20.09.2019

Названия нейронов. Нейроны и нервная ткань. Передача информации нервными клетками


В нашем мозгу 100 млрд. нейронов – это больше, чем звезд в нашей галактике! Каждая клетка в свою очередь может дать 200 тыс. ответвлений.

Таким образом, мозг имеет огромные ресурсы, чтоб хранить воспоминания объемом примерно за 3 млн. лет. Учёные называют это «волшебными деревьями разума», потому что нервные клетки мозга похожи на ветвистые деревья.

Мысленные электрические импульсы между нейронами передаются через синапсы – зоны контакта между нейронами. Средний нейрон человеческого мозга имеет от 1000 до 10000 синапсов или контактов с соседними нейронами. Синапсы имеют небольшую щель, которую должен преодолеть импульс.

Когда мы учимся, мы меняем работу мозга, прокладывая новые пути для мысленных электрических импульсов. При этом электрический сигнал должен «перепрыгнуть» через щель синапса для образования новых связей между нервными клетками. Эту дорогу ему труднее всего пройти первый раз, но по мере обучения, когда сигнал преодолевает синапс снова и снова, связи становятся все «шире и прочнее», растет число синапсов и связей между нейронами. Образуются новые нейронные микросети, в которые и «встраиваются» новые знания: убеждения, привычки, модели поведения. И тогда мы, наконец, чему-то научились. Эту способность мозга называют нейропластичностью.

Именно число микросетей в мозгу, а не его объем или масса, имеют определяющее влияние на то, что мы называем интеллект.

Попутно хочу заметить, что в раннем детстве, когда проходит самый интенсивный период обучения, для ребенка крайне важна богатая и разнообразная развивающая среда.

Нейропластика – это одно из самых удивительных открытий последних лет. Раньше считалось, что нервные клетки не восстанавливаются. Но в 1998 году группа американских ученых доказала, что нейрогенез происходит не только до 13-14 лет, но и всю нашу жизнь, и что у взрослых людей тоже могут появляться новые нервные клетки.

Они установили, что причиной уменьшения наших умственных способностей с возрастом является не отмирание нервных клеток, а истощение дендритов, - отростков нервных клеток, через которые проходят импульсы от нейрона к нейрону. Если дендриты постоянно не стимулировать, то они атрофируются, теряя способность к проводимости, словно мышцы без физической нагрузки.

Одни и те же ежедневные действия формируют шаблонное поведение - наши привычки, - при этом используются и укрепляются одни и те же нейронные связи. Так происходит встраивание нашего «автопилота», но при этом страдает гибкость нашего мышления.

Наш мозг нуждается в упражнениях. Необходимо каждый день менять рутинные и шаблонные действия на новые, непривычные вам, которые задействуют несколько органов чувств ; выполнять обычные действия необычным способом, решать новые проекты, стараясь уходить от «автопилота» привычных схем. Привычка ослабляет способности мозга. Для продуктивной работы ему нужны новые впечатления, новые задачи, новая информация, – одним словом – перемены.

До 1998 года считалось, что рост дендритов происходит только в раннем возрасте, но исследования доказали, что и у взрослых людей нейроны способны выращивать дендриты для компенсации потерянных старых. Доказано, что нейронные сети способны меняться в течение всей жизни человека и наш мозг хранит в себе огромные ресурсы нейропластичности – способности менять свою структуру.

Известно, что наш мозг состоит из эмбриональной ткани, то есть той, из которой состоит эмбрион. Поэтому он всегда открыт для развития, обучения и для будущего.

Мозг способен простой мыслью, воображением, визуализацией изменять структуру и функцию серого вещества. Ученые убеждаются, что это может происходить даже без внешних воздействий. Мозг может меняться под властью тех мыслей, которыми он наполнен, ум в силах влиять на мозг. Наш мозг создан природой с расчетом на обучение и подобные изменения.

В Библии сказано: «Преобразуйтесь обновлением ума вашего».

Все вышесказанное подводит нас к пониманию того, что для реального достижения целей требуется фундаментальное изменение способа работы вашего мозга – преодоление генетической программы и прежнего воспитания со всеми многолетними убеждениями. Вы не просто должны лелеять мысли в своем воображении, которые присутствуют не дольше новогоднего «все, больше не пью», а переучивать свой мозг, создавая новые нейронные структуры. Нейрологи говорят: «Нейроны, которые вместе сходятся, вместе и водятся». Новые нейронные структуры вашего мозга будут создавать совершенно новые сети, «блок-схемы», приспособленные для решения новых задач.

«Ваша задача - перекинуть мост через пропасть между вами и желаемыми це­лями».

Эрл Найтингейл

Метафорически этот процесс можно иллюстрировать на следующем примере. Представьте, что ваш мозг с его ограничивающими убеждениями – это стакан с мутной водой. Если бы вы сразу выплеснули грязную воду, помыли стакан и набрали чистую – это был бы шок для всего организма. Но, подставив стакан по струю чистой воды, вы постепенно замените мутную.

Точно так же для обучения мозга новому образу мыслей нет нужды резко «стирать» старый. Необходимо постепенно «заливать» подсознание новыми позитивными убеждениями, привычками и качествами, которые в свою очередь будут генерировать эффективные решения, приводя вас к нужным результатам.

Для поддержания высокой работоспособности нашему мозгу, как и телу, необходима «физзарядка». Профессор нейробиологии Лоуренс Кац (США) разработал комплекс упражнений для мозга – нейробику, позволяющую нам иметь хорошую «ментальную» форму.

Упражнения нейробики обязательно используют все пять чувств человека - причем, необычным образом и в разных комбинациях. Это помогает создавать в мозгу новые нейронные связи. При этом наш мозг начинает вырабатывать нейротропин, вещество, способствующее росту новых нервных клеток и связей между ними. Ваша задача -каждый день менять привычные и шаблонные действия на новые, непривычные.

Цель упражнений нейробики - стимуляция мозга. Заниматься нейробикой просто - нужно сделать так, чтобы в процессе привычной деятельности по-новому были задействованы ваши органы чувств.

Например:

  • проснувшись утром, примите душ закрытыми глазами,
  • почистите зубы другой рукой,
  • постарайтесь одеться на ощупь,
  • отправьтесь на работу новым маршрутом,
  • сделайте привычные покупки в новом месте и еще много чего.

Это увлекательная и полезная игра.

Нейробика полезна абсолютно всем. Детям она поможет лучше концентрироваться и усваивать новые знания, а взрослым - поддерживать свой головной мозг в отличной форме и избежать ухудшения памяти.

Главный принцип нейробики - постоянно изменять простые шаблонные действия.

Давайте задание своему мозгу решать привычные задачи непривычным для него образом, и постепенно он отблагодарит вас прекрасной работоспособностью.

Итак, мы способны обучать свой мозг новому образу мышления. Начав менять свои шаблоны и убеждения, вы увидите, что меняясь изнутри, вы начнете менять все вокруг, словно порождая эффект расходящихся волн.

Помните: внешний Успех всегда есть производная от Успеха внутреннего.

Иисус учил: «Как вы мыслите, так вам и будет».

Так создается новая «Матрица» вашего мышления, которая ведет вас к Переменам.

Нейронные связи головного мозга обуславливают сложное поведение. Нейроны — маленькие вычислительные машины, способные оказывать влияние, только объединившись в сети.

Контроль простейших элементов поведения (например, рефлексов) не требует большого количества нейронов, но даже рефлексы часто сопровождает осознание человеком срабатывания рефлекса. Сознательное же восприятие сенсорных стимулов (и все высшие функции нервной системы) зависит от огромного числа связей между нейронами.

Нейронные связи делают нас такими, какие мы есть. Их качество влияет на работу внутренних органов, на интеллектуальные способности и эмоциональную стабильность.

"Проводка"

Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

Информация передается через Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

К дендритам "подведено" множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

Нейрон и синапсы

Щель между дендритом и аксоном — синапс. Т.к. аксон "источник" импульса, дендрит "принимающий", а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

Рецепторы

Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

Рецептор на постсинаптической мембране — белок, настроенный на молекулы медиатора. Когда человек искусственно (наркотиками, например) стимулирует выброс медиаторов в синаптическую щель, синапс пытается вернуть равновесие: снижает количество рецепторов или их чувствительность. Из-за этого естественные уровни концентрации медиаторов в синапсе перестают оказывать действие на нейронные структуры.

Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов. Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к. ацетилхолин задействован во многих процессах, в том числе, связанных с концентрацией внимания и ощущением комфорта, курящий не может получить полезные эффекты работы нервной системы без никотина.

Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

Развитие нейронных сетей

Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

За развитие синаптических связей отвечает активность нейронов. "Используй или потеряешь" — принцип, лежащий в основе мозга. Чем чаще "действуют" нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов. Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается. Подобные формы гомеостаза часто встречаются в природе, например, при регуляции температуры тела и уровня сахара в крови.

М. Бутс M. Butz отметил:

Формирование новых синапсов обусловлено стремлением нейронов поддерживать заданный уровень электрической активности...

Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

Нейропластичность

Развитие нейронных связей в головном мозге сопряжено с созданием новых синапсов и модификацией существующих. Возможность модификаций обусловлена синаптической пластичностью — изменением "мощности" синапса в ответ на активацию рецепторов на постсинаптической клетке.

Человек может запоминать информацию и обучаться благодаря пластичности мозга. Нарушение нейронных связей головного мозга вследствие черепно-мозговых травм и нейродегенеративных заболеваний благодаря нейропластичности не становится фатальным.

