периферической н.с. их называют леммоциты или шванновские клетки, в ЦНС – олигодендроциты.

Астроглия представлена астроцитами – звездчатые клетки, похожие на нейроны. Протоплазматические астроциты характерны для серого вещества ЦНС имеют короткие толстые отростки, волокнистые - для белого вещества и имеют длинные отростки. Их функции – опорная (заполняют пространства между нейронами), метаболическая и регуляторная (поддерживают постоянным состав ионов и медиаторов), барьерная (входят в состав гемато-энцефалического барьера, который надежно изолирует нейроны от крови, не допуская иммунного конфликта). ГЭБ включает эндотелий капилляров и их базальную мембрану, и плотный футляр из отростков астроцитов, который покрывает сосуды.

10. Безмиелиновые и миелиновые нервные волокна . Образование и особенности строения.

Нервные волокна – отростки нейронов (их называют осевыми цилиндрами), которые покрыты оболочкой из глиальных клеток. Различают миелиновые и безмиелиновые нервные волокна.

Безмиелиновые волокна образуются при погружении осевого цилиндра в углубления леммоцитов, которые лежат цепочкой вдоль всего аксона. Леммоциты прогибаются настолько, что их мембраны соприкасаются над осевым цилиндром. Эта дубликатура называется мезаксон. Если в цепочку леммоцитов погружается сразу несколько аксонов, такое волокно называют кабельным.

Миелиновые нервные волокна. Образуются с участием шванновских клеток, которые сначала формируют над осевым цилиндром мезаксон, а затем начинают многократно закручиваться. Цитоплазма вместе с ядром оттесняется наружу, образуя слой, который называют нейролеммой. Под ней лежит толстый слой тесно прилежащих сдвоенных мембран, который называют миелином. В определенных участках между витками остаются небольшие прослойки – миелиновые насечки. Поскольку шванновские клетки. Аксон длинный и шванновских клеток вдоль него много. На границах двух соседних клеток миелиновая оболочка исчезает. Эти участки называют узловые перехваты Ранвье.

В ЦНС миелиновая оболочка образуется несколько по-иному.

Миелиновые волокна проводят нервный импульс в десятки раз быстрее, чем безмиелиновые.

Нервная ткань является основной тканью нервной системы и главные ее свойства – возбудимость и проводимость.

Нервная ткань состоит, в основном, из клеток. Ее клетки разделяют на 2 группы:

    нервные клетки (нейроны) – обеспечивают функции проведения и возбуждения;

    клетки нейроглии – обеспечивают вспомогательные функции (трофику, защиту и т.д.)

2. Эмбриогенез нервной ткани .

Эмбриональным источником ткани служит нейральный зачаток эктодермы, который образует нервную трубку. В составе трубки выделяют 3 слоя: внутренний (содержит камбиальные клетки и дает начало эпендимной глии); мантийный (плащевой) слой (сюда мигрируют клетки внутреннего слоя и дифференцируются в нейробласты и далее в нейроны и спонгиобласты, из которых образуется большинство клеток нейроглии; краевая вуаль (содержит отростки нижележащих клеток).

3. Морфо-функциональная характеристика нейрона.

Морфологический облик нейрона соответствует его функциям возбуждению и проведению нервного импульса, что обеспечивается механизмом деполяризации клеточных мембран. В основе этого явления лежит изменение разности потенциалов на внутренней и внешней поверхности мембран благодаря локальным токам Na + в цитоплазму иK + наружу через ионные каналы.

Клетка имеет тело или перикарион с крупным центрально расположенным ядром и отростки: дендриты (их может быть несколько и они проводят возбуждение к телу нейрона, получая его через многочисленные контакты с другими нейронами. В этих участках образуются особые выпячивания – дендритные шипики) и 1 аксон (проводит возбуждение от тела к следующему нейрону или рабочему органу). Есть все органеллы общего значения (даже клеточный центр). И есть специфические структуры. Базофильное вещество, скопления которого видны в перикарионе и в дендритах, но отсутствуют в аксоне. Это плотные скопления гранулярной ЭПС. А также нейрофибриллы, элементы цитоскелета, состоящие из промежуточных нейрофиламентов и микротрубочек. Они способствуют транспорту веществ внутри нейрона, что особенно актуально для отростков.

4. Синапсы и их классификация.

Для нейронов характерен особый вид межклеточных контактов – синапс. Наиболее характерен химический синапс между окончанием аксона и началом дендрита следующей клетки. Он состоит из: 1. пресинаптической части (аксона) 2. синаптической щели 3. постсинаптической мембраны (дендрита). Концевое расширение аксона содержит синаптические пузырьки с особым веществом – нейромедиатором, которое вырабатывается в теле нейрона и быстро транспортируется в аксонное расширение. Возбуждение первого нейрона приводит к быстрому поступлению кальция через персинаптическую щель в аксон, что инициирует экзоцитоза нейромедиатора в синаптическую щель. Постсинаптическая мембрана содержит рецепторы, связывающиеся с медиатором, что и вызывает ее деполяризацию и формирование нервного импульса, либо гиперполяризацию, обуславливая торможение. Возбуждающий медиатор – ацетилхолин, тормозной – глицин. Обратите внимание химические синапсы способны только к одностороннему проведению импульса.

В зависимости от положения синапсы могут быть аксо-дендритические, аксо-соматические и аксо-аксональные (тормозные).

5. Классификации нейронов .

Нейроны классифицируются морфологически: по числу отростков.

    Биохимически: по выделяемому медиатору (например, холинэргические)

    Функционально: чувствительные, двигательные, ассоциативные.

Эта классификация зависит от того, какое окончание имеет аксон либо дендрит данного нейрона, которое называется нервное окончание.

У чувствительных нейронов дендриты заканчиваются рецепторными нервными окончаниями, специализированными на восприятии внешних (экстерорецепторы) или внутренних раздражений (интерорецепторы).

6. Чувствительные нервные окончания.

Чувствительные нервные окончания подразделяются на: свободные и несвободные. Свободные – это просто ветвления дендрита в эпителии или соединительной ткани. Они воспринимают температуре, механические и болевые сигналы.

Несвободные окончания бывают неинкапсулированные и инкапсулированные. Первые представляют собой ветвления дендритов, окруженные особыми клетками нейроглии. Встречаются в дерме и слизистых оболочках. Несвободные инкапсулированные окончания снаружи покрыты еще и соединительно-тканной капсулой. К ним относится ряд механорецепторов, воспринимающих давление и вибрацию (пластинчатые тельца Фатер-Пачини, осязательные тельца Мейснера, тельца Руффини и т.п.), а также нервно-мышечные веретена – это рецепторы, которые располагаются внутри скелетных мышц и оценивают степень растяжения мышечных волокон. Веретена содержат интрафузальные волокна двух типов: волокна с ядерной сумкой и волокна с ядерной цепочкой. Чувствительные окончания дендритов образуют кольцеспиральные и гроздьевидные окончания на этих волокнах и реагируют на изменение их толщины. На этих волокнах есть и двигательные окончания аксонов, которые заставляют их сокращаться в момент сокращения всей мышцы.

7. Эфферентные нервные окончания.

