18.07.2019

Образование фибрина. Фибрин необходим для формирования стабильного тромба. Лечение рака желудка


Эрозия - небольшой поверхностный дефект слизистой оболочки белого или жёлтого цвета с ровными краями. Захватывает собственную пластинку слизистой, не проникая до мышечной пластинки. Форма линейная или округлая, отграничение от окружающей слизистой нечёткое. Впервые описал Финдлер в 1939 г. Эрозии появляются в результате кровоизлияний в область шейки желез с развитием гипоксии в этом участке и полным отторжением поверхностного эпителия. Чаще возникают на фоне поверхностного или гиперпластического гастрита. Могут кровоточить, в таком слуае термин «эрозия» используется только при видимой слизистой оболочке, не прикрытой сгустком крови. Эрозии могут быть причиной профузных кровотечений.

Нередко для обозначения эрозий используется термин «афтозная эрозия» из-за афтоподобного основания (афта - жёлтое или белое пятно с красным ободком), на котором они расположены - фибринозный экссудат.

Классификация эрозий желудка

  1. Геморрагические эрозии.
  2. Неполные эрозии (плоские).
  3. Полные эрозии:
    • зрелый тип,
    • незрелый тип.

Геморрагические и неполные эрозии являются следствием острого воспалительного процесса в слизистой оболочке желудка, полные - хронического.

Геморрагические эрозии наблюдаются при геморрагическом эрозивном гастрите. Последний может быть диффузным и очаговым. Очаговый геморрагический эрозивный гастрит чаще встречается в своде и антральном отделе. При эндоскопическом исследовании геморрагические эрозии выглядят как мелкоточечные дефекты слизистой оболочки, напоминающие укол булавкой или иголкой, диаметром до 0,1 см, они могут быть поверхностными и глубокими, цвет эрозий от ярко-красного до вишнёвого. Эрозия, как правило, окружена ободком гиперемии, часто больше самой эрозии - до 0,2 см. Эрозии могут быть покрыты кровью или геморрагическим налётом. Кровоточат, как правило, края эрозий. Слизистая оболочка вокруг отёчна, может быть покрыта кровянистой слизью. Желудок хорошо расправляется воздухом, перистальтика сохранена во всех отделах.

Биопсия: выраженная степень нарушения микроциркуляции, кровоизлияния в область шейки желез с отторжением поверхностного эпителия и выходом крови на поверхность слизистой оболочки.

Неполные эрозии желудка

При эндоскопическом исследовании неполные эрозии выглядят как плоские дефекты слизистой оболочки различной величины и формы - округлые или овальные, диаметром от 0,2 до 0,4 см. Дно может быть чистым или покрытым налётом фибрина, края сглажены. Слизистая вокруг отёчна, гиперемирована в виде небольшого узкого ободка. Могут быть единичные и множественные. Локализуются чаще по малой кривизне кардиального отдела и тела желудка. Обычно эпителизируются в течение 1-2 недель, не оставляя следа на слизистой оболочке. Чаще появляются на фоне хронического атрофического гастрита, сочетаются с язвой желудка, грыжей пищеводного отверстия диафрагмы, рефлюкс-эзофагитом.

Биопсия: в дне и в краях небольшая зона некротизированной ткани, глубже небольшая зона лейкоцитарной инфильтрации.

Полные эрозии желудка

При эндоскопическом исследовании определяются полиповидные образования конической формы на слизистой оболочке с центральными вдавлениями и изъязвлениями или дефектом круглой или овальной формы. Дефект покрыт фибрином часто тёмно-коричневого или чёрного цвета (солянокислый гематин). Эрозии располагаются по вершинам складок. При инсуфляции воздуха складки полностью расправляются, а эрозии остаются. Размеры от 0,1 до 1,0 см (чаще 0,4-0,6 см). Слизистая оболочка в зоне эрозий может быть умеренно отёчной, гиперемированной или почти неизменённой. В формировании этих эрозий ведущая роль принадлежит изменениям со стороны сосудистого и соединительно-тканного аппарата слизистой и подслизистого слоя, что приводит к выраженному отёку и пропитыванию слизистой в зоне эрозии фибрином. В результате этого эрозия как бы выбухает в просвет желудка на отёчно-воспалительном основании. Могут быть единичными, но чаще множественные. Множественные эрозии могут располагаться по вершинам складок в виде «присосок осьминога».

Хронические эрозии желудка

Зрелый тип. Полиповидные образования имеют чёткие контуры, правильной округлой формы, напоминают вулканический кратер. Они существуют годами. В настоящее время такие хронические эрозии принято называть папулами.

Незрелый тип. Полиповидные образования имеют нечёткие контуры: выглядят как бы слегка «гофрированными» или «изъеденными». Они заживают в течение нескольких дней.

Биопсия: зрелые эрозии от незрелых отличаются по гистологической картине.

Незрелый тип: псевдогиперплазия за счёт отёка эпителия.

Зрелый тип: фиброзные изменения в тканях, стаз эритроцитов в сосудах в области шейки желез приводит к выраженному отёку и пропитыванию фибрином слизистой оболочки в зоне эрозии, в результате чего эрозия выбухает в просвет на отёчно-воспалительном основании. Когда полная эрозия заживает, сложно провести дифференциальную диагностику с полипом желудка - надо брать биопсию.

Локализация. Геморрагические эрозии могут локализовываться в любом отделе желудка, неполные наблюдаются чаще в области дна, полные - в дистальных отделах тела желудка и антруме.