Нейропластичность обусловлена необходимостью изменяться в ответ на новые условия жизни, но она может как решать проблемы человека, так и создавать их. Изменение мощности синапса, например, при курении — это тоже отражение От наркотиков и обсессивно-компульсивного расстройства так сложно избавиться именно из-за неадаптивного изменения синапсов в нейронных сетях.

На нейропластичность большое влияние оказывают нейротрофические факторы. Н. В. Гуляева подчеркивает, что различные нарушения нейронных связей происходят на фоне снижения уровней нейротрофинов. Нормализация уровня нейротрофинов приводит к восстановлению нейронных связей головного мозга.

Все эффективные лекарства, используемые для лечения болезней мозга, независимо от их структуры, если они эффективны, они тем или иным механизмом нормализуют локальные уровни нейротрофических факторов.

Оптимизация уровней нейротрофинов пока не может осуществляться путем прямой их доставки в мозг. Зато человек может опосредованно влиять на уровни нейротрофинов через физические и когнитивные нагрузки.

Физические нагрузки

Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

Когнитивные нагрузки

Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

Образ жизни

Диета может повышать когнитивные способности и защищать нейронные связи головного мозга от повреждений, содействовать их восстановлению после болезней и противодействовать последствиям старения. На здоровье мозга, по всей видимости, оказывают положительное влияние:

— омега-3 (рыба, семена льна, киви, орехи);

— куркумин (карри);

— флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

— витамины группы В;

— витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

— холин (куриное мясо, телятина, яичные желтки).

Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности. А высокое содержание насыщенных жиров в еде даже тормозит восстановление мозга после черепно-мозговых травм.

Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — "это цена, которую мы платим за пластичность мозга" (Sleep is the price we pay for brain plasticity. Ch. Cirelli - Ч. Цирелли).

Резюме

Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

  • физические упражнения;
  • задачи и трудности;
  • полноценный сон;
  • сбалансированная диета.

Негативно воздействуют:

  • жирная пища и сахар;
  • курение;
  • длительный стресс.

Мозг чрезвычайно пластичен, но "лепить" из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.

Человеческий мозг – это центральная часть нервной системы. Здесь осуществляется управление всеми процессами, происходящими в организме, на основе информации, поступающей от внешнего мира.

Нейроны головного мозга – это структурные функциональные единицы нервной ткани, обеспечивающие способность живых организмов приспосабливаться к изменениям внешней среды. Человеческий мозг состоит из нейронов.

Функции нейронов головного мозга:

  • передача информации об изменениях внешней среды;
  • запоминание информации на длительный срок;
  • создание образа внешнего мира на основе полученных сведений;
  • организация оптимального поведения человека.

Все эти задачи подчинены одной цели – обеспечению живому организму успеха в борьбе за существование.

В этой статье будут рассмотрены следующие особенности нейронов:

  • строение;
  • взаимосвязь между собой;
  • виды;
  • развитие в разные периоды жизни человека.

В левом полушарии мозга содержится на 200 000 000 нейронов больше, чем в правом.

Строение нервной клетки

Нейроны в мозге имеют неправильную форму, они могут быть похожи на листик или цветок, обладать различными бороздами и извилинами. Цветовая палитра также разнообразна. Ученые полагают, что существует взаимосвязь между цветом и формой клетки и ее назначением.

Например, рецептивные поля клеток проекционной области зрительной коры имеют вытянутую форму, это помогает им избирательно реагировать на отдельные фрагменты линий с различной ориентацией в пространстве.

Каждая клетка имеет тело и отростки. В мозговой ткани принято выделять серое и белое вещество. Тела нейронов вместе с глиальными клетками, обеспечивающими защиту, изоляцию и сохранение структуры нервной ткани, составляют серое вещество. Отростки, организованные в пучки в соответствии с функциональным назначением, – это белое вещество.

Соотношение нейронов и глии у человека равно 1:10.

Виды отростков:

  • аксоны – имеют удлиненный вид, на конце ветвятся на терминали – нервные окончания, которые необходимы для передачи импульса к другим клеткам;
  • дендриты – более короткие, чем аксоны, также имеют разветвленную структуру; через них нейрон получает информацию.

Благодаря такому строению нейроны в головном мозге «общаются» между собой и объединяются в нейронные сети, которые и образуют мозговую ткань. И дендриты, и аксоны постоянно растут. Эта пластичность нервной системы лежит в основе развития интеллекта.

Нерв – это скопление многочисленных аксонов, принадлежащих разным нервным клеткам.

Синаптические связи

В основе формирования нейронных сетей лежит электрическое возбуждение, которое состоит из двух процессов:

  • запуск электрического возбуждения от энергии внешних воздействий – происходит за счет особой чувствительности мембран, расположенных на дендритах;
  • запуск клеточной активности на основании полученного сигнала и воздействие на другие структурные единицы нервной системы.

Быстродействие нейронов исчисляется несколькими миллисекундами.

Нейроны связаны между собой посредством специальных структур – синапсов. Они состоят из пресинаптической и постсинаптической мембран, между которыми находится синаптическая щель, заполненная жидкостью.

По характеру действия синапсы могут быть возбуждающими и тормозными. Передача сигналов может быть химической и электрической.

В первом случае на пресинаптической мембране синтезируются нейромедиаторы, которые поступают на рецепторы постсинаптической мембраны другой клетки из специальных пузырьков – везикул. После их воздействия в соседний нейрон могут массированно поступать ионы определенного вида. Это происходит через калийные и натриевые каналы. В обычном состоянии они закрыты, внутри клетки находятся отрицательно заряженные ионы, а снаружи – положительно. Следовательно, на оболочке образуется разница напряжений. Это потенциал покоя. После попадания положительно заряженных ионов внутрь возникает потенциал действия – нервный импульс.

Баланс клетки восстанавливается с помощью специализированных белков – калиево-натриевых насосов.

Свойства химических синапсов:

  • возбуждение осуществляется только в одном направлении;
  • наличие задержки от 0,5 до 2 мс при передаче сигнала, связанной с длительностью процессов выделения медиатора, его передачи, взаимодействия с рецептором и образования потенциала действия;
  • может возникать утомление, вызванное истощением запаса медиатора или появлением стойкой деполяризации мембраны;
  • высокая чувствительность к ядам, лекарственным препаратам и другим биологически активным веществам.

В настоящее время известно более 100 нейромедиаторов. Примеры этих веществ – дофамин, норадреналин, ацетилхолин.

Для электрической передачи характерна узкая синаптическая щель и пониженное сопротивление между мембранами. В таком случае потенциал, созданный на пресинаптической мембране, вызывает распространение возбуждения на постсинаптической мембране.

Свойства электрических синапсов:

  • скорость передачи информации выше, чем в химических синапсах;
  • возможна как односторонняя, так и двусторонняя передача сигнала (в обратную сторону).

Также существуют смешанные синапсы, в них возбуждение может передаваться как с помощью нейромедиаторов, так и с помощью электрических импульсов.

Память включает в себя хранение и воспроизведение полученной информации. В результате обучения остаются так называемые следы памяти, а их наборы образуют энграммы – «записи». Нейронный механизм заключается в следующем: по цепи много раз проходят определенные импульсы, формируются структурные и биохимические изменения в синапсах. Этот процесс называется консолидацией. Многократное использование одних и тех же контактов создает специфические белки – это и есть следы памяти.

Особенности развития мозговой ткани

Структуры мозга продолжают формироваться до 3 лет. Масса мозга удваивается к концу первого года жизни ребенка.

Зрелость нервной ткани определяется степенью развития двух процессов:

  • миелинизация – образование изолирующих оболочек;
  • синаптогенез – формирование синаптических связей.

Миелинизация начинается на 4 месяце внутриутробной жизни с эволюционно более «старых» структур мозга, отвечающих за сенсорные и моторные функции. В системах, контролирующих скелетную мускулатуру, — незадолго до появления на свет младенца, и активно продолжается в течение первого года жизни. А в областях, связанных с высшими психическими функциями, такими как обучение, речь, мышление, миелинизация начинается лишь после рождения.

Именно поэтому в этот период особенно опасны инфекции и вирусы, оказывающие вредное воздействие на мозг. Это можно сравнить с автомобильной аварией: столкновение на маленькой скорости принесет меньший урон, чем на большой. Так и здесь – вмешательство в активный процесс созревания может нанести огромный вред и привести к печальным последствиям – ДЦП, олигофрении или задержке психического развития.

Стабилизация психофизиологических характеристик индивида происходит в 20 – 25 лет.

Процесс развития отдельной нервной клетки начинается с образования, имеющего специфическую электрическую активность. Его отростки, вытягиваясь, проникают в окружающие ткани и устанавливают синаптические контакты. Таким образом происходит иннервация (управление) всеми органами и системами организма. Данный процесс контролируется более чем половиной генов человека.

Клетки объединяются в особые связанные структуры – нейросети, которые выполняют конкретные функции.

Одно из научных предположений гласит, что иерархия структуры нейронов в головном мозге напоминает устройство Вселенной.

Развитие нейронов, их специализация, продолжается в течение всей жизни человека. У взрослого и младенца число нейронов приблизительно совпадает, но длина отростков и их количество отличается во много раз. Это связано с обучением и формированием новых связей.

Продолжительность существования нервных клеток и их хозяина чаще всего совпадает.

Виды нервных клеток

Каждый элемент в нейронной системе мозга выполняет определенную функцию. Рассмотрим, за что отвечают определенные виды нейронов.

Рецепторы

Большая часть рецепторных нейронов располагается в , их функция – передавать сигнал от рецепторов органов чувств в центральную нервную систему.

Командные нейроны

Здесь сходятся пути от клеток-детекторов, кратковременной и долговременной памяти и осуществляется принятие решения в ответ на входящий сигнал. Далее поступает команда в премоторные зоны, и формируется реакция.