Аксоны двигательных нейронов образуют эффекторные нервные окончания двух типов: секреторные (на клетках желез) и двигательные (в поперечно-полосатых и гладких мышцах). В скелетных мышцах это нейро-мышечный синапс или моторная бляшка. По строению как известный вам синапс, но постсинаптическая мембрана представлена участком плазмолеммы мышечного волокна. Один аксон, разветвляясь на конце, образует моторные бляшки сразу на целой группе мышечных волокон. В сердечной и гладкой мышечной тканях веточки аксонов образуют расширения – варикозы, в которых и находятся пузырьки с нейромедиатором. Как правило здесь иннервируются только некоторые клетки, а от них возбуждение передается на соседние с помощью нексусов.

Секреторные нервные окончания оканчиваются варикозными расширениями вблизи секреторных клеток и стимулируют синтез секретов либо процесс экзоцитоза.

8. Нейроглия.

Нейроглия – это группа вспомогательных клеток, которые обеспечивают деятельность нейронов. В ткани головного мозга их число в 5-10 раз больше, чем нейронов.

Выделяют микроглию и макроглию. Микроглия – это мелкие звездчатые клетки, которые образуются из моноцитов и являются специализированными макрофагами ЦНС. Они выполняют защитную, в том числе и антигенпредставляющую функцию. Выяснена ведущая роль этих клеток в поражении нервной системы при СПИДе. Они разносят вирус, а также инициируют усиленный апоптоз нейронов.

9. Характеристика и классификация макроглии.

Макроглия включает разные клетки, относящиеся к трем разновидностям: астроглия, олигодендроглия и эпендимная глия. Клетки эпендимной глии (эпендимоциты) Эпендимоциты.

Образуют выстилку полостей желудочков головного мозга и центрального канала спинного мозга. Они образуют пласт, соединенный межклеточными контактами и лежащий на базальной мембране, поэтому их одновременно относят и к эпителиям. Они разделяют нейроны и спинномозговую жидкость, образуя нейро-ликворный барьер (высокопроницаемый). А в области сосудистых сплетений входят в состав гемато-ликворного барьера (между кровью и спинномозговой жидкостью). Этот барьер включает: эндотелий сосудов, рвст, которая окружает сосуды, базальную мембрану эпендимоцитов и слой эпендимных клеток.

Олигодендроглия – разнообразные мелкие клетки с короткими и малочисленными отростками, которые окружают нейроны. В нервных узлах они охватывают тела нейронов, обеспечивая барьерную функцию. Другая группа образует оболочки вдоль отростков нейронов, вместе с ними формируя нервные волокна. В периферической н.с. их называют леммоциты или шванновские клетки, в ЦНС – олигодендроциты.

Астроглия представлена астроцитами – звездчатые клетки, похожие на нейроны. Протоплазматические астроциты характерны для серого вещества ЦНС имеют короткие толстые отростки, волокнистые - для белого вещества и имеют длинные отростки. Их функции – опорная (заполняют пространства между нейронами), метаболическая и регуляторная (поддерживают постоянным состав ионов и медиаторов), барьерная (входят в состав гемато-энцефалического барьера, который надежно изолирует нейроны от крови, не допуская иммунного конфликта). ГЭБ включает эндотелий капилляров и их базальную мембрану, и плотный футляр из отростков астроцитов, который покрывает сосуды.

10. Безмиелиновые и миелиновые нервные волокна . Образование и особенности строения.

Нервные волокна – отростки нейронов (их называют осевыми цилиндрами), которые покрыты оболочкой из глиальных клеток. Различают миелиновые и безмиелиновые нервные волокна.

Безмиелиновые волокна образуются при погружении осевого цилиндра в углубления леммоцитов, которые лежат цепочкой вдоль всего аксона. Леммоциты прогибаются настолько, что их мембраны соприкасаются над осевым цилиндром. Эта дубликатура называется мезаксон. Если в цепочку леммоцитов погружается сразу несколько аксонов, такое волокно называют кабельным.

Миелиновые нервные волокна. Образуются с участием шванновских клеток, которые сначала формируют над осевым цилиндром мезаксон, а затем начинают многократно закручиваться. Цитоплазма вместе с ядром оттесняется наружу, образуя слой, который называют нейролеммой. Под ней лежит толстый слой тесно прилежащих сдвоенных мембран, который называют миелином. В определенных участках между витками остаются небольшие прослойки – миелиновые насечки. Поскольку шванновские клетки. Аксон длинный и шванновских клеток вдоль него много. На границах двух соседних клеток миелиновая оболочка исчезает. Эти участки называют узловые перехваты Ранвье.

В ЦНС миелиновая оболочка образуется несколько по-иному.

Миелиновые волокна проводят нервный импульс в десятки раз быстрее, чем безмиелиновые.

Нервная ткань является функционально ведущей тканью нервной системы; она состоит из нейронов (нервных клеток), обладающих способностью к выработке и проведению нервных импульсов, и клеток нейроглии (глиоцитов), выполняющих ряд вспомогательных функций и обеспечивающих деятельность нейронов.

Нейроны и нейроглия (за исключением одной из ее разновидностей - микроглии) являются производными нейрального зачатка. Нейральный зачаток обосабливается из эктодермы в ходе процесса нейруляции, при этом выделяются три его компонента: нервная трубка - дает начало нейронам и глии органов центральной нервной системы (ЦНС); нервный гребень - образует нейроны и глию нервных ганглиев и нейральные плакоды - утолщенные участки эктодермы в краниальной части зародыша, дающие начало некоторым клеткам органов чувств.

Нейроны

Нейроны (нервные клетки) - клетки различных размеров, состоящие из клеточного тела (перикариона) и отростков, обеспечивающих проведение нервных импульсов, - дендритов, приносящих импульсы к телу нейрона, и аксона, несущего импульсы от тела нейрона (рис. 98-102).

Классификация нейронов осуществляется по трем видам признаков: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа (см. рис. 98): униполярные, биполярные и мультиполярные. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны, в которых от тела клетки отходит единый вырост, который далее Т-образно делится на два отростка - периферический и центральный. Наиболее распространенным типом нейронов в организме являются мультиполярные.

Функциональная классификация нейронов разделяет их по характеру выполняемой функции (в соответствии с их местом в рефлекторной дуге) на три типа (рис. 119, 120): афферентные (чувствительные, сенсорные), эфферентные (двигательные, мотонейроны) и интернейроны (вставочные). Последние количественно преобладают над нейронами других типов. Нейроны связаны в цепи и сложные системы посредством специализированных межнейрональных контактов - синапсов.

Биохимическая классификация нейронов основана на химической природе нейромедиаторов, ис-

пользуемых ими в синаптической передаче нервных импульсов (выделяют холинергические, адренергические, серотонинергические, дофаминергические, пептидергические и др.).

Функциональная морфология нейрона. Нейрон (перикарион и отростки) окружен плазмолеммой, которая обладает способностью к проведению нервного импульса. Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков).

Ядро нейрона - обычно одно, крупное, округлое, светлое, с мелкодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками (см. рис. 99-102). Эти особенности отражают высокую активность процессов транскрипции в ядре нейрона.