Эпителизируются неполные и геморрагические эрозии, за редким исключением, быстро (обычно в течение 5-14 дней), не оставляя никаких существенных (макроскопических) следов. Часть полных эрозий также полностью эпителизируется (иногда в течение длительного времени - до 2-3 лет и более), после чего исчезают выбухания слизистой оболочки на месте эрозии. Однако большинство эрозий этого типа приобретает рецидивирующее течение. В этих случаях они периодически обостряются и заживают, но выбухание слизистой на месте эрозии остаётся постоянно вследствие развившегося фиброза тканей и выраженного продуктивного воспаления. На этих участках при гистологическом исследовании отчетливо выявляется предрасположенность к гиперплазии покровного эпителия. Изредка определяется также гиперплазия железистого аппарата слизистой оболочки желудка. Когда эрозии этой формы заживают, то при эндоскопическом исследовании отличить их от истинного полипоза без изучения гистологического материала невозможно. При наметившейся тенденции к гиперплазии не исключается цепь последовательных превращений: эрозия - железистый полип - рак. В связи с этим требуется динамическое наблюдение за данными больными в связи с опасностью развития у них злокачественных новообразований.

Рак желудка - это злокачественная опухоль, развивающаяся из клеток слизистой оболочки желудка.

Причины рака желудка можно разделить на несколько видов:

1. Алиментарные - связанные с особенностями питания: злоупотребление жирной, жареной, консервированной и острой пищей. Повреждающее действие химически активных веществ на слизистую оболочку желудка заключается в разрушении защитного слоя слизи на поверхности эпителия и проникновении канцерогенных (вызывающих рак) веществ в клетки, с последующим их разрушением или перерождением. В то же время употребление в пищу большого количества овощей и фруктов, микроэлементов и витаминов значительно снижают заболеваемость раком.

2. Влияют на развитие рака желудка курение и алкоголь.

4. Генетические факторы: наследственная предрасположенность - наличие в семье близких родственников, больных раком желудочно-кишечного тракта или других органов.

5. Конституциональные особенности и гормональная активность. Большой вес и ожирение являются фоновыми заболеваниями для органов половой сферы и желудочно-кишечного тракта, в том числе, рака желудка.

До 80% больных начальными формами рака желудка не предъявляют жалоб. Нередко обращение к врачу обусловлено сопутствующими заболеваниями. Выраженные симптомы обычно свидетельствуют о далеко зашедшем процессе.

Симптомы рака желудка

Характерных симптомов рака желудка не существует, но можно выделить ряд симптомов, которые помогают заподозрить данное заболевание, их можно разделить на две группы:

1) Неспецифические для желудка: слабость, подъемы температуры тела, снижение или отсутствие аппетита, потеря веса.

2) Специфические для заболеваний желудка:
- боли в животе: характерна ноющая, тянущая, тупая боль эпигастрии (под левым краем ребер). Может быть периодической, чаще возникает после еды. Боль становится постоянной в результате присоединения сопутствующего воспалительного процесса или прорастании опухолью соседних органов.
- тошнота и рвота: симптом различных заболеваний желудка: острого гастрита, язвенной болезни, при раке характеризует опухоль больших размеров, перекрывающую выход из желудка.
- рвота застойным содержимым (съеденной накануне за 1-2 дня пищей): при опухолях выходного (антрального) отдела желудка, на границе с двенадцатиперстной кишкой, вызывающих стеноз и приводящих к застою содержимого в просвете желудка до нескольких часов или дней, тягостные ощущения и истощение больного.
- рвота «черной, кофейной гущей», черный жидкий стул- характеризует кровотечение из язвы или опухоли желудка, требует срочных лечебных мероприятий (остановки кровотечения).
- затруднение прохождения пищи, вплоть до невозможности прохождения жидкости симптом рака пищевода и начального отдела желудка.
- ощущение переполнения желудка после еды, тяжесть, дискомфорт, быстрое насыщение.
- усиление изжоги, отрыжки - изменение интенсивности жалоб может заметить сам пациент.

3) симптомы далеко зашедшего процесса:
- пальпируемая опухоль в животе.
- увеличение живота в размерах за счет наличия жидкости (асцит) или увеличенной печени.
- желтуха, бледность кожных покровов в результате анемии (снижение красной крови).
- увеличение надключичных лимфатических узлов слева, левых подмышечных лимфоузлов и около пупка (поражение метастазами).

При возникновении у пациента подобных жалоб, а так же при изменении интенсивности и характера обычных жалоб, следует незамедлительно обратиться к врачу.

При рвоте «кофейной гущей» необходимо сразу же вызвать скорую медицинскую помощь.

Ряд обследований, позволяющих выявить рак желудка:

Ведущим исследованием в данном случае является видеоэзофагогастродуоденоскопия (ФГДС).
Этот метод исследования позволяет детально осмотреть слизистую оболочку пищевода, желудка и двенадцатиперстной кишки и обнаружить опухоль, определить её границы и взять кусочек для исследования под микроскопом.
Метод безопасен и хорошо переносится пациентами. При выявлении небольших опухолей в начальной стадии, возможно их удаление через тот же аппарат с применением короткодействующего внутривенного наркоза.

Вид опухоли желудка в режиме NDI через гастроскоп

Всем пациентам после 50 лет, а так же страдающим хроническими гастритами и имеющими в анамнезе язву желудка, необходимо ежегодно выполнять гастроскопию (от латинского «гастер»- желудок, «скопия»- осматривать) с целью выявления опухолевой патологии на ранней стадии.

Рентгеноскопия желудка - один из старых методов исследования. В большей степени позволяет оценить функциональные возможности органа. Позволяет заподозрить рецидив опухоли после операции на желудке. Эффективен при инфильтративных формах рака, когда результаты биопсии могут быть отрицательны, безопасен для больного и не несет большой лучевой нагрузки.

Ультразвуковое исследование органов брюшной полости позволяет выявить косвенные признаки опухоли желудка (симптом объемного образования в верхней половине живота), прорастание опухоли в подлежащие органы (поджелудочную железу), метастатическое поражение печени, близлежащих лимфатических узлов, наличие жидкости в животе (асцит), метастатическое поражение серозной оболочки внутренних органов (брюшины).

Компьютерная томография брюшной полости позволяет более детально интерпретировать выявленные по УЗИ изменения - исключить или подтвердить метастазы во внутренних органах.