Эффекторы

Они транслируют сигнал к органам и тканям. Эти нейроны имеют длинные аксоны. Мотонейроны – это эффекторные клетки, аксоны которых образуют нервные волокна, ведущие к мышцам. Эффекторные нейроны, регулирующие деятельность вегетативной нервной системы (к ней относятся обмен веществ, управление внутренними органами, дыхание, сердцебиение – все, что происходит без сознательного контроля), находятся за пределами головного мозга.

Промежуточные

Еще их называют контактными или вставочными – эти клетки являются связующим звеном между рецепторами и эффекторами.

Зеркальные нейроны

Данные нейроны обнаружены в различных участках центральной нервной системы. Считается, что эволюционно они появились для того, чтобы детеныши лучше и быстрее устраивались в окружающем мире.

Клетки были обнаружены в результате опыта с обезьянами. Животное доставало еду из кормушки специальными инструментами. Когда ученый делал то же самое, было выявлено, что у подопытной особи активируются определенные участки коры, как будто бы это делала она сама.

На работе зеркальных нейронов базируются эмпатия, социальные навыки, обучение, повторение, имитация. Способность прогнозировать тоже относится к этим клеткам.

Ученые установили: отчетливо представлять и делать – почти одно и то же. Такой метод психотерапии как визуализация построен на этом постулате.

Зеркальный нейроны – основа передачи культурного пласта от поколения к поколению и его наращивания. Например, обучаясь живописи, сначала мы повторяем уже существующие способы, то есть имитируем. А потом, на основе этого опыта, создаются оригинальные работы.

Нейроны новизны и тождества

Нейроны новизны впервые были обнаружены при исследовании лягушек, впоследствии были найдены и у человека. Эти клетки перестают отвечать на повторяющийся стимул. Изменение же сигнала, наоборот, провоцирует их активацию.

Клетки тождества определяют повторяющийся сигнал, что позволяет выдать ранее использовавшуюся реакцию, иногда даже опережая стимул – экстраполярный ответ.

Их совместное действие подчеркивает новизну, ослабляет влияние привычных стимулов и оптимизирует время формирования ответного поведения.

Заболевания, связанные с дефектами нервной ткани

В основе многих расстройств здоровья человека могут лежать различные нарушения нейронных связей головного мозга.

Аутизм

Ученые полагают, что аутизм связан с неразвитостью или дисфункцией зеркальных нейронов. Малыш, смотря на взрослого, не может понять поведение и эмоции другого человека и спрогнозировать его действия. Зарождается страх. Защитная реакция – замыкание в себе.

Болезнь Паркинсона

Причина нарушения двигательных функции при данном недуге – повреждение и гибель нейронов, продуцирующих дофамин.

Болезнь Альцгеймера

Одной из возможных причин является снижение производства нейромедиатора ацетилхолина. Второй вариант – накопление в нервной ткани амилоидных бляшек – патологического белкового налета.

Шизофрения

Одна из теорий гласит, что между клетками мозга шизофреника имеется нарушение контактов. Исследования показали, что у таких людей неправильно работают гены, отвечающие за выделение нейромедиаторов в синапсах. Еще одна версия – излишняя выработка дофамина. Третья теория происхождения заболевания – снижение скорости прохождения нервных импульсов вследствие повреждения миелиновых оболочек.

Нейродегеративные заболевания (связанные с гибелью нейронов) дают о себе знать тогда, когда большая часть клеток погибла, поэтому лечение начинается на поздних стадиях. Человек выглядит здоровым, признаков болезни нет, а опасный процесс уже запущен. Это происходит от того, что человеческий мозг очень пластичен и имеет мощные компенсаторные механизмы. Пример: когда умирают нейроны-производители дофамина при , оставшиеся клетки продуцируют большее количество вещества. Также увеличивается чувствительность к нейромедиатору клеток, принимающих сигнал. Какое-то время эти процессы не дают проявляться симптомам болезни.

При недугах, вызванных аномалиями хромосом (синдром Дауна, синдром Вильямса), обнаруживаются патологические виды нервных клеток.

Как сохранить нервные клетки здоровыми

Сохранение нейронов в здоровом состоянии – залог счастливой жизни и возможности вести активный образ жизни в пожилом возрасте. Наши рекомендации помогут вам в этом.

  1. Интеллектуальная деятельность в течение жизни способствует сохранению работоспособности до старости. Необходимо давать нервным клеткам нагрузку, создавать новые нейронные связи и укреплять старые, тренировать мозг.
  2. Питаться нужно полезными продуктами, содержащими жиры, так как оболочка нейронов состоит, по сути, из жиров – липидов.
  3. Пить больше жидкости – мозг состоит на 75% из воды. По этой же причине не следует злоупотреблять алкоголем, так как он обезвоживает организм.
  4. Чтобы помочь нейронам головного мозга проснуться с утра, хорошо дать им небольшую разминку, например, разгадать кроссворд, вспомнить несколько слов иностранного языка, решить математическую задачу.
  5. Дышать свежим воздухом – 20% от вдыхаемого кислорода потребляет головной мозг.
  6. Физические упражнения улучшают кровообращение во всем организме, а кровь снабжает мозг кислородом.
  7. Сон не менее 7-9 часов в сутки. Когда мы спим, полученная за день информация систематизируется: всем известно, что Менделеев увидел периодическую систему химических элементов во сне. Если человек отдыхает недостаточно, ресурсы мозга будут истощаться.

Заключение

Пластичность нейронов головного мозга позволяет не только выполнять генетически заданные программы, но и выстраивать новые. По образу и подобию человеческой нервной системы ведутся работы в области создания искусственного интеллекта. Существует множество научных споров об этичности, возможностях и опасностях данных разработок. В настоящее время исследователи рассматривают новые концепции образования нервных связей, применяя сложнейшие математические методы. Человеческий мозг до сих пор таит в себе множество загадок, которые еще предстоит раскрыть ученым.

С моим видением того как работает мозг и каковы возможные пути создания искусственного интеллекта. За прошедшее с тех пор время удалось существенно продвинуться вперед. Что-то получилось глубже понять, что-то удалось смоделировать на компьютере. Что приятно, появились единомышленники, активно участвующие в работе над проектом.

В настоящем цикле статей планируется рассказать о той концепции интеллекта над которой мы сейчас работаем и продемонстрировать некоторые решения, являющиеся принципиально новыми в сфере моделирования работы мозга. Но чтобы повествование было понятным и последовательным оно будет содержать не только описание новых идей, но и рассказ о работе мозга вообще. Какие-то вещи, особенно в начале, возможно покажутся простыми и общеизвестными, но я бы советовал не пропускать их, так как они во многом определяют общую доказательность повествования.

Общее представление о мозге

Нервные клетки, они же нейроны, вместе со своими волокнами, передающими сигналы, образуют нервную систему. У позвоночных основная часть нейронов сосредоточена в полости черепа и позвоночном канале. Это называется центральной нервной системой. Соответственно, выделяют головной и спинной мозг как ее составляющие.

Спинной мозг собирает сигналы от большинства рецепторов тела и передает их в головной мозг. Через структуры таламуса они распределяются и проецируются на кору больших полушарий головного мозга.

Кроме больших полушарий обработкой информации занимается еще и мозжечок, который, по сути, является маленьким самостоятельным мозгом. Мозжечок обеспечивает точную моторику и координацию всех движений.

Зрение, слух и обоняние обеспечивают мозг потоком информации о внешнем мире. Каждая из составляющих этого потока, пройдя по своему тракту, также проецируется на кору. Кора – это слой серого вещества толщиной от 1.3 до 4.5 мм, составляющий наружную поверхность мозга. За счет извилин, образованных складками, кора упакована так, что занимает в три раза меньшую площадь, чем в расправленном виде. Общая площадь коры одного полушария – приблизительно 7000 кв.см.

В итоге все сигналы проецируются на кору. Проекция осуществляется пучками нервных волокон, которые распределяются по ограниченным областям коры. Участок, на который проецируется либо внешняя информация, либо информация с других участков мозга образует зону коры. В зависимости от того, какие сигналы на такую зону поступают, она имеет свою специализацию. Различают моторную зону коры, сенсорную зону, зоны Брока, Вернике, зрительные зоны, затылочную долю, всего около сотни различных зон.




В вертикальном направлении кору принято делить на шесть слоев. Эти слои не имеют четких границ и определяются по преобладанию того или иного типа клеток. В различных зонах коры эти слои могут быть выражены по-разному, сильнее или слабее. Но, в общем и целом, можно говорить о том, что кора достаточно универсальна, и предполагать, что функционирование разных ее зон подчиняется одним и тем же принципам.


Слои коры

По афферентным волокнам сигналы поступают в кору. Они попадают на III, IV уровень коры, где распределяются по близлежащим к тому месту, куда попало афферентное волокно, нейронам. Большая часть нейронов имеет аксонные связи в пределах своего участка коры. Но некоторые нейроны имеют аксоны, выходящие за ее пределы. По этим эфферентным волокнам сигналы идут либо за пределы мозга, например, к исполнительным органам, или проецируются на другие участки коры своего или другого полушария. В зависимости от направления передачи сигналов эфферентные волокна принято делить на:

  • ассоциативные волокна, которые связывают отдельные участки коры одного полушария;
  • комиссуральные волокна, которые соединяют кору двух полушарий;
  • проекционные волокна, которые соединяют кору с ядрами низших отделов центральной нервной системы.
Если взять направление, перпендикулярное поверхности коры, то замечено, что нейроны, располагающиеся вдоль этого направления, реагируют на схожие стимулы. Такие вертикально расположенные группы нейронов, принято называть кортикальными колонками.