Цитоплазма перикариона нейрона богата органеллами, а его плазмолемма осуществляет рецепторные функции, так как на ней находятся многочисленные нервные окончания (аксо-соматические синапсы), несущие возбуждающие и тормозные сигналы от других нейронов (см. рис. 99). Цистерны хорошо развитой гранулярной эндоплазматической сети часто образуют отдельные комплексы, которые на светооптическом уровне при окраске анилиновыми красителями имеют вид базофильных глыбок (см. рис. 99, 100, 102), в совокупности получивших название хроматофильной субстанции (старое название - тельца Ниссля, тигроидное вещество). Наиболее крупные из них обнаруживаются в мотонейронах (см. рис. 100). Комплекс Гольджи хорошо развит (впервые описан именно в нейронах) и состоит из множественных диктиосом, расположенных обычно вокруг ядра (см. рис. 101 и 102). Митохондрии - очень многочисленны и обеспечивают значительные энергетические потребности нейрона, лизосомальный аппарат обладает высокой активностью. Цитоскелет нейронов хорошо развит и включает все элементы - микротрубочки (нейротрубочки), микрофиламенты и промежуточные филаменты (нейрофиламенты). Включения в цитоплазме нейрона представлены липидными каплями, гранулами липофусцина (пигмента старения, или изнашивания), (нейро)меланина - в пигментированных нейронах.

Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендритные синапсы - см. рис. 99). В большинстве случаев дендриты многочисленны, имеют относительно небольшую длину и сильно вет-

вятся вблизи тела нейрона. Крупные стволовые дендриты содержат все виды органелл, по мере снижения их диаметра из них исчезают элементы комплекса Гольджи, а цистерны гранулярной эндоплазматической сети (хроматофильная субстанция) сохраняются. Нейротрубочки и нейрофиламенты многочисленны и располагаются параллельными пучками.

Аксон - длинный отросток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). Он отходит от утолщенного участка тела нейрона, не содержащего хроматофильной субстанции, - аксонного холмика, в котором генерируются нервные импульсы; почти на всем протяжении он покрыт глиальной оболочкой (см. рис. 99). Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, а ближе к периферии располагаются пучки микротрубочек, цистерны гранулярной эндоплазматической сети, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Хроматофильная субстанция в аксоне отсутствует. Аксон может по своему ходу давать ответвления (коллатерали аксона), которые обычно отходят от него под прямым углом. В конечном участке аксон нередко распадается на тонкие веточки (терминальное ветвление). Аксон заканчивается специализированными терминалями (нервными окончаниями) на других нейронах или клетках рабочих органов.

Синапсы

Синапсы - специализированные контакты, осуществляющие связь между нейронами, подразделяются на электрические и химические.

Электрические синапсы у млекопитающих сравнительно редки; они имеют строение щелевых соединений (см. рис. 30), в которых мембраны синаптически связанных клеток (пре- и постсинаптическая) разделены узким промежутком, пронизанным коннексонами.

Химические синапсы (везикулярные синапсы) - наиболее распространенный тип у млекопитающих. Химический синапс состоит из трех компонентов: пресинаптической части, постсинаптической части и синаптической щели между ними (рис. 103).

Пресинаптическая часть имеет вид расширения - терминального бутона и включает: синаптические пузырьки, содержащие нейромедиатор, митохондрии, агранулярную эндоплазматическую сеть, нейротрубочки, нейрофиламенты, пресинап тическую мембрану с пресинаптическим

уплотнением, связанным с пресинаптической решеткой.

Постсинаптическая часть представлена постсинаптической мембраной, содержащей особые комплексы интегральных белков - синаптические рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена за счет скопления под ней плотного филаментозного белкового материала (постсинаптическое уплотнение).

Синаптическая щель содержит вещество синаптической щели, которое часто имеет вид поперечно расположенных гликопротеиновых филаментов, обеспечивающих адгезивные связи пре- и постсинаптической частей, а также направленную диффузию нейромедиатора.

Механизм передачи нервного импульса в химическом синапсе: под влиянием нервного импульса синаптические пузырьки выделяют в синаптическую щель содержащийся в них нейромедиатор, который, связываясь с рецепторами в постсинаптической части, вызывает изменения ионной проницаемости ее мембраны, что приводит к ее деполяризации (в возбуждающих синапсах) или гиперполяризации (в тормозных синапсах).

Нейроглия

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. В мозгу человека содержание глиальных клеток (глиоцитов) в 5-10 раз превышает число нейронов.

Классификация глии выделяет макроглию и микроглию. Макроглия подразделяется на эпендимную глию, астроцитарную глию (астроглию) и олигодендроглию (рис. 104).

Эпендимная глия (эпендима) образована клетками кубической или столбчатой формы (эпендимоцитами), которые в виде однослойных пластов выстилают полости желудочков головного мозга и центрального канала спинного мозга (см. рис. 104, 128). Ядро этих клеток содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность части эпендимоцитов несет реснички, которые своими движениями перемещают спинномозговую жидкость, а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной глиальной пограничной мембраны (краевой глии).

Специализированными клетками эпендимной глии являются танициты и эпендимоциты сосудистого сплетения (сосудистый эпителий).

Танициты имеют кубическую или призматическую форму, их апикальная поверхность

покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре (см. рис. 104). Танициты поглощают вещества из спинномозговой жидкости и транспортируют их по своему отростку в просвет сосудов, обеспечивая тем самым связь между спинномозговой жидкостью в просвете желудочков мозга и кровью.

Хороидные эпендимоциты (эпендимоциты сосудистого сплетения) образуют сосудистый эпителий в желудочках головного мозга, входят в состав гемато-ликворного барьера и участвуют в образовании спинномозговой жидкости. Это - клетки кубической формы (см. рис. 104) с многочисленными микроворсинками на выпуклой апикальной поверхности. Они располагаются на базальной мембране, отделяющей их от подлежащей рыхлой соединительной ткани мягкой мозговой оболочки, в которой находится сеть фенестрированных капилляров.

Функции эпендимной глии: опорная (за счет базальных отростков); образование барьеров (нейроликворного и гемато-ликворного), ультрафильтрация компонентов спинномозговой жидкости.

Астроглия представлена астроцитами - крупными клетками со светлым овальным ядром, умеренно развитыми органеллами и многочисленными промежуточными филаментами, содержащими особый глиальный фибриллярный кислый белок (маркер астроцитов). На концах отростков имеются пластинчатые расширения, которые, соединяясь друг с другом, окружают в виде мембран сосуды (сосудистые ножки) или нейроны (см. рис. 104). Выделяют протоплазматические астроциты (с многочисленными разветвленными короткими толстыми отростками; встречаются преимущественно в сером веществе ЦНС) и фиброзные (волокнистые) астроциты (с длинными тонкими умеренно ветвящимися отростками; располагаются, в основном, в белом веществе).