Эндоскопическое ультразвуковое исследование используется при подозрении на подслизистые опухоли желудка, растущие в толще его стенки, при выявлении ранних раков для оценки глубины прорастания в опухоли в стенку органа.

Диагностическая лапароскопия - операция, выполняемая под внутривенным наркозом через проколы в брюшной стенке, куда вводится камера для осмотра органов брюшной полости. Используется исследование в неясных случаях, а так же для выявления прорастания опухоли в окружающие ткани, метастазах в печень и по брюшине и взятия биопсии.

Исследование крови на онкомаркеры - белки, вырабатываемые только опухолью и отсутствующие в здоровом организме. Для выявления рака желудка используются Са 19.9, РЭА, Са 72.4. Но все они обладают низкой диагностической ценностью и используются обычно у пролеченных пациентов с целью выявления метастазирования в возможно ранние сроки.

Виды опухолевого поражения желудка в зависимости от локализации опухоли в органе:

Рак кардиального отдела- области пищеводно- желудочного перехода;
- рак нижней трети пищевода;
- рак тела желудка;
- рак антрального отдела желудка(выходного отдела);
- рак угла желудка(угол между желудком и двенадцатиперстной кишкой);
- тотальное поражение желудка при инфильтративных раках.

Формы рака желудка:

Экзофитный рак: опухоль растет в просвет желудка, имея вид полипа, «цветной капусты» или язвы, может быть в виде блюдца и так далее.
- инфильтративный рак: как бы «стелится» вдоль стенки желудка.

Стадии рака желудка различаются в зависимости от глубины прорастания стенки органа:
0 стадия - рак «на месте» - начальная форма рака, ограничен пределами слизистой оболочки, стенку желудка не прорастает;
1 стадия - опухоль прорастает в подслизистый слой стенки желудка без метастазов в близлежащих лимфатических узлах;
2 стадия - растет в мышечную оболочку желудка, имеются метастазы в близлежащих лимфатических узлах;
3 стадия - опухоль прорастает всю толщу стенки желудка, имеются метастазы в близлежащих лимфатических узлах;
4 стадия - опухоль врастает в соседние органы: поджелудочную железу, крупные сосуды брюшной полости. Или имеются метастазы в органы брюшной полости (печень, брюшину, яичники у женщин).

Прогноз при раке желудка

Прогноз наиболее благоприятен при начальном раке и 1 стадии опухолевого процесса, выживаемость достигает 80- 90% . При 2-3 стадиях прогноз зависит от количества метастазов в региональных лимфатических узлах, прямо пропорционален их числу. При 4 стадии прогноз крайне неблагоприятный и надежда на выздоровление может быть только в случае полного удаления опухоли в результате расширенных операций.

Рак желудка, в отличие от других злокачественных опухолей, опасен местным возвратом заболевания (рецидивом) как в стенках удаленного органа так и в самой брюшной полости. Метастазирует рак желудка чаще в печень и по брюшине (имплантационные метастазы), в лимфатические узлы брюшной полости, реже в другие органы (надключичные лимфатические узлы, яичники, легкие). Метастазы - это отсевы из основной опухоли, имеющие её структуру и способные расти, нарушая функцию тех органов, где они развиваются. Появление метастазов связано с закономерным ростом опухоли: ткань растет быстро, питания хватает не всем ее элементам, часть клеток теряет связь с остальными, отрывается от опухоли и попадает в кровеносные сосуды, разносится по организму и попадает в органы с мелкой и развитой сосудистой сетью (печень, легкие, головной мозг, кости), оседают в них из кровотока и начинают расти, образуя колонии- метастазы. В некоторых случаях метастазы могут достигать огромных размеров (более 10 см) и приводить к гибели больных от отравления продуктами жизнедеятельности опухоли и нарушения работы органа.

Рецидивы заболевания очень плохо поддаются лечению, в некоторых случаях возможны повторные операции.

Лечение рака желудка

В лечении рака желудка, как и любого другого рака, ведущим и единственным методом, дающим надежду на выздоровление, является операция.

Существует несколько вариантов операции на желудке:

Удаление части органа - резекция желудка (дистальная- удаление выходного отдела, проксимальная- удаление ближайшего к пищеводу отдела), выполняется при экзофитных опухолях антрального или кардиального отделов желудка соответственно.
- гастрэктомия (от латинского «гастр»-желудок, «эктомия»- удаление) - удаление всего желудка целиком с последующим формированием «резервуара» из петель тонкого кишечника, выполняется при опухолях тела желудка (средней части).
- Комбинированные расширенные операции - с удалением части близлежащих, вовлеченных в опухоль органов- поджелудочной железы, печени и других.
- выведение гастростомы- формирования отверстия в желудке на живот, выполняется при неудалимых опухолях, нарушающих пассаж пищи, для кормления пациентов, с целью облегчить состояние пациента и продлить жизнь.
- формирование обходного соустья между желудком и петлями кишечника- создание обходного пути для прохождения пищи, используется при неудалимых опухолях с целью продления жизни пациентов.

Часто операция дополняется еще каким-нибудь специальным противоопухолевым лечением:

При наличии подтвержденных метастазов в близлежащих (региональных) лимфатических узлах обязательно использование профилактической химиотерапии. Химиотерапия - это внутривенное введение токсичных химических веществ с целью уничтожить микроскопические метастазы, которые глазом обнаружить не удалось во время операции.
- при выявлении метастазов в других органах (печени, легких, брюшине и так далее) обязательно использование химиотерапии, призванной уменьшить размеры метастазов или полностью уничтожить их.

Лучевое лечение при раке желудка не используется так как желудок подвижен в брюшной полости и опухоли этого органа к облучению не чувствительны. Лучевая терапия может быть использована в послеоперационном периоде, в случае если опухоль удалена не полностью, в зоне резекции при исследовании под микроскопом определяются опухолевые клетки - облучение анастомоза (сформированного соустья) между пищеводом и кишечником.