Можно представить себе кору головного мозга как большое полотно, раскроенное на отдельные зоны. Картина активности нейронов каждой из зон кодирует определенную информацию. Пучки нервных волокон, образованные аксонами, выходящими за пределы своей зоны коры, формируют систему проекционных связей. На каждую из зон проецируется определенная информация. Причем на одну зону может поступать одновременно несколько информационных потоков, которые могут приходить как с зон своего, так и противоположного полушария. Каждый поток информации похож на своеобразную картинку, нарисованную активностью аксонов нервного пучка. Функционирование отдельной зоны коры – это получение множества проекций, запоминание информации, ее переработка, формирование собственной картины активности и дальнейшая проекция информации, получившейся в результате работы этой зоны.

Существенный объем мозга – это белое вещество. Оно образовано аксонами нейронов, создающими те самые проекционные пути. На рисунке ниже белое вещество можно увидеть как светлое заполнение между корой и внутренними структурам мозга.


Распределение белого вещества на фронтальном срезе мозга

Используя диффузную спектральную МРТ, удалось отследить направление отдельных волокон и построить трехмерную модель связанности зон коры (проект Connectomics (Коннектом)).

Представление о структуре связей хорошо дают рисунки ниже (Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, Wen-Yih I. Tseng, 2012).


Вид со стороны левого полушария


Вид сзади


Вид справа

Кстати, на виде сзади отчетливо видна асимметрия проекционных путей левого и правого полушария. Эта асимметрия во многом и определяет различия в тех функциях, которые приобретают полушария по мере их обучения.

Нейрон

Основа мозга – нейрон. Естественно, что моделирование мозга с помощью нейронных сетей начинается с ответа на вопрос, каков принцип его работы.

В основе работы реального нейрона лежат химические процессы. В состоянии покоя между внутренней и внешней средой нейрона существует разность потенциалов – мембранный потенциал, составляющий около 75 милливольт. Он образуется за счет работы особых белковых молекул, работающих как натрий-калиевые насосы. Эти насосы за счет энергии нуклеотида АТФ гонят ионы калия внутрь, а ионы натрия - наружу клетки. Поскольку белок при этом действует как АТФ-аза, то есть фермент, гидролизующий АТФ, то он так и называется - «натрий-калиевая АТФ-аза». В результате нейрон превращается в заряженный конденсатор с отрицательным зарядом внутри и положительным снаружи.


Схема нейрона (Mariana Ruiz Villarreal)

Поверхность нейрона покрыта ветвящимися отростками – дендритами. К дендритам примыкают аксонные окончания других нейронов. Места их соединений называются синапсами. Посредством синаптического взаимодействия нейрон способен реагировать на поступающие сигналы и при определенных обстоятельствах генерировать собственный импульс, называемый спайком.

Передача сигнала в синапсах происходит за счет веществ, называемых нейромедиаторами. Когда нервный импульс по аксону поступает в синапс, он высвобождает из специальных пузырьков молекулы нейромедиатора, характерные для этого синапса. На мембране нейрона, получающего сигнал, есть белковые молекулы – рецепторы. Рецепторы взаимодействуют с нейромедиаторами.


Химический синапс

Рецепторы, расположенные в синаптической щели, являются ионотропными. Это название подчеркивает тот факт, что они же являются ионными каналами, способными перемещать ионы. Нейромедиаторы так воздействуют на рецепторы, что их ионные каналы открываются. Соответственно, мембрана либо деполяризуется, либо гиперполяризуется – в зависимости от того, какие каналы затронуты и, соответственно, какого типа этот синапс. В возбуждающих синапсах открываются каналы, пропускающие катионы внутрь клетки, - мембрана деполяризуется. В тормозных синапсах открываются каналы, проводящие анионы, что приводит к гиперполяризации мембраны.

В определенных обстоятельствах синапсы могут менять свою чувствительность, что называется синаптической пластичностью. Это приводит к тому, что синапсы одного нейрона приобретают различную между собой восприимчивость к внешним сигналам.

Одновременно на синапсы нейрона поступает множество сигналов. Тормозящие синапсы тянут потенциал мембраны в сторону накопления заряда внутри клети. Активирующие синапсы, наоборот, стараются разрядить нейрон (рисунок ниже).


Возбуждение (A) и торможение (B) ганглиозной клетки сетчатки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

Когда суммарная активность превышает порог инициации, возникает разряд, называемый потенциалом действия или спайком. Спайк – это резкая деполяризация мембраны нейрона, которая и порождает электрический импульс. Весь процесс генерации импульса длится порядка 1 миллисекунды. При этом ни продолжительность, ни амплитуда импульса не зависят от того, насколько были сильны вызвавшие его причины (рисунок ниже).


Регистрация потенциала действия ганглиозной клетки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

После спайка ионные насосы обеспечивают обратный захват нейромедиатора и расчистку синаптической щели. В течение рефрактерного периода, наступающего после спайка, нейрон не способен порождать новые импульсы. Продолжительность этого периода определяет максимальную частоту генерации, на которую способен нейрон.

Спайки, которые возникают как следствие активности на синапсах, называют вызванными. Частота следования вызванных спайков кодирует то, насколько хорошо поступающий сигнал соответствует настройке чувствительности синапсов нейрона. Когда поступающие сигналы приходятся именно на чувствительные синапсы, активирующие нейрон, и этому не мешают сигналы, приходящие на тормозные синапсы, то реакция нейрона максимальна. Образ, который описывается такими сигналами, называют характерным для нейрона стимулом.

Конечно, представление о работе нейронов не стоит излишне упрощать. Информация между некоторыми нейронами может передаваться не только спайками, но и за счет каналов, соединяющих их внутриклеточное содержимое и передающих электрический потенциал напрямую. Такое распространение называется градуальным, а само соединение называется электрическим синапсом. Дендриты в зависимости от расстояния до тела нейрона делятся на проксимальные (близкие) и дистальные (удаленные). Дистальные дендриты могут образовывать секции, работающие как полуавтономные элементы. Помимо синаптических путей возбуждения есть внесинаптические механизмы, вызывающие метаботропные спайки. Кроме вызванной активности существует еще и спонтанная активность. И наконец, нейроны мозга окружены глиальными клетками, которые также оказывают существенное влияние на протекающие процессы.

Долгий путь эволюции создал множество механизмов, которые используются мозгом в своей работе. Некоторые из них могут быть поняты сами по себе, смысл других становится ясен только при рассмотрении достаточно сложных взаимодействий. Поэтому не стоит воспринимать сделанное выше описание нейрона как исчерпывающее. Чтобы перейти к более глубоким моделям, нам необходимо сначала разобраться с «базовыми» свойствами нейронов.

В 1952 году Аланом Ллойдом Ходжкином и Эндрю Хаксли были сделаны описания электрических механизмов, которые определяют генерацию и передачу нервного сигнала в гигантском аксоне кальмара (Hodgkin, 1952). Что было оценено Нобелевской премией в области физиологии и медицины в 1963 году. Модель Ходжкина – Хаксли описывает поведение нейрона системой обыкновенных дифференциальных уравнений. Эти уравнения соответствуют автоволновому процессу в активной среде. Они учитывают множество компонент, каждая из которых имеет свой биофизический аналог в реальной клетке (рисунок ниже). Ионные насосы соответствуют источнику тока I p . Внутренний липидный слой клеточной мембраны образует конденсатор с емкостью C m . Ионные каналы синаптических рецепторов обеспечивают электрическую проводимость g n , которая зависит от подаваемых сигналов, меняющихся со временем t, и общей величины мембранного потенциала V. Ток утечки мембранных пор создает проводник g L . Движение ионов по ионным каналам происходит под действием электрохимических градиентов, которым соответствуют источники напряжения с электродвижущей силой E n и E L .


Основные компоненты модели Ходжкина - Хаксли

Естественно, что при создании нейронных сетей возникает желание упростить модель нейрона, оставив в ней только самые существенные свойства. Наиболее известная и популярная упрощенная модель – это искусственный нейрон Маккалока - Питтса, разработанный в начале 1940-х годов (Маккалох Дж., Питтс У., 1956).


Формальный нейрон Маккалока - Питтса

На входы такого нейрона подаются сигналы. Эти сигналы взвешенно суммируются. Далее к этой линейной комбинации применяется некая нелинейная функция активации, например, сигмоидальная. Часто как сигмоидальную используют логистическую функцию:


Логистическая функция

В этом случае активность формального нейрона записывается как

В итоге такой нейрон превращается в пороговый сумматор. При достаточно крутой пороговой функции сигнал выхода нейрона – либо 0, либо 1. Взвешенная сумма входного сигнала и весов нейрона – это свертка двух образов: образа входного сигнала и образа, описываемого весами нейрона. Результат свертки тем выше, чем точнее соответствие этих образов. То есть нейрон, по сути, определяет, насколько подаваемый сигнал похож на образ, записанный на его синапсах. Когда значение свертки превышает определенный уровень и пороговая функция переключается в единицу, это можно интерпретировать как решительное заявление нейрона о том, что он узнал предъявляемый образ.

Реальные нейроны действительно неким образом похожи на нейроны Маккалока - Питтса. Амплитуды их спайков не зависит от того, какие сигналы на синапсах их вызвали. Спайк, либо есть, либо его нет. Но реальные нейроны реагируют на стимул не единичным импульсом, а импульсной последовательностью. При этом частота импульсов тем выше, чем точнее узнан характерный для нейрона образ. Это означает, что если мы построим нейронную сеть из таких пороговых сумматоров, то она при статичном входном сигнале хотя и даст какой-то выходной результат, но этот результат будет далек от воспроизведения того, как работают реальные нейроны. Для того чтобы приблизить нейронную сеть к биологическому прототипу, нам понадобится моделировать работу в динамике, учитывая временные параметры и воспроизводя частотные свойства сигналов.