Функции астроцитов: разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов). Участвуют в образовании периваскулярных глиальных пограничных мембран, формируя основу гематоэнцефалического барьера. Совместно с другими элементами глии образуют поверхностную глиальную пограничную мембран у (краевую глию) мозга, расположенную под мягкой мозговой оболочкой, а также перивентрикулярную пограничную глиальную мембрану под слоем эпендимы, участвующей в образовании нейро-ликворного барьера. Отростки астроцитов окружают тела нейронов и области синапсов. Астроциты вы-

полняют также метаболическую и регуляторную функции (регулируя концентрацию ионов и нейромедиаторов в микроокружении нейронов), они участвуют в различных защитных реакциях при повреждении нервной ткани.

Олигодендроглия - обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов (сателлитные, или перинейрональные, олигодендроциты), входят в состав нервных волокон и нервных окончаний (в периферической нервной системе эти клетки называют шванновскими клетками, или нейролеммоцитами) - см. рис. 104. Клетки олигодендроглии встречаются в ЦНС (сером и белом веществе) и периферической нервной системе; характеризуются темным ядром, плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.

Функции олигодендроглии: барьерная, метаболическая (регулирует метаболизм нейронов, захватывает нейромедиаторы), образование оболочек вокруг отростков нейронов.

Микроглия - совокупность мелких удлиненных подвижных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся располагающимися преимущественно вдоль капилляров в центральной нервной системе (см. рис. 104). В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярных макрофагов мозга) и относятся к макрофагально-моноцитарной системе. Для них характерны ядра с преобладанием гетерохроматина и высокое содержание лизосом в цитоплазме. При активации утрачивают отростки, округляются и усиливают фагоцитоз, захватывают и представляют антигены, секретируют ряд цитокинов.

Функция микроглии - защитная (в том числе иммунная); ее клетки играют роль специализированных макрофагов нервной системы.

Нервные волокна

Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают два вида нервных волокон - безмиелиновые и миелиновые. Оба вида состоят из центрально лежащего отростка нейрона, окруженного оболочкой из клеток олигодендроглии (в периферической нервной системе они называются шванновскими клетками (нейролеммоцитами).

Миелиновые нервные волокна встречаются в ЦНС и периферической нервной системе и ха-

рактеризуются высокой скоростью проведения нервных импульсов. Они обычно толще безмиелиновых и содержат отростки нейронов большего диаметра. В таком волокне отросток нейрона окружен миелиновой оболочкой, вокруг которой располагается тонкий слой, включающий цитоплазму и ядро нейролеммоцита - нейролемма (рис. 105- 108). Снаружи волокно покрыто базальной мембраной. Миелиновая оболочка содержит высокие концентрации липидов и интенсивно окрашивается осмиевой кислотой, имея под световым микроскопом вид однородного слоя (см. рис. 105), однако под электронным микроскопом обнаруживается, что она состоит из многочисленных мембранных витков пластинок миелина (см. рис. 107 и 108). Участки миелиновой оболочки, в которых сохраняются промежутки между витками миелина, заполненные цитоплазмой нейролеммоцита и поэтому не окрашиваемые осмием, имеют вид насечек миелина (см. рис. 105-107). Миелиновая оболочка отсутствует в участках, соответствующих границе соседних нейролеммоцитов - узловых перехватах (см. рис. 105-107). При электронной микроскопии в области перехвата выявляются узловое расширение аксона и узловые интердигитации цитоплазмы соседних нейролеммоцитов (см. рис. 107). Рядом с узловым перехватом (паранодальная область) миелиновая оболочка охватывает аксон в виде терминальной пластинчатой манжетки. По длине волокна миелиновая оболочка имеет прерывистый ход; участок между двумя узловыми перехватами (межузловой сегмент) соответствует длине одного нейролеммоцита (см. рис. 105 и 106).

Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе автономной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов. Они образованы тяжами нейролеммоцитов, в цитоплазму которых погружен проходящий сквозь них аксон, связанный с плазмолеммой нейролеммоцитов дупликатурой плазмолеммы - мезаксоном. Нередко в цитоплазме одного нейролеммоцита могут находиться до 10-20 осевых цилиндров. Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной (рис. 109).

Нервные окончания

Нервные окончания - концевые аппараты нервных волокон. По функции они разделяются на три группы:

1) межнейрональные контакты (синапсы) - обеспечивают функциональную связь между нейронами (см. выше);

2)рецепторные (чувствительные) окончания - воспринимают раздражения из внешней и внутренней среды, имеются на дендритах;

3)эфферентные (эффекторные) окончания - передают сигналы из нервной системы на исполнительные органы (мышцы, железы), имеются на аксонах.

Рецепторные (чувствительные) нервные окончания в зависимости от природы регистрируемого раздражения подразделяются (в соответствии с физиологической классификацией) на механорецепторы, хеморецепторы, терморецепторы и болевые рецепторы (ноцицепторы). Морфологическая классификация чувствительных нервных окончаний выделяет свободные и несвободны е чувствительные нервные окончания; последние включают инкапсулированные и неинкапсулированные окончания (рис. 110).

Свободные чувствительные нервные окончания состоят только из терминальных ветвлений дендрита чувствительного нейрона (см. рис. 110). Они встречаются в эпителии, а также в соединительной ткани. Проникая в эпителиальный пласт, нервные волокна утрачивают миелиновую оболочку и нейролемму, а базальная мембрана их нейролеммоцитов сливается с эпителиальной. Свободные нервные окончания обеспечивают восприятие температурных (тепловых и холодовых), механических и болевых сигналов.

Несвободные чувствительные нервные окончания

Несвободные неинкапсулированные нервные окончания состоят из ветвлений дендритов, окруженных леммоцитами. Они встречаются в соединительной ткани кожи (дерме), а также собственной пластинки слизистых оболочек.

Несвободные инкапсулированные нервные окончания весьма разнообразны, но имеют единый общий план строения: их основу составляют ветвления дендрита, окруженные нейролеммоцитами, снаружи они покрыты соединительнотканной (фиброзной) капсулой (см. рис. 110). Все они являются механорецепторами, располагаются в соединительной ткани внутренних органов, кожи и слизистых оболочек, капсулах суставов. К этому виду нервных окончаний относят тактильные тельца (осязательные тельца Мейснера), веретеновидные чувст вительные тельца (колбы Краузе), пластинчатые тельца (Фатера-Пачини), чувствительные

тельца (Руффини). Самыми крупными из них являются пластинчатые тельца, которые содержат слоистую наружную колбу (см. рис. 110), состоящую из 10-60 концентрических пластин, между которыми имеется жидкость. Пластины образованы уплощенными фибробластами (по другим сведениям - нейролеммоцитами). Помимо рецепции механических стимулов, колбы Краузе, возможно, воспринимают также холод, а тельца Руффини - тепло.

Нейро-мышечные веретена - рецепторы растяжения волокон поперечнополосатых мышц - сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией (рис. 111). Нейромышечное веретено располагается параллельно ходу волокон мышцы, называемых экстрафузальными. Оно покрыто соединительнотканной капсулой, внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов: волокна с ядерным мешочком (скоплением ядер в расширенной центральной части волокна) и волокна с ядерной цепочкой (расположением ядер в виде цепочки в центральной части). Чувствительные нервные волокна образуют анулоспиральные нервные окончания на центральной части интрафузальных волокон и гроздевидные нервные окончания - у их краев. Двигательные нервные волокна - тонкие, образуют мелкие нейро-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Сухожильные органы, или нейро-сухожильные веретена (Гольджи), располагаются в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждый сухожильный орган образован соединительнотканной капсулой, которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых нейролеммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные (эффекторные) нервные окончания в зависимости от природы иннервируемого органа подразделяются на двигательные и секре-

торные. Двигательные окончания имеются в поперечнополосатых и гладких мышцах, секреторные - в железах.