Самолечение при опухолях желудка недопустимо и опасно, так как может привести к полному нарушению прохождения пищи из желудка в кишечник - стенозу привратника, что в свою очередь приводит больных к гибели от голода. Использовать так называемые «народные средства» тоже не стоит, особенно токсичные, так как многие из них (болиголов, чистотел, чага) могут вызывать отравление организма и ухудшать состояние больных.

Только своевременная и квалифицированная медицинская помощь при как можно раннем обращении позволяет обеспечить выздоровление больного.

Осложнения рака желудка:

Кровотечение из опухоли- опасное осложнение, которое может привести больного к гибели очень быстро. При появлении таких симптомов как, рвота «кофейной гущей» - черной свернувшейся кровью или черного жидкого стула необходимо незамедлительно обратиться к врачу или вызвать скорую помощь, особенно если эти симптомы сопровождаются болями в животе, учащением сердцебиения и бледностью кожных покровов, обморочным состоянием.
- стеноз привратника (непроходимость)- формирование препятствия из опухоли в выходном отделе желудка, полностью перекрывающее нормальные пассаж пищи по желудочно-кишечному тракту. Симптомами стеноза привратника являются: рвота застойным содержимым (накануне за 1-2 дня, съеденной пищей). Требует экстренных хирургических вмешательств.

Профилактика

Профилактика рака желудка включает правильное и полноценное питание, отказ от курения, своевременное ежегодное обследование желудка, особенно это касается пациентов, имеющих в анамнезе язвенную болезнь и хронические гастриты.

Консультация врача онколога по теме рак желудка:

1. Вопрос: Можно ли выявить рак желудка на ранней стадии?
Ответ: Да, это возможно, например, в Японии доля ранних раков желудка равна 40%, в то время как в России их не более 10%. Чаще всего ранние раки выявляются при обследовании по поводу другой, сопутствующей патологии. Ведущим в выявлении ранних раков является ежегодное эндоскопическое обследование желудка – ФГДС у опытного специалиста, в клинике с хорошим оборудованием.

2. Вопрос: Каковы результаты лечения ранних раков желудка?
Ответ: Излечение при ранних раках составляет практически 100%. Операции выполняются эндоскопически - через фиброгастроскоп с использованием специальной аппаратуры. Удаляется только слизистая оболочка желудка с опухолью. Подобные операции возможно выполнять только при ранних раках, при всех других формах рака показана полостная операция.

3. Вопрос: Каковы результаты лечения рака желудка на поздних стадиях?
Ответ: прогноз выживаемости более или менее благоприятный только при условии удаления всей опухоли и метастазов в результате расширенных операций, но даже в этом случае возможен рецидив заболевания.

Врач онколог Баринова Наталья Юрьевна

Третьякова О.С., д.мед.н., профессор, Крымский государственный медицинский университет им.С.И.Георгиевского, Симферополь

Свертывание крови (гемокоагуляция) – это сложный многоэтапный ферментный процесс, в котором помимо первичного (сосудисто-тромбоцитарного) звена гемостаза участвует коагуляционное его звено, обеспечивающее формирование фибринового тромба, т.е. окончательную остановку кровотечения.

Коагуляционное звено гемостаза представлено 3-мя системами:

· свертывающей (прокоагулянты)

· противосвертывающей (антикоагулянты)

· плазминовой, или фибринолитической , обеспечивающей лизис фибринового сгустка.

Эти системы, являясь звеньями единого биологического процесса, находятся в физиологическом равновесии, обеспечивая гомеостаз организма.

Физиологическая роль свертывающей системы в организме - окончательная остановка кровотечения путем плотной закупорки поврежденных сосудов красным тромбом, состоящим из сети волокон фибрина с захваченными ею клетками крови (эритроцитами, тромбоцитами и др.).

Факторов свертывания на сегодняшний день известно около 15-ти. Они содержатся в плазме (таблица 1) . По своей природе факторы свертывания представляют собой белки: протеазы и неферментные протеины.

Общеизвестно, что факторы свертывания крови в организме находятся в неактивном состоянии. Их принято обозначать римскими цифрами (в отличие от тромбоцитарных факторов, обозначаемых арабскими). Если плазменные факторы из неактивных (проферментов) становятся активными ферментами, к их обозначению добавляется буква “а” (например, ХII- неактивная форма XIIфактора свертывания, ХIIа - его активная форма). Если активным действием начинает обладать один из фрагментов фактора, к нему тоже добавляется буква “а”. Как уже отмечалось ранее, в процессе свертывания помимо плазменных факторов крови участвуют также тканевые и клеточные, в частности, тромбоцитарные и эритроцитарные факторы. Помимо этого неотъемлемыми участниками свертывания являются ионы кальция и 3-й тромбоцитарный фактор.

Процесс свертывания условно разделяют на 3 фазы (рис. 1): образование

· протромбиназы

· тромбина (из неактивного протромбина под влиянием протромбиназы)

· фибрина (из фибриногена под влиянием тромбина).

Рис. 1 Схема фаз свертывания крови.

Схема свертывания крови, или как ранее ее называли «коагуляционный каскад», представлена на рис. 2.

Первая фаза - образование протромбиназы. Это сложный многоступенчатый процесс, в результате которого в крови накапливается комплекс факторов, способных превратить протромбин в тромбин. Образовавшийся комплекс называется протромбиназой.

Образование протромбиназы может проходить двумя путями (механизмами). Условновыделяют так называемой тканевой или“внешний путь (механизм)” образования протромбиназы, имеющий защитный характер при травме сосуда и “внутренний путь (механизм)” , причиной активации которого могут быть любые патологические состояния.

Рис. 2. Схема свёртывания крови (А.Н. Мамаев 2003)

Пусковым моментом для образования протромбиназы по внешнему механизму (рис. 3), так называемой тканевой протромбиназы , является повреждение клеток и освобождение фактора III(тканевого тромбопластина). Происходит последовательная активация вначале YII, затем Х, и наконец II(протромбина) плазменных факторов. В реализации внешнего механизма принимают участие также плзменный фактор Yи ионы кальция. Этот механизм короче, чем внутренний. Благодаря этому первые порции тромбина, переводящего фибриноген в фибрин, образуются уже через 5-7 секунд после травмы, что позволило назвать этот механизм «запальным».