Но можно пойти и другим путем. Например, можно выделить обобщенную характеристику активности нейрона, которая соответствует частоте его импульсов, то есть количеству спайков за определенный промежуток времени. Если перейти к такому описанию, то можно представить нейрон как простой линейный сумматор.


Линейный сумматор

Сигналы выхода и, соответственно, входа для таких нейронов уже не являются дихатомичными (0 или 1), а выражаются некой скалярной величиной. Функция активации тогда записывается как

Линейный сумматор не стоит воспринимать как что-то принципиально иное по сравнению с импульсным нейроном, просто он позволяет при моделировании или описании перейти к более длинным временным интервалам. И хотя импульсное описание более корректно, переход к линейному сумматору во многих случаях оправдан сильным упрощением модели. Более того, некоторые важные свойства, которые трудно разглядеть в импульсном нейроне, вполне очевидны для линейного сумматора.

Нейрон, или нервная клетка – это электрически возбуждаемая клетка, которая обрабатывает и передает информацию с помощью электрических и химических сигналов. Эти сигналы между нейронами осуществляются через специальные соединения, называемые синапсами. Нейроны могут соединяться друг с другом, образуя нейронные сети. Нейроны являются основными компонентами головного и спинного мозга центральной нервной системы (ЦНС) и вегетативных ганглиев периферической нервной системы. Существует несколько типов специализированных нейронов. Сенсорные нейроны реагируют на раздражители, такие как прикосновение, звук или свет и все другие раздражители, воздействующие на клетки сенсорных органов, которые затем посылают сигналы в спинной и головной мозг. Моторные нейроны получают сигналы от головного и спинного мозга, вызывая мышечные сокращения и влияя на гландулярные выходы. Интернейроны соединяют нейроны с другими нейронами в той же области мозга или спинной мозг в нейронных сетях.

Типичный нейрон состоит из тела клетки (сомы), дендритов и аксона. Термин «нейрит» используется для описания дендрита или аксона, особенно на его недифференцированной стадии. Дендриты представляют собой тонкие структуры, которые возникают из тела клетки, часто распространяются на сотни микрометров и разветвляются несколько раз, что приводит к возникновению сложного «дендритного дерева». Аксон (также называемый нервным волокном при миелинизации) является специальным клеточным расширением (процессом), который возникает из тела клетки в месте, называемом холмом аксона, и перемещается на расстояние до 1 метра у людей или даже больше у других видов животных. Нервные волокна часто соединяются в пучки, а в периферической нервной системе пучки этих пучков образуют нервы (как пряди из проволочных кабелей). Тело клетки нейрона часто вызывает рост множественных дендритов, но не более чем на один аксон, хотя аксон может разветвляться сотни раз. В большинстве синапсов, сигналы посылаются от аксона одного нейрона к дендриту другого. Однако, из этих правил существует множество исключений: например, нейроны могут не иметь дендритов или не иметь аксона, а синапсы могут связывать аксон с другим аксоном или дендрит с другим дендритом. Все нейроны являются электрически возбуждаемыми, поддерживая градиенты напряжения на своих мембранах с помощью ионных насосов с метаболическим действием, которые объединяются с ионными каналами, встроенными в мембрану, для генерирования внутриклеточных или внеклеточных концентраций ионов, таких как натрий, калий, хлорид и кальций. Изменения в поперечном мембранном напряжении могут изменять функцию зависимых от напряжения ионных каналов. Если напряжение изменяется достаточно сильно, генерируется электрохимический импульс «все или ничего», называемый потенциалом действия, который быстро перемещается вдоль аксона клетки и активирует синаптические связи с другими клетками. В большинстве случаев, нейроны генерируются специальными типами стволовых клеток. Нейроны во взрослом мозге обычно не подвергаются клеточному делению. Астроциты представляют собой звездообразные глиальные клетки, которые также, как было обнаружено, превращаются в нейроны в силу характерной плюрипотентности стволовых клеток. В зрелом возрасте, в большинстве областей мозга нейрогенез в большинстве случаев прекращается. Тем не менее, есть убедительные доказательства генерации значительного числа новых нейронов в двух областях мозга, гиппокампе и обонятельной луковице.

Обзор

Нейрон – это специализированный тип клеток, обнаруженный в телах всех живых организмов. Только губки и несколько других более простых организмов не имеют нейронов. Особенностями, которые определяют нейрон, являются электрическая возбудимость и наличие синапсов, которые являются сложными мембранными переходами, которые передают сигналы другим клеткам. Нейроны тела, а также глиальные клетки, которые придают им структурную и метаболическую поддержку, вместе составляют нервную систему. У позвоночных, большинство нейронов относятся к центральной нервной системе, но некоторые из них находятся в периферических ганглиях, и многие сенсорные нейроны расположены в сенсорных органах, таких как сетчатка и улитка. Типичный нейрон делится на три части: тело сомы или клетки, дендриты и аксон. Сома обычно компактна; аксон и дендриты – это нити, которые выходят из сомы. Дендриты обычно обильно ветвятся, становятся тоньше с каждым ветвлением и расширяют свои самые отдаленные ветви на несколько сотен микрометров от сомы. Аксон покидает сому в месте набухания, называемом холмом аксона, и может простираться на большие расстояния, что приводит к появлению сотен ветвей. В отличие от дендритов, аксон обычно имеет одинаковый диаметр по всей длине. Сома может «вырастить» многочисленные дендриты, но не более чем один аксон. Синаптические сигналы от других нейронов принимаются сомой и дендритами; сигналы к другим нейронам передаются аксоном. Таким образом, типичный синапс представляет собой контакт между аксоном одного нейрона и дендритом или сомой другого. Синаптические сигналы могут быть возбуждающими или тормозящими. Если чистое возбуждение, полученное нейроном за короткий промежуток времени, достаточно велико, нейрон генерирует короткий импульс, называемый потенциалом действия, который возникает у сомы и быстро распространяется вдоль аксона, активируя синапсы на другие нейроны по мере его поступления. Многие нейроны вписываются в вышеизложенную схему во всех отношениях, но есть и исключения для большинства ее частей. Нет нейронов, у которых нет сомы, но есть нейроны, у которых нет дендритов, и нейроны, у которых отсутствует аксон. Кроме того, в дополнение к типичным аксодендритным и аксосомным синапсам, существуют аксоаксические (аксон-аксонные) и дендродрендритные (дендрит-дендритные) синапсы. Ключом к нейронной функции является синаптическая сигнализация, которая частично является электрической, и частично – химической. Электрический аспект зависит от свойств мембраны нейрона. Как и все клетки животных, клеточное тело каждого нейрона окружено плазматической мембраной, двухслойной липидной молекулой со многими типами белковых структур, встроенных в нее. Липидный бислой является мощным электрическим изолятором, но в нейронах многие белковые структуры, встроенные в мембрану, являются электрически активными. К ним относятся ионные каналы, которые позволяют электрически заряженным ионам течь через мембрану, и ионные насосы, которые активно переносят ионы с одной стороны мембраны на другую. Большинство ионных каналов проницаемы только для конкретных типов ионов. Некоторые ионные каналы потенциалзависимы, что означает, что они могут переключаться между открытыми и закрытыми состояниями, изменяя разность потенциалов на мембране. Другие химически зависимы, что означает, что они могут переключаться между открытым и закрытым состояниями путем взаимодействия с химическими веществами, которые диффундируют через внеклеточную жидкость. Взаимодействия между ионными каналами и ионными насосами создают разность потенциалов на мембране, обычно немного меньше 1/10 вольт на базовой линии. Это напряжение имеет две функции: во-первых, оно обеспечивает источник питания для ассортимента зависимого от напряжения белкового оборудования, встроенного в мембрану; во-вторых, оно обеспечивает основу для передачи электрического сигнала между различными частями мембраны. Нейроны «общаются» при помощи химических и электрических синапсов в процессе, известном как нейротрансмиссия, также называемом синаптической трансмиссией. Основным процессом, который запускает высвобождение нейротрансмиттеров, является потенциал действия, распространяющийся электрический сигнал, который генерируется при использовании электрически возбудимой мембраны нейрона. Это также известно как волна деполяризации.