Нейро-мышечное соединение (нейро-мышечный синапс, двигательная концевая пластинка) - двигательное окончание аксона мотонейрона на волокнах поперечнополосатых скелетных мышц - по строению сходно с межнейрональными синапсами и состоит из трех частей (рис. 112 и 113):

Пресинаптическая часть образована концевыми ветвлениями аксона, который вблизи мышечного волокна утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными нейролеммоцитами (клетками телоглии) и базальной мембраной. В терминалях аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель (первичная) располагается между плазмолеммой ветвлений аксона и мышечным волокном; она содержит материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели), которые заполнены материалом, являющимся продолжением базальной мембраны.

Двигательные нервные окончания в сердечной и гладких мышцах имеют вид варикозно расширенных участков ветвей аксонов, которые содержат многочисленные синаптические пузырьки и митохондрии и отделены от мышечных клеток широкой щелью.

Секреторные нервные окончания (нейро-железистые синапсы) представляют собой конечные участки тонких аксонных веточек. Одни из них, утрачивая оболочку из нейролеммоцитов, проникают сквозь базальную мембрану и располагаются между секреторными клетками, заканчиваясь терминальными варикозными расширениями, содержащими пузырьки и митохондрии (экстрапаренхимный, или гиполеммальный, синапс). Другие не проникают сквозь базальную мембрану, образуя варикозные расширения вблизи секреторных клеток (паренхимный, или эпилеммальный синапс).

НЕРВНАЯ ТКАНЬ

Рис. 98. Морфологическая классификация нейронов (схема):

A - униполярный нейрон (амакринная клетка сетчатки глаза); Б - биполярный нейрон (вставочный нейрон сетчатки глаза); В - псевдоуниполярный нейрон (афферентная клетка спинномозгового узла); Г1-Г3 - мультиполярные нейроны: Г1 - мотонейрон спинного мозга; Г2 - пирамидный нейрон коры полушарий большого мозга, Г3 - клетка Пуркинье коры полушарий мозжечка.

1 - перикарион, 1.1 - ядро; 2 - аксон; 3 - дендрит(ы); 4 - периферический отросток; 5 - центральный отросток.

Примечание: функциональная классификация нейронов, согласно которой эти клетки подразделяются на афферентные (чувствительные, сенсорные), вставочные (интернейроны) и эфферентные (мотонейроны), основывается на их положении в рефлекторных дугах (см. рис. 119 и 120)

Рис. 99. Строение мультиполярного нейрона (схема):

1 - тело нейрона (перикарион): 1.1 - ядро, 1.1.1 - хроматин, 1.1.2 - ядрышко, 1.2 - цитоплазма, 1.2.1 - хроматофильная субстанция (тельца Ниссля); 2 - дендриты; 3 - аксонный холмик; 4 - аксон: 4.1 - начальный сегмент аксона, 4.2 - коллатераль аксона, 4.3 - нейро-мышечный синапс (двигательное нервное окончание на волокне поперечнополосатой мышцы); 5 - миелиновая оболочка; 6 - узловые перехваты; 7 - межузловой сегмент; 8 - синапсы: 8.1 - аксо-аксональный синапс, 8.2 - аксо-дендритные синапсы, 8.3 - аксо-соматические синапсы

Рис. 100. Мультиполярный двигательный нейрон спинного мозга. Глыбки хроматофильной субстанции (тельца Ниссля) в цитоплазме

Окраска: тионин

1 - тело нейрона (перикарион): 1.1 - ядро, 1.2 - хроматофильная субстанция; 2 - начальные отделы дендритов; 3 - аксонный холмик; 4 - аксон

Рис. 101. Псевдоуниполярный чувствительный нейрон чувствительного узла спинномозгового нерва. Комплекс Гольджи в цитоплазме

Окраска: азотнокислое серебро-гематоксилин

1 - ядро; 2 - цитоплазма: 2.1 - диктиосомы (элементы комплекса Гольджи)

Рис. 102. Ультраструктурная организация нейрона

Рисунок с ЭМФ

1 - тело нейрона (перикарион): 1.1 - ядро, 1.1.1 - хроматин, 1.1.2 - ядрышко, 1.2 - цитоплазма: 1.2.1 - хроматофильная субстанция (тельца Ниссля) - агрегаты цистерн гранулярной эндоплазматической сети, 1.2.2 - комплекс Гольджи, 1.2.3 - лизосомы, 1.2.4 - митохондрии, 1.2.5 - элементы цитоскелета (нейротрубочки, нейрофиламенты); 2 - аксонный холмик; 3 - аксон: 3.1 - коллатераль аксона, 3.2 - синапс; 4 - дендриты

Рис. 103. Ультраструктурная организация химического межнейронального синапса (схема)

1 - пресинаптическая часть: 1.1 - синаптические пузырьки, содержащие нейромедиатор, 1.2 - митохондрии, 1.3 - нейротрубочки, 1.4 - нейрофиламенты, 1.5 - цистерна гладкой эндоплазматической сети, 1.6 - пресинаптическая мембрана, 1.7 - пресинаптическое уплотнение (пресинаптическая решетка); 2 - синаптическая щель: 2.1 - интрасинаптические филаменты; 3 - постсинаптическая часть: 3.1 - постсинаптическая мембрана, 3.2 - постсинаптическое уплотнение

Рис. 104. Различные виды глиоцитов в центральной (ЦНС) и периферической (ПНС) нервной системе

А - В - макроглия, Г - микроглия;

A1, А2, А3 - эпендимная глия (эпендима); Б1, Б2 - астроциты; В1, В2, В3 - олигодендроциты; Г1, Г2 - клетки микроглии

A1 - клетки эпендимной глии (эпендимоциты): 1 - тело клетки: 1.1 - реснички и микроворсинки на апикальной поверхности, 1.2 - ядро; 2 - базальный отросток. Эпендима выстилает полость желудочков головного мозга и центрального канала спинного мозга.

А2 - таницит (специализированная клетка эпендимы): 1 - тело клетки, 1.1 - микроворсинки и отдельные реснички на апикальной поверхности, 1.2 - ядро; 2 - базальный отросток: 2.1 - уплощенный вырост отростка («концевая ножка») на кровеносном капилляре (красная стрелка), через которую в кровь транспортируются вещества, поглощенные апикальной поверхностью клетки из спинномозговой жидкости (СМЖ). A3 - хороидные эпендимоциты (клетки сосудистых сплетений, участвующие в образовании СМЖ): 1 - ядро; 2 - цитоплазма: 2.1 - микроворсинки на апикальной поверхности клетки, 2.2 - базальный лабиринт. Вместе со стенкой фенестрированного кровеносного капилляра (красная стрелка) и лежащей между ними соединительной тканью эти клетки образуют гемато-ликворный барьер.