Рис.3 Схема внутреннего, внешнего и общего пути свертывания крови

Активация свертывающей системы по внутреннему механизму (рис.3) и образование кровяной протромбиназы происходит без участия тканевого тромбопластина (фактора III), т.е. за счет внутренних ресурсов крови или плазмы. Кровяная протромбиназа образуется медленнее, чем тканевая. Сигналом для активации свертывающей ситемы по внутреннему механизму, как и для запуска сосудисто-тромбоцитарного звена, служит повреждение сосудистой стенки. Причем, тромбоцит, на рецепторах которого адсорбируются прокоагулянты, устремляется к месту повреждения, где происходит его активация. Помимо этого он становится поставщиком плазменных факторов (и прежде всего ХII – фактора Хагемана). Контакт фактора Хагемана с коллагеном поврежденной сосудистой стенки приводит к его активации, что служит сигналом для запуска внутреннего механизма коагуляции с последовательной активацией ХI, IХ, YIII и IY(ионов кальция) факторов. Образовавшийся комплекс активирует Х фактор, что приводит к образованию необходимого количества протромбиназы. Процесс образования кровяной протромбиназы длится от 5 до 8-10 минут.

На этом заканчивается первая фаза процесса свертывания – образование протромбиназы, и в дальнейшем свертывание идет по единому пути.

Следует отметить ключевую роль ХII фактора в реализации процессов гемостаза. Активация фактора Хагемана может осуществляться не только при контакте с коллагеном и протеазами, но и с помощью ферментного расщепления (калликреином, плазмином, другими протеазами). ХII фактор является универсальным активатором всех плазменных протеолитических систем (свертывающей, калликреин-кининовой, плазминовой) и системы комплемента. Посредством активации калликреин-кининовой системы внутренний и внешний механизмы взаимно активируют друг друга (между отдельными их этапами существуют своеобразные “мостики” - альтернативные пути для процессов коагуляции). Так, комплекс факторов ХIIа-калликреин-кининоген (внутренний механизм) ускоряет активацию фактора VII (внешний механизм), а фактор VIIa ускоряют активацию фактора IX (внутренний механизм).

Вторая фаза - образование тромбина (рис.3). В эту фазу коагуляции протромбиназа переводит протромбин (II) в активную его форму – тромбин (IIа). Как известно, готового тромбина в плазме крови нет, но имеется его неактивный предшественник - протромбин, который в присутствии ионов кальция и под влиянием протромбиназы превращается в тромбин (рис. 2). Эта фаза длится 2 - 5 сек.

Третья фаза - образование фибрина. Тромбин в последующем переводит фибриноген в фибрин (рис. 3). Вначале образуется фибрин - мономер (Is), затем фибрин - полимер (Ii) (рис.2). Фактор ХIII (фибринстабилизирующий) укрепляет связи фибрин - полимера и переводит растворимый фибрин в нерастворимый (рис.2). Однако на этой стадии трехмерная сеть волокон фибрина, которая содержит эритроциты, тромбоциты и другие клетки крови (рис.4), все еще относительно рыхлая.

Рис. 4. Красный тромб – эритроциты в трёхмерной фибриновой сети

Свою окончательную форму она принимает после ретракции сгустка, обеспечиваемой сократительным белком тромбоцитов (тромбастенином) и ионами кальция, и возникающей при активном сокращении волокон фибрина и выдавливании сыворотки. Благодаря ретракции сгусток становится более плотным, формируется полноценный тромб, обеспечивающий окончательную остановку кровотечения. Эта фаза длится 2 – 5 с.

Доказано, что медленно протекающая коагуляция - это нормальный физиологический процесс, происходящий в огранизме постоянно. В крови даже в отсутствии повреждения сосудов непрерывно происходит превращение небольшого количества фибриногена в фибрин, расщепление и удаление которого обеспечивается специальной системой - плазминовой (системой фибринолиза). Образующийся в процессе коагуляции плазмы фибрин одновременно адсорбирует и инактивирует большие количества тромбина и фактора Ха, т. е. функционирует и как физиологический антикоагулянт.

Таким образом, упрощенно механизм свертывания можно представить следующим образом. Под влиянием протромбиназы (активатора протромбина), образующейся при повреждении тканей, агрегации и разрушении тромбоцитов, и в результате сложных химических взаимодействий факторов свертывания крови, белок плазмы протромбин превращается в тромбин, который, в свою очередь, расщепляет растворенный в плазме фибриноген с образованием фибрина. Волокна фибрина образуют основу тромба, который в последующем стабилизируется XIII (фибринстабилизирующим) фактором. Через несколько часов волокна фибрина активно сжимаются - происходит ретракция сгустка .

NB ! Важно знать, что

1. Физиологическая роль свертывающей системы в организме заключается в окончательной остановке кровотечения путем формирования полноценного фибринового тромба.

2. Процесс формирования окончательного тромба протекает в 3 этапа, конечными продуктами каждого из которых являются протромбиназа, тромбин и фибрин соответственно.

3. Процесс свертывания на 1-ом этапе (образования протромбиназы) может протекать по двум путям (механизмам):внешнему и внутреннему. С момента образования протромбиназы, активирующей процессы превращения протромбина в тромбин, гемостаз идет по единому пути.

4. Из всех плазменных факторов свертывания лишь фактор VII (проконвертин) используется исключительно во внешнем механизме свертывания. Факторы XII, XI, IX, VIII и прекалликреин участвуют только во внутреннем механизме свертывания. Факторы X, V, II и I используются в едином (общем) пути свертывания.

5. Конечным продуктом свертывающей системы является фибрин.