Анатомия и гистология

Нейроны являются высокоспециализированными относительно обработки и передачи клеточных сигналов. Учитывая разнообразие их функций, выполняемых в разных частях нервной системы, существует, как ожидается, широкое разнообразие нейронов по форме, размеру и электрохимическим свойствам. Например, сома нейрона может варьироваться от 4 до 100 микрометров в диаметре. Сома – тело нейрона. Поскольку она содержит ядро, здесь происходит большая часть синтеза белка. Ядро может иметь диаметр от 3 до 18 микрометров. Дендриты нейрона являются клеточными расширениями со многими ветвями. Эту общую форму и структуру метафорически называют дендритным деревом. Большая часть входа в нейрон происходит через дендритный позвоночник. Аксон – более тонкая, подобная кабелю проекция, которая может растягиваться на десятки, сотни или даже десятки тысяч раз диаметра сомы в длину. Аксон переносит нервные сигналы от сомы (а также возвращает некоторые типы информации). У многих нейронов есть только один аксон, но этот аксон может и, как правило, подвергнется, обширному ветвлению, позволяющему «общаться» со многими клетками-мишенями. Часть аксона, где он появляется из сомы, называется аксональным холмом. Помимо того, что аксональный холм является анатомической структурой, он также является частью нейрона, который имеет наибольшую плотность зависимых от напряжения натриевых каналов. Это делает его наиболее легковозбуждаемой частью нейрона и зоной инициации всплеска для аксона: в электрофизиологических терминах, он имеет наибольший порог потенциального отрицательного воздействия. В то время как аксон и аксональный холм обычно участвуют в оттоке информации, этот регион также может получать данные от других нейронов. Терминаль аксона содержит синапсы, специализированные структуры, в которых химические вещества нейротрансмиттеров высвобождаются для связи с целевыми нейронами. Каноническое представление нейрона связывает специальные функции с его различными анатомическими компонентами; однако, дендриты и аксоны часто действуют так, что это противоречит их так называемой основной функции. Аксоны и дендриты в центральной нервной системе обычно имеют толщину около одного микрометра, а некоторые в периферической нервной системе намного толще. Сома обычно составляет около 10-25 микрометров в диаметре и часто не намного больше, чем содержащееся в ней ядро клетки. Самый длинный аксон человеческого моторного нейрона может быть более метра длиной, от основания позвоночника до пальцев ног. Сенсорные нейроны могут иметь аксоны, которые начинаются от пальцев ног и продолжаются до задней колонки спинного мозга, более 1,5 метров у взрослых. Жирафы имеют одиночные аксоны длиной несколько метров по всей длине шеи. Большая часть того, что известно об аксональной функции, происходит от изучения гигантского аксона кальмара, идеального экспериментального препарата из-за его относительно огромного размера (толщиной 0,5-1 миллиметра, длиной несколько сантиметров). Полностью дифференцированные нейроны постоянно постмитотичны, однако исследования, начиная с 2002 года, показывают, что дополнительные нейроны во всем мозге могут развиваться из нервных стволовых клеток в процессе нейрогенеза. Они встречаются во всем мозге, но особенно сконцентрированы в субвентрикулярной зоне и субгранулярной зоне .

Гистология и внутренняя структура

Многочисленные микроскопические скопления, называемые веществом Ниссля (или тела Ниссля), видны, когда тела нервных клеток окрашиваются базофильным («любящим основание») красителем. Эти структуры состоят из грубого эндоплазматического ретикулума и связанной с ним рибосомальной РНК. Эти структуры были названы в честь немецкого психиатра и невропатолога Франца Ниссли (1860-1919). Они участвуют в синтезе белка, и их известность можно объяснить тем, что нервные клетки очень метаболически активны. Базофильные красители, такие как анилин или (слабо) гематоксилин выделяют отрицательно заряженные компоненты и поэтому связываются с фосфатным скелетом рибосомной РНК. Тело клетки нейрона поддерживается сложной сеткой структурных белков, называемых нейрофиламентами, которые собираются в более крупные нейрофибриллы. Некоторые нейроны также содержат пигментные гранулы, такие как нейромеланин (коричневато-черный пигмент, который является побочным продуктом синтеза катехоламинов) и липофусцин (желтовато-коричневый пигмент), оба из которых накапливаются с возрастом. Другими структурными белками, которые важны для нейрональной функции, являются актин и тубулин из микротрубочек. Актин преимущественно наблюдается на кончиках аксонов и дендриты – в ходе нейронального развития. Существуют разные внутренние структурные характеристики между аксонами и дендритами. Типичные аксоны почти никогда не содержат рибосом, кроме некоторых в начальном сегменте. Дендриты содержат гранулированный эндоплазматический ретикулум или рибосомы в уменьшающихся количествах, когда расстояние от тела клетки увеличивается.

Классификация

Нейроны существуют в разных формах и размерах и могут быть классифицированы по их морфологии и функции. Анатомист Камилло Гольджи сгруппировал нейроны на два типа; тип I с длинными аксонами, используемыми для перемещения сигналов на большие расстояния и тип II с короткими аксонами, которые часто можно путать с дендритами. Клетки типа I могут быть дополнительно разделены по тому, где находится тело клетки или сома. Основная морфология нейронов I типа, представленная спинальными двигательными нейронами, состоит из клеточного тела, называемого сомой, и длинного тонкого аксона, покрытого миелиновой оболочкой. Вокруг тела клетки находится ветвящееся дендритное дерево, которое получает сигналы от других нейронов. Конец аксона имеет ветвящиеся терминалы (терминали аксона), которые высвобождают нейротрансмиттеры в щель, называемую синаптической щелью между терминалями и дендритами следующего нейрона.

Структурная классификация

Полярность

Большинство нейронов могут быть анатомически охарактеризованы как:

    Униполярные или псевдоуниполярные: дендрит и аксон производятся в ходе одного и того же процесса.

    Биполярные: аксон и одиночный дендрит на противоположных концах сомы.

    Многополярный: два или более дендрита, отдельно от аксона:

    Гольджи I: нейроны с длительно выступающими аксональными процессами; примерами являются пирамидальные клетки, клетки Пуркинье и клетки переднего рога.

    Гольджи II: нейроны, аксоновский процесс которых реализуется локально; лучшим примером является гранулярная клетка.

    Анаксонический: аксон нельзя отличить от дендритов.

Другие

Кроме того, некоторые уникальные типы нейронов могут быть идентифицированы в соответствии с их расположением в нервной системе и различной формой. Вот некоторые примеры:

    Миоэпителиальная клетка, интернейроны, образующие плотное сплетение терминалей вокруг сомы клеток-мишеней, обнаружены в коре и мозжечке.

    Клетка Бетца, крупные моторные нейроны.

    Клетка Лугаро, интернейроны мозжечка.

    Средние колючие нейроны, большинство нейронов в полосатом теле.

    Клетки Пуркинье, огромные нейроны в мозжечке, тип многополярного нейрона Гольджи I.

    Пирамидальные клетки, нейроны с треугольной сомой, тип Гольджи I.

    Клетки Реншоу, нейроны с обоими концами, связанные с альфа-двигательными нейронами.

    Однополярные кисти, интернейроны с уникальным дендритом, заканчивающиеся кистообразным пучком.

    Гранулярная клетка, тип нейронов Гольджи II.

    Передние роговые клетки, мотонейроны, расположенные в спинном мозге.

    Шпиндельные клетки, интернейроны, которые соединяют широко разделенные области мозга.

Функциональная классификация

Направление

    Афферентные нейроны передают информацию из тканей и органов в центральную нервную систему и также называются сенсорными нейронами.

    Эфферентные нейроны передают сигналы от центральной нервной системы к эффекторным клеткам и также называются двигательными нейронами.

    Интернейроны соединяют нейроны в определенных областях центральной нервной системы.

Афферентные и эфферентные нейроны также относятся, в основном, к нейронам, которые, соответственно, приносят информацию или отправляют информацию из мозга.

Действие на другие нейроны

Нейрон воздействует на другие нейроны, высвобождая нейротрансмиттер, который связывается с химическими рецепторами. Влияние на постсинаптический нейрон определяется не пресинаптическим нейроном или нейротрансмиттером, а типом активируемого рецептора. Нейротрансмиттер можно рассматривать как ключ, а рецептор – как замок: один и тот же ключ можно использовать для открытия многих разных типов замков. Рецепторы могут быть классифицированы как возбуждающие (приводящие к увеличению скорости выстреливания), ингибирующие (приводящие к снижению скорости выстреливания) или модулирующие (вызывающие долговременные эффекты, не имеющие прямого отношения к скорости выстреливания). Два наиболее распространенных нейротрансмиттера в мозге, глутамат и ГАМК, имеют действия, которые в значительной степени непротиворечивы. Глутамат действует на несколько разных типов рецепторов и обладает эффектами, которые возбуждаются при ионотропных рецепторах и обладают модулирующим эффектом при метаботропных рецепторах. Аналогично, ГАМК действует на несколько разных типов рецепторов, но все они имеют эффекты (по крайней мере, у взрослых животных), которые являются ингибиторными. Из-за этой согласованности, нейробиологи часто используют упрощенную терминологию, говоря о клетках, которые высвобождают глутамат, как о «возбуждающих нейронах», и клетках, которые высвобождают ГАМК, как об «ингибирующих нейронах». Поскольку более 90% нейронов в головном мозге высвобождают либо глутамат, либо ГАМК, эти обозначения охватывают подавляющее большинство нейронов. Существуют также другие типы нейронов, которые оказывают последовательное воздействие на свои мишени, например, «возбуждающие» двигательные нейроны в спинном мозге, которые высвобождают ацетилхолин, и «тормозные» спинальные нейроны, которые высвобождают глицин. Однако, различие между возбуждающим и тормозящим нейротрансмиттерами не является абсолютным. Скорее, это зависит от класса химических рецепторов, присутствующих на постсинаптических нейронах. В принципе, один нейрон, высвобождающий один нейротрансмиттер, может оказывать возбуждающее воздействие на некоторые мишени, тормозящие эффекты на другие, а также модулирующие эффекты на третьи. Например, фоторецепторные клетки в сетчатке постоянно высвобождают нейротрансмиттер глутамат в отсутствие света. Так называемые OFF биполярные клетки, как и большинство нейронов, возбуждаются высвобожденным глутаматом. Однако, соседние целевые нейроны, называемые ON биполярными клетками, вместо этого ингибируются глутаматом, поскольку они не имеют типичных ионотропных глутаматных рецепторов и вместо этого экспрессируют класс ингибирующих метаботропных глутаматных рецепторов. В присутствии света, фоторецепторы прекращают высвобождать глутамат, который освобождает ON биполярные клетки от торможения, активируя их; это одновременно устраняет возбуждение из биполярных клеток OFF, заставляя их «замолчать». Можно определить тип ингибирующего эффекта, который пресинаптический нейрон будет оказывать на постсинаптический нейрон, на основе белков, которые экспрессирует пресинаптический нейрон. Экспрессирующие паравальбумин нейроны обычно гасят выходной сигнал постсинаптического нейрона в зрительной коре, тогда как нейроны, экспрессирующие соматостатин, обычно блокируют дендритные входы в постсинаптический нейрон .