Б1 - протоплазматический астроцит: 1 - тело клетки: 1.1 - ядро; 2 - отростки: 2.1 - пластинчатые расширения отростков - образуют вокруг кровеносных капилляров (красная стрелка) периваскулярную пограничную мембрану (зеленая стрелка) - основной компонент гемато-энцефалического барьера, на поверхности мозга - поверхностную пограничную глиальную мембрану (желтая стрелка), покрывают тела и дендриты нейронов в ЦНС (не показано).

Б2 - волокнистый астроцит: 1 - тело клетки: 1.1 - ядро; 2 - отростки клетки (пластинчатые расширения отростков не показаны).

В1 - олигодендроцит (олигодендроглиоцит) - клетка ЦНС, образующая миелиновую оболочку вокруг аксона (голубая стрелка): 1 - тело олигодендроцита: 1.1 - ядро; 2 - отросток: 2.1 - миелиновая оболочка.

В2 - клетки-сателлиты - олигодендроциты ПНС, образующие глиальную оболочку вокруг тела нейрона (жирная черная стрелка): 1 - ядро сателлитной глиальной клетки; 2 - цитоплазма сателлитной глиальной клетки.

В3 - нейролеммоциты (шванновские клетки) - олигодендроциты ПНС, образующие миелиновую оболочку вокруг отростка нейрона (голубая стрелка): 1 - ядро нейролеммоцита; 2 - цитоплазма нейролеммоцита; 3 - миелиновая оболочка.

Г1 - клетка микроглии (микроглиоцит, или клетка Ортега) в неактивном состоянии: 1 - тело клетки, 1.1 - ядро; 2 - ветвящиеся отростки.

Г2 - клетка микроглии (микроглиоцит, или клетка Ортега) в активированном состоянии: 1 - ядро; 2 - цитоплазма, 2.1 - вакуоли

Пунктирной стрелкой показаны фенотипические взаимопревращения клеток микроглии

Рис. 105. Изолированные миелиновые нервные волокна

Окраска: осмирование

1 - отросток нейрона (аксон); 2 - миелиновая оболочка: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма; 4 - узловой перехват (перехват Ранвье); 5 - межузловой сегмент

Рис. 106. Миелиновое нервное волокно. Продольный срез (схема):

1 - отросток нейрона (аксон); 2 - миелиновая оболочка: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма: 3.1 - ядро нейролеммоцита (шванновской клетки), 3.2 - цитоплазма нейролеммоцита; 4 - узловой перехват (перехват Ранвье); 5 - межузловой сегмент; 6 - базальная мембрана

Рис. 107. Ультраструктура миелинового нервного волокна. Продольный срез (схема):

1 - отросток нейрона (аксон): 1.1 - узловое расширение аксона; 2 - витки миелиновой оболочки: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма: 3.1 - ядро нейролеммоцита (шванновской клетки), 3.2 - цитоплазма нейролеммоцита, 3.2.1 - узловая интердигитация соседних нейролеммоцитов, 3.2.2 - паранодальные карманы нейролеммоцитов, 3.2.3 - плотные пластинки (связывающие паранодальные карманы с аксолеммой), 3.2.4 - внутренний (вокругаксональный) листок цитоплазмы нейролеммоцита; 4 - узловой перехват (перехват Ранвье)

Рис. 108. Ультраструктурная организация миелинового нервного волокна (поперечный срез)

Рисунок с ЭМФ

1 - отросток нейрона; 2 - слой миелина; 3 - нейролемма: 3.1 - ядро нейролеммоцита, 3.2 - цитоплазма нейролеммоцита; 4 - базальная мембрана

Рис. 109. Ультраструктурная организация безмиелинового нервного волокна кабельного типа (поперечный срез)

Рисунок с ЭМФ

1 - отростки нейронов; 2 - нейролеммоцит: 2.1 - ядро, 2.2 - цитоплазма, 2.3 - плазмолемма; 3 - мезаксон; 4 - базальная мембрана

Рис. 110. Чувствительные нервные окончания (рецепторы) в эпителии и соединительной ткани

Окраска: А-В - азотнокислое серебро; Г - гематоксилин-эозин

A - свободные нервные окончания в эпителии, Б, В, Г - инкапсулированные чувствительные нервные окончания в соединительной ткани: Б - тактильное тельце (осязательное тельце Мейснера), В - веретеновидное чувствительное тельце (колба Краузе), Г - пластинчатое тельце (Фатера-Пачини)

1 - нервное волокно: 1.1 - дендрит, 1.2 - миелиновая оболочка; 2 - внутренняя колба: 2.1 - терминальные ветвления дендрита, 2.2 - нейролеммоциты (шванновские клетки); 3 - наружная колба: 3.1 - концентрические пластины, 3.2 - фиброциты; 4 - соединительнотканная капсула

Рис. 111. Чувствительное нервное окончание (рецептор)в скелетной мышце - нейро-мышечное веретено

1 - экстрафузальные мышечные волокна; 2 - соединительнотканная капсула; 3 - интрафузальные мышечные волокна: 3.1 - мышечные волокна с ядерным мешочком, 3.2 - мышечные волокна с ядерной цепочкой; 4 - окончания нервных волокон: 4.1 - анулоспиральные нервные окончания, 4.2 - гроздевидные нервные окончания.

Двигательные нервные волокна и образованные ими нейро-мышечные синапсы на интрафузальных мышечных волокнах не показаны

Рис. 112. Двигательное нервное окончание в скелетной мышце (нейро-мышечный синапс)

Окраска: нитрат серебра-гематоксилин

1 - миелиновое нервное волокно; 2 - нейро-мышечный синапс: 2.1 - концевые ветвления аксона, 2.2 - видоизмененные нейролеммоциты (клетки телоглии); 3 - волокна скелетной мышцы

Рис. 113. Ультраструктурная организация двигательного нервного окончания в скелетной мышце (нейро-мышечного синапса)

Рисунок с ЭМФ

1 - пресинаптическая часть: 1.1 - миелиновая оболочка, 1.2 - нейролеммоциты, 1.3 - клетки телоглии, 1.4 - базальная мембрана, 1.5 - концевые ветвления аксона, 1.5.1 - синаптические пузырьки, 1.5.2 - митохондрии, 1.5.3 - пресинаптическая мембрана; 2 - первичная синаптическая щель: 2.1 - базальная мембрана, 2.2 - вторичные синаптические щели; 3 - постсинаптическая часть: 3.1 - постсинаптическая сарколемма, 3.1.1 - складки сарколеммы; 4 - волокно скелетной мышцы