  • Введение

    Современные представления о системе регуляции агрегантного состояния крови позволяют выделить основные механизмы её деятельности:

    • Механизмы гемостаза (их несколько) обеспечивают остановку кровотечения.
    • Механизмы антисвёртывания поддерживают жидкое состояние крови.
    • Механизмы фибринолиза обеспечивают растворение тромба (кровяного сгустка) и восстановление просвета сосуда (реканализацию).

    В обычном состоянии слегка преобладают противосвёртывающие механизмы, однако при необходимости предотвратить кровопотерю физиологический баланс быстро смещается в сторону прокоагулянтов. Если этого не происходит, развивается повышенная кровоточивость (геморрагические диатезы), преобладание прокоагулянтной активности крови чревато развитием тромбозов и эмболий. Выдающийся немецкий патолог Рудольф Вирхов выделил три группы причин, ведущих к развитию тромбоза (классическая триада Вирхова):

    • Повреждение сосудистой стенки.
    • Изменение состава крови.
    • Замедление кровотока (стаз).

    В структуре артериальных тромбозов преобладает первая причина (атеросклероз); замедление кровотока и преобладание прокоагулянтных факторов – основные причины венозных тромбозов.

    Различают два механизма гемостаза:

    • Сосудисто-тромбоцитарный (микроциркуляторный, первичный).
    • Коагуляционный (вторичный, свёртывание крови).

    Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах (в сосудах микроциркуляторного русла), где имеются низкое кровяное давление и малый просвет сосудов (до 100 мкм). В них остановка кровотечения может произойти за счёт:

    • Сокращения стенок сосудов.
    • Образования тромбоцитарной пробки.
    • Сочетания того и другого.

    Коагуляционный гемостаз обеспечивает остановку кровотечения в более крупных сосудах (артериях и венах). В них остановка кровотечения осуществляется за счёт свёртывания крови (гемокоагуляции).

    Полноценная гемостатическая функция возможна только при условии тесного взаимодействия сосудисто-тромбоцитарного и гемокоагуляционного механизмов гемостаза. Тромбоцитарные факторы принимают активное участие в коагуляционном гемостазе, обеспечивают конечный этап формирования полноценной гемостатической пробки – ретракцию кровяного сгустка. В то же время плазменные факторы непосредственно влияют на агрегацию тромбоцитов. При ранениях как мелких, так и крупных сосудов происходит образование тромбоцитарной пробки с последующим свёртыванием крови, организацией фибринового сгустка, а затем – восстановление просвета сосудов (реканализация путём фибринолиза).

    Реакция на повреждение сосуда зависит от разнообразных процессов взаимодействия между сосудистой стенкой, циркулирующими тромбоцитами, факторами свёртывания крови, их ингибиторами и фибринолитической системой. Гемостатический процесс модифицируется посредством положительной и отрицательной обратной связи, которая поддерживает стимуляцию констрикции сосудистой стенки и образование комплексов тромбоциты-фибрин, а также растворение фибрина и релаксацию сосудов, что позволяет вернуться к нормальному состоянию.

    Для того чтобы кровоток в обычном состоянии не нарушался, а при необходимости наступало эффективное свёртывание крови, необходимо поддержание равновесия между факторами плазмы, тромбоцитов и тканей, способствующими свёртыванию и тормозящими его. Если это равновесие нарушается, возникает либо кровотечение (геморрагические диатезы), либо повышенное тромбообразование (тромбозы).

  • Сосудисто-тромбоцитарный гемостаз

    У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 минуты (так называемое время кровотечения). Этот первичный гемостаз почти целиком обусловлен сужением сосудов и их механической закупоркой агрегатами тромбоцитов – «белым тромбом» (рис. 1).

    Рисунок 1. Сосудисто-тромбоцитарный гемостаз. 1 – повреждение эндотелия; 2 – адгезия тромбоцитов; 3 – активация тромбоцитов, выделение биологически активных веществ из их гранул и образование медиаторов – производных арахидоновой кислоты; 4 – изменение формы тромбоцитов; 5 – необратимая агрегация тромбоцитов с последующим формированием тромба. ФВ – фактор Виллебранда, ТФР – тромбоцитарный фактор роста, TXA 2 – тромбоксан А 2 , АДФ – аденозиндифосфат, ФАТ – фактор активации тромбоцитов. Пояснения в тексте .

    Тромбоциты (кровяные пластинки, нормальное содержание в крови 170-400х10 9 /л) представляют собой плоские безъядерные клетки неправильной округлой формы диаметром 1-4 мкм. Кровяные пластинки образуются в красном костном мозге путём отщепления участков цитоплазмы от гигантских клеток – мегакариоцитов; из каждой такой клетки может возникнуть до 1000 тромбоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней и затем разрушаются в селезёнке.

    В крови тромбоциты пребывают в неактивированном состоянии. Их активация наступает в результате контакта с активирующей поверхностью и действия некоторых факторов свёртывания. Активированные тромбоциты выделяют ряд веществ, необходимых для гемостаза.

    • Клиническое значение нарушений в сосудисто-тромбоцитарном звене гемостаза

      При уменьшении количества тромбоцитов (тромбоцитопении) или нарушении их структуры (тромбоцитопатии) возможно развитие геморрагического синдрома с петехиально-пятнистым типом кровоточивости. Тромбоцитоз (увеличение содержания тромбоцитов) предрасполагает к гиперкоагуляции и тромбозам. К методам оценки состояния сосудисто-тромбоцитарного гемостаза относят определение резистентности (ломкости) капилляров (манжеточная проба Румпель-Лееде-Кончаловского, симптомы жгута и щипка), время кровотечения, подсчёт числа тромбоцитов, оценку ретракции сгустка крови, определение ретенции (адгезивности) тромбоцитов, исследование агрегации тромбоцитов.