Модели разряда

Нейроны обладают внутренними электросопротивляющими свойствами, такими как колебания осцилляций трансмембранного напряжения. Поэтому нейроны можно классифицировать по их электрофизиологическим характеристикам:

Классификация по производству нейротрансмиттеров

    Холинергические нейроны – ацетилхолин. Ацетилхолин высвобождается из пресинаптических нейронов в синаптическую щель. Он действует как лиганд как для лиганд-ионных каналов, так и для метаботропных (GPCR) мускариновых рецепторов. Никотиновые рецепторы представляют собой пентамерные лиганд-ионные каналы, состоящие из альфа- и бета-субъединиц, которые связывают никотин. Связывание лиганда открывает канал, вызывающий приток деполяризации Na+ и увеличивает вероятность высвобождения пресинаптического нейротрансмиттера. Ацетилхолин синтезируют из холина и ацетил-кофермента А.

    ГАМКергические нейроны – гамма-аминомасляная кислота. ГАМК является одним из двух нейроингибиторов в ЦНС, другим является глицин. ГАМК имеет гомологичную функцию для ацетилхолина, генерируя анионные каналы, которые позволяют хлор-ионам входить в постсинаптический нейрон. Хлор вызывает гиперполяризацию в нейроне, уменьшая вероятность срабатывания потенциала действия, когда напряжение становится более отрицательным (напомним, что для выстреливания потенциала действия необходимо достичь положительного порога напряжения). ГАМК синтезируется из глутамат-нейротрансмиттеров ферментами глутаматной декарбоксилазы.

    Глутаматергические нейроны – глутамат. Глутамат является одним из двух первичных возбуждающих аминокислотных нейротрансмиттеров, а другим является аспартат. Глутаматные рецепторы являются одной из четырех категорий, три из которых являются лиганд-связанными ионными каналами, и один из которых представляет собой рецептор, связанный с G-белком (часто называемый GPCR). Рецепторы альфа-амино-3-гидрокси-5-метил-4-изоксазол-пропионовой кислоты (AMPA) и рецепторы каината функционируют как катионные каналы, проницаемые для каналов Na+ -катиона, опосредующие быструю возбуждающую синаптическую трансмиссию.

    NMDA-рецепторы являются другим катионным каналом, более проницаемым для Са2 +. Функция NMDA-рецепторов зависит от связывания рецептора глицина как соагониста в порах канала. NMDA-рецепторы не функционируют без присутствия обоих лигандов.

    Метаботропные рецепторы, GPCR, модулируют синаптическую передачу и постсинаптическую возбудимость.

    Глютамат может вызвать экситотоксичность, когда поток крови в мозг прерывается, что приводит к повреждению головного мозга. Когда подавляется кровоток, глутамат высвобождается из пресинаптических нейронов, вызывая активацию рецепторов NMDA и AMPA больше, чем обычно, вне условий стресса, приводя к повышению уровней Ca2 + и Na +, входящих в постсинаптический нейрон и вызывающих повреждение клеток. Глутамат синтезируется из аминокислотного глутамина ферментом глутамат-синтазой.

    Допаминергические нейроны – допамин. Допамин представляет собой нейротрансмиттер, который действует на рецепторы типа D1 (D1 и D5), которые увеличивают рецепторы уровень cAMP и PKA и D2 (D2, D3 и D4), которые активируют Gi-связанные рецепторы, которые уменьшают cAMP и PKA. Допамин связан с настроением и поведением и модулирует как до, так и постсинаптическую нейротрансмиссию. Потеря дофаминовых нейронов в чёрном веществе связана с болезнью Паркинсона. Допамин синтезируется из аминокислоты тирозина. Тирозин катализируется в левадопу (или L-DOPA) тирозингидролазой, а левадопа затем превращается в допамин с помощью аминокислоты декарбоксилазы.

    Серотонинергические нейроны – серотонин. Серотонин (5-гидрокситриптамин, 5-НТ) может действовать как возбуждающее или ингибирующее вещество. Из четырех рецепторных классов 5-HT, 3 являются GPCR и 1 является лиганд-катионным каналом. Серотонин синтезируется из триптофана при помощи триптофангидроксилазы, а затем дополнительно декарбоксилазы ароматических кислот. Отсутствие 5-НТ у постсинаптических нейронов было связано с депрессией. Препараты, такие как Prozac и Zoloft, блокирующие пресинаптический серотониновый транспортер, используются для лечения некоторых заболеваний.

Связь

Нейроны «общаются» друг с другом через синапсы, при этом терминали аксона или en passant bouton (тип терминалей, расположенных вдоль длины аксона) одной ячейки связывают другой дендрит нейронов, сому или, реже, аксон. Нейроны, такие как клетки Пуркинье в мозжечке, могут иметь более 1000 дендритных ветвей, связывающих их с десятками тысяч других клеток; другие нейроны, такие как магноцеллюлярные нейроны супраоптического ядра, имеют только один или два дендрита, каждый из которых получает тысячи синапсов. Синапсы могут быть возбуждающими либо тормозящими, и могут либо увеличивать, либо уменьшать активность в целевом нейроне, соответственно. Некоторые нейроны также взаимодействуют через электрические синапсы, которые являются прямыми электрически проводящими переходами между клетками. В химическом синапсе, процесс синаптической передачи заключается в следующем: когда потенциал действия достигает терминали аксонов, он открывает потенциалзависимые кальциевые каналы, позволяя ионам кальция входить в терминаль. Кальций заставляет синаптические везикулы, заполненные молекулами нейротрансмиттера, сливаться с мембраной, высвобождая их содержимое в синаптическую щель. Нейротрансмиттеры диффундируют через синаптическую щель и активируют рецепторы на постсинаптическом нейроне. Высокий уровень цитозольного кальция в терминале аксона также вызывает поглощение митохондриального кальция, что, в свою очередь, активирует митохондриальный энергетический метаболизм для получения АТФ для поддержки непрерывной нейротрансмиссии . Человеческий мозг имеет огромное количество синапсов. Каждый из ста миллиардов нейронов имеют, в среднем, 7000 синаптических связей с другими нейронами. Было подсчитано, что мозг трехлетнего ребенка имеет около 1 квадриллиона синапсов. Это число уменьшается с возрастом, стабилизируясь по взрослой жизни. Оценки для взрослых отличаются, начиная от 100 до 500 трлн. .

Механизмы распространения потенциалов действия

В 1937 году Джон Захари Янг предположил, что гигантский аксон кальмара может быть использован для изучения электрических свойств нейронов. Будучи более крупными, но схожими по своей природе с человеческими нейронами, клетки кальмаров было легче изучать. Путем вставки электродов в аксоны гигантских кальмаров, были сделаны точные измерения мембранного потенциала. Клеточная мембрана аксона и сома содержит потенциалзависимые ионные каналы, которые позволяют нейрону генерировать и распространять электрический сигнал (потенциал действия). Эти сигналы генерируются и распространяются заряжающими ионами, включая натрий (Na +), калий (K +), хлорид (Cl-) и кальций (Ca2 +). Существует несколько стимулов, которые могут активировать нейрон, приводя к электрической активности, включая давление, растяжение, химические передатчики и изменения электрического потенциала на клеточной мембране. Стимулы вызывают выделение конкретных ионных каналов внутри клеточной мембраны, приводя к потоку ионов через клеточную мембрану, изменяя мембранный потенциал. Тонкие нейроны и аксоны требуют меньше метаболических затрат для создания и переноса потенциалов действия, но более толстые аксоны быстрее передают импульсы. Чтобы свести к минимуму расходы на метаболизм, сохраняя при этом высокую проводимость, многие нейроны имеют изоляционные оболочки миелина вокруг своих аксонов. Оболочки образованы глиальными клетками: олигодендроцитами в центральной нервной системе и клетками Шванна в периферической нервной системе. Оболочка позволяет потенциалам действиям двигаться быстрее, чем в немиелинизированных аксонах того же диаметра, при этом используя меньше энергии. Миелиновая оболочка в периферических нервах обычно протекает вдоль аксона в срезах длиной около 1 мм, перемежающихся неочищенными узлами Ранвье, которые содержат высокую плотность потенциалзависимых ионных каналов. Рассеянный склероз – это неврологическое расстройство, которое возникает в результате демиелинизации аксонов в центральной нервной системе. Некоторые нейроны не генерируют потенциалы действия, а вместо этого генерируют градуированный электрический сигнал, который, в свою очередь, вызывает градуированное высвобождение нейротрансмиттера. Такие нейроны, как правило, являются сенсорными нейронами или интернейронами, потому что они не могут переносить сигналы на большие расстояния.

Нейронное кодирование

Нейронное кодирование связано с тем, как сенсорная и другая информация представлена в мозге нейронами. Основная цель изучения нейронного кодирования состоит в том, чтобы охарактеризовать взаимосвязь между стимулом и индивидуальными или ансамблевыми нейронными ответами, а также отношения между электрическими действиями нейронов в этом ансамбле. Считается, что нейроны могут кодировать как цифровую, так и аналоговую информацию.