Нервная ткань


С нервной ткани (textus nervosus) построена центральная нервная система (головной и спинной мозг) и периферийная нервная система - нервы, нервные волокна с их конечными аппаратами, нервные узлы (ганглии). Нервная ткань состоит из нервных клеток - нейронов (нейроцитов) с особым строением и функцией и клеток нейроглии, выполняющих опорную, трофическую, защитную и разграничительную функции.
Нейроцитов, или нейрон (neurocytus, neuronum) является структурно-функциональной единицей нервной системы. Основными функциями нейрона являются: восприятие раздражения, анализ и трансформация этой информации в нервный (электрический) импульс или химический сигнал; передача и хранение этой информации, способность продуцировать биологически активные вещества. Благодаря таким функциям нейронов нервная ткань обеспечивает регуляцию и согласованную работу органов и систем организма, его адаптацию к условиям внутренней и внешней среды. Нейрон состоит из тела (перикариона), где информация обрабатывается, и отростков, отходящих от тела. Отростки является характерным структурным признаком нейронов, они обеспечивают проведение нервного импульса. Отростки есть двух видов - аксоны и дендриты. Аксон или нейрит (от греческого axis - ось), - это один длинный отросток длиной до 1,5 м, он заканчивается терминальным разветвлением. Этот отросток проводит нервный импульс от тела нейрона. Дендриты (от греческого dendron - дерево) - это короткие и многочисленные отростки, древовидные галузяться. Эти отростки проводят нервный импульс от окончаний к телу нейрона. Нервные клетки динамично поляризованные, то есть способны пропускать нервный импульс только в направлении от дендрита к аксона (рис. 1).
В зависимости от количества отростков нервные клетки делятся на: униполярные, имеющие только один отросток - аксон; биполярные, имеющих два отростки: аксон и дендрит; псевдоуниполярни нейроны имеют два отростки аксон и дендрит, но возле тела клетки эти два отростки настолько плотно прилегают друг к другу, что создается эффект одного отростка, но на определенном расстоянии эти отростки Т-образно расходятся. По функцией это чувствительные нейроны, в основном они расположены в чувствительных узлах спинномозговых и черепных нервов. Мультиполярные нейроны имеют многочисленные дендриты и один аксон, они преобладают в нервной ткани.
Размеры тела нервных клеток колеблются в пределах от 4-5 мкм до 130-140 мкм, а длина отростков колеблется от нескольких микрометров до 1 м и более. Форма тел нейронов, их размеры, число дендритов и степень их разветвления очень меняющимися в зависимости от локализации нейронов и выполняемой ими функции. Например, псевдоуниполярни нейроны имеют круглое тело, форма тел мультиполярные нейронов спинного мозга неправильная. Тела крупных пирамидных нейронов коры большого мозга имеют треугольную форму, а от них уходит много коротких дендритов. Аксон отходит от основания клетки. В отличие от дендритов, диаметр аксона не меняется. Грушевидные нейроны коры мозжечка имеют два крупных дендриты, интенсивно галузяться, а длинный аксон отходит от верхушки клетки.