      К агрегации тромбоцитов даже в отсутствии внешних повреждений могут приводить дефекты эндотелиальной оболочки сосудов. С целью предупреждения тромбозов назначают препараты, подавляющие агрегацию тромбоцитов - антиагреганты. Ацетилсалициловая кислота (аспирин) селективно и необратимо ацетилирует фермент циклооксигеназу (ЦОГ), катализирующую первый этап биосинтеза простаноидов из арахидоновой кислоты. В невысоких дозах препарат влияет преимущественно на изоформу ЦОГ-1. В результате в циркулирующих в крови тромбоцитах прекращается образование тромбоксана A 2 , обладающего проагрегантным и сосудосуживающим действием. Метаболиты производных тиенопиридина (клопидогрел, тиклопидин) необратимо модифицируют рецепторы 2PY 12 на мембране тромбоцитов, в результате блокируется связь АДФ с его рецептором на мембране тромбоцита, что приводит к угнетению агрегации тромбоцитов. Дипиридамол угнетает фермент фосфодиэстеразу в тромбоцитах, что приводит к накоплению в тромбоцитах цАМФ, обладающего антиагрегантным действием. Блокаторы гликопротеинов IIb/IIIa тромбоцитов (абциксимаб, тирофибан и эптифибатид) воздействуют на конечную стадию агрегации, блокируя участок взаимодействия гликопротеинов IIb/IIIa на поверхности тромбоцитов с фибриногеном и другими адгезивными молекулами.

      В настоящее время проходят клинические испытания новых антиагрегантов (тикагрелор, прасугрел).

      В качестве местного кровоостанавливающего средства используется губка гемостатическая коллагеновая, усиливающая адгезию и активацию тромбоцитов, а также запускающая коагуляционный гемостаз по внутреннему пути.

  • Коагуляционный гемостаз
    • Общие положения

      После того как образуется тромбоцитарный сгусток, степень сужения поверхностных сосудов уменьшается, что могло бы привести к вымыванию сгустка и возобновлению кровотечения. Однако к этому времени уже набирают достаточную силу процессы коагуляции фибрина в ходе вторичного гемостаза, обеспечивающего плотную закупорку повреждённых сосудов тромбом («красным тромбом»), содержащим не только тромбоциты, но и другие клетки крови, в частности эритроциты (рис. 9).

      Рисунок 9. Красный тромб – эритроциты в трёхмерной фибриновой сети. (источник – сайт www.britannica.com).

      Постоянная гемостатическая пробка формируется при образовании тромбина посредством активации свёртывания крови. Тромбин играет важную роль в возникновении, росте и локализации гемостатической пробки. Он вызывает необратимую агрегацию тромбоцитов (неразрывная связь коагуляционного и сосудисто-тромбоцитарного звеньев гемостаза) (рис. 8) и отложение фибрина на тромбоцитарных агрегатах, образующихся в месте сосудистой травмы. Фибрино-тромбоцитарная сеточка является структурным барьером, предотвращающим дальнейшее вытекание крови из сосуда, и инициирует процесс репарации ткани.

      Свёртывающая система крови – это фактически несколько взаимосвязанных реакции, протекающих при участии протеолитических ферментов. На каждой стадии данного биологического процесса профермент (неактивная форма фермента, предшественник, зимоген) превращается в соответствующую сериновую протеазу. Сериновые протеазы гидролизуют пептидные связи в активном центре, основу которого составляет аминокислота серин. Тринадцать таких белков (факторы свёртывания крови) составляют систему свёртывания (таблица 1; их принято обозначать римскими цифрами (например, ФVII – фактор VII), активированную форму обозначают прибавлением индекса «а» (ФVIIа – активированный фактор VIII). Из них семь активируются до сериновых протеаз (факторы XII, XI, IX, X, II, VII и прекалликреин), три являются кофакторами этих реакций (факторы V, VIII и высокомолекулярный кининоген ВМК), один – кофактор/рецептор (тканевой фактор, фактор III), ещё один – трасглутаминаза (фактор XIII) и, наконец, фибриноген (фактор I) является субстратом для образования фибрина, конечного продукта реакций свёртывания крови (таблица 1).

      Для пострибосомального карбоксилирования терминальных остатков глутаминовой кислоты факторов свёртывания II, VII, IX, X (витамин К-зависимые факторы), а также двух ингибиторов свёртывания (протеинов C (си) и S) необходим витамин К. В отсутствии витамина К (или на фоне приёма непрямых антикоагулянтов, например, варфарина) печень содержит лишь биологически неактивные белковые предшественники перечисленных факторов свёртывания. Витамин К – необходимый кофактор микросомальной ферментной системы, которая активирует эти предшественники, превращая их множественные N-концевые остатки глутаминовой кислоты в остатки γ -карбоксиглутаминовой кислоты. Появление последних в молекуле белка придёт ему способность связывать ионы кальция и взаимодействовать с мембранными фосфолипидами, что необходимо для активации указанных факторов. Активная форма витамина К – восстановленный гидрохинон, который в присутствии O 2 , CO 2 и микросомальной карбоксилазы превращается в 2,3-эпоксид с одновременным γ-карбоксилированием белков. Для продолжения реакций γ –карбоксилирования и синтеза биологически-активных белков витамин К опять должен восстановиться в гидрохинон. Под действием витамин-К-эпоксидредуктазы (которую ингибируют терапевтические дозы варфарина) из 2,3-эпоксида вновь образуется гидрохиноновая форма витамина К (рис. 13).

      Для осуществления многих реакций коагуляционного гемостаза необходимы ионы кальция (Ca ++ , фактор свёртывания IV, рис. 10). Для предотвращения преждевременного свёртывания крови in vitro при подготовке к выполнению ряда коагуляционных тестов к ней добавляют вещества, связывающие кальций (оксалаты натрия, калия или аммония, цитрат натрия, хелатообразующее соединение этилендиаминтетраацетат (ЭДТА)).

      Таблица 1. Факторы свёртывания крови (а – активная форма) .