Принцип «все или ничего»

Проведение нервных импульсов является примером реакции «все или ничего». Другими словами, если нейрон реагирует, он должен ответить полностью. Большая интенсивность стимуляции не дает более сильного сигнала, но может привести к более высокой частоте выстреливания. Существуют различные типы рецепторной реакции на стимул, медленно адаптируемые или тонические рецепторы реагируют на устойчивый стимул и дают устойчивую скорость выстреливания. Эти тонические рецепторы чаще всего реагируют на повышенную интенсивность стимула, увеличивая частоту выстреливания, обычно в качестве силовой функции стимула, нанесенного на импульсы в секунду. Это можно сравнить с внутренним свойством света, где для получения большей интенсивности конкретной частоты (цвета) должно быть больше фотонов, поскольку фотоны не могут стать «сильнее» для определенной частоты. Существует ряд других типов рецепторов, которые называются быстро адаптирующимися, или фазическими, рецепторами, у которых выстреливание уменьшается или останавливается при устойчивом стимуле; примеры включают в себя: кожа при касании объекта заставляет нейроны выстреливать, но, если объект поддерживает постоянное давление на кожу, нейроны прекращают выстреливать. Нейроны кожи и мышц, реагирующие на давление и вибрацию, имеют фильтрующие вспомогательные структуры, которые помогают им функционировать. Пациниальная оболочка – одна из таких структур. Он имеет концентрические слои, как у лука, которые образуются вокруг терминала аксона. В присутствии давления и при деформировании корпуса, механический стимул переносится на аксон, который выстреливает. Если давление устойчивое, стимул отсутствует; таким образом, как правило, эти нейроны реагируют на временную деполяризацию во время начальной деформации и снова, когда давление удаляется, что заставляет корпус снова менять форму. Другие типы адаптации важны для расширения функции ряда других нейронов .

История

Место нейрона в качестве основного функционального блока нервной системы было впервые признано в конце 19 века благодаря работе испанского анатома Сантьяго-Рамон-и-Кахаля . Чтобы сделать структуру отдельных нейронов видимой, Рамон-и-Кахаль улучшил процесс окрашивания серебром, который был разработан Камилло Гольджи. Улучшенный процесс включает в себя метод под названием «двойная пропитка», который используется до сих пор. В 1888 году Рамон-и-Кахаль опубликовал статью о птичьем мозжечке. В этой статье ученый говорит, что не смог найти доказательства анастомоза между аксонами и дендритами и называет каждый нервный элемент «абсолютно автономным кантоном». Это стало известно как доктрина нейрона, один из центральных принципов современной нейронауки. В 1891 году, немецкий анатом Генрих Вильгельм Вальдейер написал очень влиятельный обзор о доктрине нейронов, в котором он ввел термин «нейрон» для описания анатомической и физиологической единицы нервной системы. Метод серебрения – чрезвычайно полезный метод нейроанатомических исследований, потому что, по неизвестным причинам, он окрашивает очень небольшой процент клеток в ткани, поэтому можно видеть полную микроструктуру отдельных нейронов без большого перекрытия с другими клетками в плотно упакованном мозге.

Нейронная доктрина

Нейронная доктрина – это фундаментальная идея о том, что нейроны являются основными структурными и функциональными единицами нервной системы. Теория была выдвинута Сантьяго-Рамоном-и-Кахалем в конце 19 века. Он считал, что нейроны являются дискретными клетками (не связанными в сеть), действующими как метаболически различные единицы. Более поздние открытия дали несколько уточнений простейшей форме доктрины. Например, глиальные клетки, которые не считаются нейронами, играют важную роль в обработке информации. Кроме того, электрические синапсы более распространены, чем считалось ранее , что означает наличие прямых цитоплазматических связей между нейронами. На самом деле, есть примеры нейронов, образующих еще более сильную связь: гигантский аксон кальмара возникает из слияния нескольких аксонов. Рамон-и-Кахаль также постулировал Закон динамической поляризации, в котором говорится, что нейрон принимает сигналы у своих дендритов и тела клетки и передает их, как потенциалы действия, вдоль аксона в одном направлении: от тела клетки . В Законе динамической поляризации есть важные исключения; дендриты могут служить синаптическими выходными участками нейронов, а аксоны могут принимать синаптические входы.

Нейроны в мозге

Количество нейронов в мозге резко варьируется у разных видов животных . Взрослый человеческий мозг содержит около 85-86 миллиардов нейронов, 16,3 миллиарда из которых находятся в коре головного мозга и 69 миллиардов – в мозжечке. В отличие от этого, нематод-червь Caenorhabditis elegans имеет всего 302 нейрона, что делает его идеальным экспериментальным предметом, поскольку ученые смогли отобразить все нейроны этого организма. Плодовая мушка Drosophila melanogaster, распространенный объект биологических экспериментов, имеет около 100000 нейронов и демонстрирует достаточно сложное поведение. Многие свойства нейронов, начиная от типа нейротрансмиттеров, используемых для формирования ионного канала, поддерживаются у разных видов, что позволяет ученым изучать процессы, происходящие в более сложных организмах, на гораздо более простых экспериментальных системах.

Неврологические расстройства

Амиотрофия Шарко-Мари-Тута – это гетерогенное наследственное расстройство нервов (нейропатия), которое характеризуется потерей мышечной ткани и ощущения прикосновения, преимущественно в ногах, а также в руках на поздних стадиях болезни. В настоящее время это заболевание является неизлечимым и одним из наиболее распространенных наследственных неврологических расстройств, которым страдает 37 из 100000 человек. Болезнь Альцгеймера (БА) является нейродегенеративным заболеванием, характеризующимся прогрессирующим ухудшением познавательной способности, а также снижением активности в повседневной жизни и нейропсихиатрическими симптомами или поведенческими изменениями. Наиболее ярким ранним симптомом БА является потеря кратковременной памяти (амнезия), которая обычно проявляется как незначительная забывчивость, которая становится все более выраженной с прогрессированием болезни с относительным сохранением более старых воспоминаний. По мере развития расстройства, когнитивные (интеллектуальные) нарушения распространяются на области языка (афазия), движения (апраксия) и узнавание (агнозия), а также на такие функции, как принятие решений и планирование. Болезнь Паркинсона (БП) является дегенеративным расстройством центральной нервной системы, которое часто ухудшает двигательные навыки и речь пациента. Болезнь Паркинсона относится к группе состояний, называемых двигательными расстройствами. Она характеризуется ригидностью мышц, тремором, замедлением физических движений (брадикинезия), а в крайних случаях – потерей физических движений (акинезия). Основные симптомы являются результатом снижения стимуляции моторной коры базальными ганглиями, что обычно вызвано недостаточным образованием и действием допамина, который вырабатывается в допаминергических нейронах головного мозга. Вторичные симптомы могут включать когнитивную дисфункцию высокого уровня и неявные языковые проблемы. БП является как хроническим, так и прогрессирующим заболеванием. Миастения – это нервно-мышечное заболевание, приводящее к колебательной мышечной слабости и утомляемости во время выполнения простых действий. Слабость обычно вызвана циркулирующими антителами, которые блокируют ацетилхолиновые рецепторы на постсинаптической нервно-мышечной линии, ингибируя стимулирующий эффект нейротрансмиттера ацетилхолина. Миастению лечат при помощи иммунодепрессантов, ингибиторов холинэстеразы и, в отдельных случаях, тимэктомии.

Демиелинизация

Демиелинизация – это потеря миелиновой оболочки, изолирующей нервы. Когда миелин распадается, проводимость сигналов вдоль нерва может быть нарушена или потеряна, а нерв, в конечном итоге, перестает работать. Это приводит к определенным нейродегенеративным расстройствам, таким как рассеянный склероз и хроническая воспалительная демиелинизирующая полинейропатия.

Аксональная дегенерация

Хотя большинство ответных реакций на повреждение включают в себя сигнализацию притока кальция для содействия повторному уплотнению отделенных частей, аксональные травмы первоначально приводят к острой дегенерации аксонов, представляющуют собой быстрое разделение проксимального и дистального концов в течение 30 минут после травмы. После этого наступает дегенерация с набуханием аксолемы, и, в конечном итоге, это приводит к образованию бусиноподобных структур. Гранулярный распад аксонального цитоскелета и внутренних органелл происходит после декомпозиции аксолемы. Ранние изменения включают накопление митохондрий в паранопальных областях в месте повреждения. Эндоплазматический ретикулум разрушается, а митохондрии разбухают, и, в конечном итоге, распадаются. Дезинтеграция зависит от убиквитиновой и кальпаиновой протеаз (вызванных притоком ионов кальция), предполагая, что аксональная дегенерация является активным процессом. Таким образом, аксон подвергается полной фрагментации. Этот процесс занимает около 24 часов в периферической нервной системе и длится дольше в ЦНС. В настоящее время неизвестно, какие сигнальные пути ведут к дегенерации аксолемы.

Нейрогенез

Было продемонстрировано, что нейрогенез может иногда возникать в мозге позвоночных взрослых, что привело к спорам в 1999 году . Более поздние исследования возраста нейронов человека свидетельствуют о том, что этот процесс происходит только у меньшинства клеток, и подавляющее большинство нейронов, содержащих неокортекс, были сформированы до рождения и сохраняются без замены. Тело содержит различные типы стволовых клеток, которые способны дифференцироваться в нейроны. В докладе, опубликованном в журнале Nature, было показано, что исследователи нашли способ трансформировать клетки кожи человека в рабочие нервные клетки, используя процесс, называемый трансдифференцировкой, в котором «клетки вынуждены принимать новые идентичности».

Регенерация нервов

Al, Martini, Frederic Et. Anatomy and Physiology" 2007 Ed.2007 Edition. Rex Bookstore, Inc. p. 288. ISBN 978-971-23-4807-5.

Sabbatini R.M.E. April–July 2003. Neurons and Synapses: The History of Its Discovery. Brain & Mind Magazine, 17. Retrieved March 19, 2007




© 2024
womanizers.ru - Журнал современной женщины