Различают два типа мультиполярные нейронов: мультиполярные нейрон с длинным аксонов и большим количеством дендритов (клетка Гольджи 1-го типа) и мультиполярные нейрон с коротким аксоны, дендриты которого галузяться (клетки Гольджи II-го типа). Клетки 1-го типа расположены в симпатичных и парасимпатических нервных узлах. К нейронов 1-го типа также принадлежат крупные пирамидные нейроны коры большого мозга грушевидные нейроны коры мозжечка, двигательные нейроны спинного мозга. Эти нейроны передают нервные импульсы на большие расстояния. К нейронов II-го типа относятся клетки центральной нервной системы, передающие нервные импульсы соседним нейронам.
В сером веществе полушарий большого мозга и мозжечка нейроны располагаются слоями, а в других отделах нервной системы нервные клетки образуют скопления - ядра.
Нейроны - преимущественно одноядерные клетки. Два и больше ядер имеют некоторые нейроны, расположенные в нервных узлах автономной (вегетативной) нервной системы. Сферическое ядро диаметром около 17 мкм в большинстве нейронов занимает центральное положение (рис. 2). Гетерохроматин располагается равномерно по всему ядру, хорошо заметное базофильные ядрышко, в нейроплазми перикариону расположены многочисленные сферические или удлиненные митохондрии диаметром примерно 0,1 мкм. Часто в зоне комплекса Гольджи оказываются мультивезикулярни тельца.
Основными структурными признаками нейронов является наличие в нейроплазми многочисленных специальных органелл - нейрофибрил и скоплений хроматофильнои субстанции (вещество Ниссля, тигроид), состоящая из групп параллельных цистерн гранулярных эндоплазматической сетки и полирибосом, содержащие много РНК. Элементов агранулярный эндоплазматической сети в теле нейронов мало. Они есть только в аксонов и дендритах в виде трубочек, цистерн и пузырьков. Хроматофильна субстанция и свободные рибосомы располагаются по всей цитоплазме клетки и в дендритах, но она отсутствует в самом аксонов и его пригорке.
Между элементами эндоплазматической сети расположены многочисленные митохондрии, лизосомы, гранулы липофусцина. Митохондрии есть и в отростках нейрона. Центриолей в нейронах нет. Наружная поверхность цитолемы нейрона покрыта многочисленными синапсами и отростками астроцитов. Нейрофибрилы, переходящие в отростки, состоящие из микротрубочек диаметром около 20 нм и нейрофиламенты толщиной 7-10 нм. Нейрофибрилы формируют у перикариони густую трехмерную сетку, в которой расположены лизосомы и другие структуры. Нейрофибрилы обеспечивают прочность перикариону и отростков, осуществляют химическую интеграцию клетки.
РНК, синтезируемых в перикариони, транспортируются в отдаленные участки отростков. С помощью постоянного медленного транспорта макромолекул со скоростью 1-3 мм за сутки доставку делятся ферменты, принимающие участие в синтезе медиаторов в пресинаптические части синапсов, и белки цитоскелета. Быстрым антероградная транспортом поставляются пузырьки в синаптическую окончания со скоростью 400 мм за сутки Кроме того, существует ретроградный транспорт от окончаний аксона к перикари-она со скоростью 200-300 мм за сутки, с помощью которого крупные пузырьки переносят обломки структур и веществ, переваривают лизосомы. В дендритах проходит как медленное, так и быстрый транспорт.
В нейроплазми вдоль дендритов расположено много нейротрубочок, вытянутых митохондрий, а также есть небольшое количество цистерн агранулярный эндоплазматической сетки и нейрофиламенты. Вещество Ниссля есть и в крупных дендритах. Конечные отделы дендритов часто колбоподибно расширены.
Диаметр аксонов разных клеток (вместе с оболочками) колеблется в широких пределах от 1 до 20 мкм, но в одном отростке он всегда одинаков. Толстые аксоны проводят нервные импульсы быстрее, чем тонкие. Аксоны отходят от конического аксонного холма, вблизи которого от аксона ответвляются боковые ветки. Аксон заканчивается телодендроном - конечными разветвленными, образующих синапсы. Поверхность аксолемы (цитолемы) гладкая. Аксолема начального сегмента аксона и в области перетяжки Ранвье утолщенная. В аксоплазми являются тонкие удлиненные митохондрии, большое количество нейротрубочок и нейрофиламенты, пузырьки и трубочки агранулярный эндоплазматической сети, одинокие мультивезикулярни тельца. Рибосомы и элементы гранулярных эндоплазматической сети отсутствуют в аксоплазми, а есть только в цитоплазме бугорка аксона, где расположены пучки микротрубочек и немного нейрофиламенты.
Следовательно, нейроны воспринимают, проводят и передают электрические сигналы. Передача электрических сигналов обусловлена изменением мембранного потенциала, возникающее при перемещении через клеточную мембрану ионов натрия и калия благодаря функционированию натрий-калиевого насоса.
Нейроны, передающие информацию от места восприятия раздражение в центральную нервную систему, а затем до рабочего органа, связанные между собой с помощью многочисленных межклеточных контактов - синапсов (от греческого synapsis - связь), которые обеспечивают передачу нервного импульса от одного нейрона к другому. В синапсах происходит преобразование электрических сигналов в химические, а затем - химических сигналов в электрические. Нервный импульс вызывает, например, в парасимпатической окончании высвобождения посредника - нейромедиатора, который связывается с рецепторами постсинаптического полюса, и приводит к изменению его потенциала.
В зависимости от того, какие части нейронов спо-лучаються между собой, различают синапсы: Аксой-соматические, когда окончание аксона одного нейрона образует контакт с телом другого, Аксой-дендритные, когда аксоны вступают в контакт с дендриты, а также Аксой-аксонни, когда контактируют одноименные отростки. Такой синаптических устройство цепочек нейронов создает возможность для передачи информации в различные участки тела. При этом передача импульса осуществляется с помощью биологически активных веществ (химическая передача), а сами вещества, осуществляющие передачу, называются нейромедиаторами (от латинского mediator - посредник). Роль медиаторов выполняют две группы веществ: норадреналин, ацетилхолин, некоторые моноаминов (адреналин, серотонин, дофамин и аминокислоты - глицин, глутаминовая кислота) и нейропептиды (энкефалины, нейротензин, ангиотензин II, вазоактивный кишечный пептид, соматостатин, вещество II и т.п.). По функцией различают возбуждающие и тормозные синапсы.
В синапсе выделяют пресинаптические и постсинаптические части, которые разделены синаптической щели (рис. 3). Нервный импульс поступает по нервном окончанием в булавовидные пресинаптические часть, которая ограничена пресинаптических мембраной.
Цитоплазма пресинаптических части содержит большое количество круглых мембранных синаптических пузырьков диаметром от 4 до 20 нм с нейромедиатором. Когда нервный импульс достигает пресинаптических части, открываются кальциевые каналы. Ионы кальция проникают в цитоплазму пресинаптических части, их концентрация кратковременно возрастает. При увеличении содержания кальция синаптическую пузырьки, содержащие нейромедиатор, проникают в нейролему и нейромедиатор выделяется в синаптическую щель. Чем больше содержание ионов кальция, тем больше синаптических пузырьков выделяют нейромедиаторы. Постсинаптичниы потенциал возникает тогда, когда нейромедиатор связывается с рецепторами постсинаптические мембраны, а ее потенциал меняется. Таким образом, постсинаптические мембрана превращает химический стимул в электрический сигнал. Открываются Ка + - каналы и К + - каналы: ионы натрия поступают в постсинаптичниы полюс, а ионы калия выходят в синаптическую щель, в результате чего происходит деполяризация постсинаптические мембраны. Это приводит к изменению мембранного потенциала и возникновения электрического сигнала, величина которого прямо пропорциональна количеству нейромедиатора. Как только прекращается выделение нейромедиатора, пресинаптические окончания поглощает медиатор из синаптической щели. После этого рецепторы постсинаптические мембраны блокируются антагонистом и возвращаются в исходное состояние.
Нейроглии. Кроме нейронов, в нервной системе есть клетки нейроглии (neuroglia), выполняющих: опорную, трофическую, защитную, изолирующую, секреторную функции (рис. 4). Различают две группы нейроглии: глиоциты или макроглию (епендимоциты, астроциты и олигодендроциты), и микроглии.
Макроглия. Епендимоциты (ependymocytus) имеют кубическую или призматическую форму и одним слоем Выкладываем изнутри желудочки мозга и спинно-мозговой канал. Епендимоциты соединены между собой замыкающим (плотными) контактами и ленточными десмосомамы. От базальной поверхности некоторых епендимоцитив (таницитив) отходит отросток, проходящей между другими клетками, разветвляется и контактирует с базальной мембраной. Под слоем епендимоцитив лежит слой недифференцированных глиоцитив. Епендимоциты принимают участие в транспортных и обменных процессах, выполняют опорную и разграничительную функции.
Астроциты (astrocytus) являются основными глиальными элементами центральной нервной системы. Различают протоплазматичные и волокнистые астроциты. Протоплазматичные астроциты имеют звездчатые форму на их телах имеются многочисленные короткие выпячивания, которые служат опорой для отростков нейронов, а между ними и плазмолемою астроциты есть щель шириной около 20 нм. Многочисленные отростки протоплазматичных астроцитов заканчиваются на нейронах и в капиллярах. Отростки астроцитов образуют сетку, в которой расположены нейроны. Отростки таких астроцитов расширяются на концах, образуя широкие ножки, контактируют между собой. Эти ножки со всех сторон окружают нейроны и кровеносные капилляры, покрывая примерно 80% их поверхности (периваскулярная глиальная пограничная мембрана (membrana limitans gliae perivascularis). He покрываются этой мембраной лишь участки синапсов. Глиальная мембрана, которая образована расширенными концами отростков астроцитов, изолирует нейроны, создавая для них специфическое микроокружение. Отростки, достигающие расширенными окончаниями поверхности мозга, соединяясь между собой щель контактами (Нексус), образуют на ней сплошную поверхностную глиальную пограничную мембрану На этой пограничной мембране расположена базальная мембрана, которая отделяет ее от мягкой мозговой оболочки.
Волокнистые астроциты преобладают в белом веществе центральной нервной системы. Диаметр этих клеток равен примерно 10 мкм, они имеют многочисленные (20-40) разветвленные отростки. Отростки расположены между нервными волокнами, некоторые из них достигают кровеносных капилляров.
Олигодендроциты (oligodendrocytus) - это малые клетки овоиднои формы (6-8 мкм) с великим, богатым хроматином ядром, окруженным тонкой полоской цитоплазмы, в которой есть относительно мало органелл. Олигодендроциты располагаются вблизи нейронов и их отростков. От тел олигодендроцитов отходят многочисленные короткие конусообразные и широкие плоские трапециевидные миелин создающее отростки. Эти отростки формируют миелиновых слой нервных волокон, спирально накручуючись на них. Олигодендроциты, которые образуют миелиновую оболочку нервных волокон периферической нервной системы, называются лемоцитамы, нейролемоцитамы, или клетками Шванна.
Клетки микроглии (microglia), или клетки Гортега, составляют примерно 5% от клеток глии в белом веществе и 18% в сером веществе головного и спинного мозга. Это маленькие удлиненные клетки. От тела клетки отходят отростки, которые образуют вторичные и третичные короткие разветвления. Некоторые клетки микроглии контактируют с капиллярами. Эти клетки относятся к макрофагов, но они способны синтезировать иммуноглобулины.




© 2024
womanizers.ru - Журнал современной женщины