      Фактор Название Наиболее важное место образования T ½ (период полусуществования) Средняя концентрация в плазме, мкмоль/мл Свойства и функции Синдром недостаточности
      Название Причины
      I Фибриноген Печень 4-5 дней 8,8 Растворимый белок, предшественник фибриногена Афибриногенемия, недостаточность фибриногена Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления, поражение печёночной паренхимы.
      II Протромбин 3 дня 1,4 α 1 -глобулин, профермент тромбина (протеаза) Гипопротромбинемия Наследование по аутосомно-рецессивному типу (хромосома 11); поражения печени, недостаточность витамина К, коагулопатия потребления.
      III Тканевой тромбопластин (тканевой фактор) Клетки тканей Фосфолипропротеин; активен во внешней системе свёртывания
      IV Кальций (Са ++) 2500 Необходим для активации большинства факторов свёртывания
      V Проакцелерин, АК-глобулин Печень 12-15 ч. 0,03 Растворимый b-глобулин, связывается с мембраной тромбоцитов; активируется фактором IIa и Са ++ ; Va служит компонентом активатора протромбина Парагемофилия, гипопроакцелеринемия Наследование по аутосомно-рецессивному типу (хромосома 1); поражения печени.
      VI Изъят из классификации (активный фактор V)
      VII Проконвертин Печень (витамин К-зависимый синтез) 4-7 ч. 0,03 α 1 -глобулин, профермент (протеаза); фактор VIIа вместе с фактором III и Са ++ активирует фактор X во внешней системе Гипопроконвертинемия Наследование по аутосомно-рецессивному типу (хромосома 13); недостаточность витамина К.
      VIII Антигемофильный глобулин Различные ткани, в т.ч. эндотелий синусоид печени 8-10 ч. b 2 -глобулин, образует комплекс с фактором Виллебранда; активируется фактором IIa и Са ++ ; фактор VIIIa служит кофактором в превращении фактора X в фактор Xa Гемофилия А (классическая гемофилия); синдром Виллебранда Наследование по рецессивному типу, сцепление с X-хромосомой (половой); Наследование обычно по аутосомно-доминантному типу.
      IX Фактор Кристмаса 24 часа 0,09 α 1 -глобулин, контакт-чувствительный профермент (протеаза); фактор IXа вместе с фактором пластинок 3, фактором VIIIa и Са ++ активирует фактор X dj внутренней системе Гемофилия B Наследование по рецессивному типу, сцепленное с X-хромосомой (половой).
      X Фактор Стюарта-Прауэра Печень Печень (витамин К-зависимый синтез) 2 дня 0,2 α 1 -глобулин, профермент (протеаза); фактор Xa служит компонентом активатора протромбина Недостаточность фактора X Наследование по аутосомноу-рецессивному типу (хромосома 13)
      XI Плазменный предшественник трмбопластина (ППТ) Печень 2-3 дня 0,03 γ-глобулин, контакт-чувствительный профермент (протеаза); фактор XIa вместе с Са ++ активирует фактор IX Недостаточность ППТ Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления.
      XII Фактор Хагемана Печень 1 день 0,45 b-глобулин, контакт-чувствительный профермент (протеаза) (изменяет форму при контакте с поверхностями); активируется калликреином, коллагеном и др.; активирует ПК, ВМК, фактор XI Синдром Хагемана (обычно не проявляется клинически) Наследование обычно по аутосомно-рецессивному типу (хромосома 5).
      XIII Фибрин-стабилизирующий фактор Печень, тромбоциты 8 дней 0,1 b-глобулин, профермент (трансамидаза); фактор XIIIa вызывает переплетение нитей фибрина Недостаточность фактора XIII Наследование по аутосомно-рецессивному типу (хромосомы 6, 1); коагулопатия потребления.
      Прекалликреин (ПК), фактор Флетчера Печень 0,34 b-глобулин, профермента (протеаза); активируется фактором XIIa; калликреин способствует активации факторов XII и XI Наследование (хромосома 4)
      Высокомолекулярный кининоген (ВМК) (фактор Фитцжеральда, фактор Вильямса, фактор Фложека) Печень 0,5 α 1 -глобулин; способствует контактной активации факторов XII и XI Обычно клинически не проявляется Наследование (хромосома 3)

      Основы современной ферментной теории свёртывания крови были заложены в конце XIX – начале XX столетия профессором Тартуского (Дерптского) университета Александром-Адольфом Шмидтом (1877 г.) и уроженцем Санкт-Петербурга Паулом Моравитцем (1904 г.), а также в работе С. Мурашева о специфичности действия фибрин-ферментов (1904 г.). Основные этапы свёртывания крови, приведённые в схеме Моравитца, верны и поныне. Вне организма кровь свёртывается за несколько минут. Под действием «активатора протромбина» (тромбокиназы), белок плазмы протромбин превращается в тромбин. Последний вызывает ращепление растворённого в плазме фибриногена с образованием фибрина, волокна которого образуют основу тромба. В результате этого кровь превращается из жидкости в студенистую массу. С течением времени открывались всё новые и новые факторы свёртывания и в 1964 году двумя независимыми группами учёных (Davie EW, Ratnoff OD; Macfarlane RG) была предложена ставшая классической модель коагуляционного каскада (водопада), представленная во всех современных учебниках и руководствах. Эта теория подробно изложена ниже. Использование подобного рода схемы свёртывания крови оказалось удобным для правильного толкования комплекса лабораторных тестов (таких как АЧТВ, ПВ), применяющихся при диагностике различных геморрагических диатезов коагуляционного генеза (например, гемофилии А и B). Однако модель каскада не лишена недостатков, что послужило поводом для разработки альтернативной теории (Hoffman M, Monroe DM) – клеточной модели свёртывания крови (см. соответствующий раздел).

    • Модель коагуляционного каскада (водопада)

      Механизмы инициации свёртывания крови подразделяют на внешние и внутренние. Такое деление искусственно, поскольку оно не имеет места in vivo, но данный подход облегчает интерпретацию лабораторных тестов in vitro.

      Большинство факторов свёртывания циркулируют в крови в неактивной форме. Появление стимулятора коагуляции (триггера) приводит к запуску каскада реакций, завершающихся образованием фибрина (рис. 10). Триггер может быть эндогенным (внутри сосуда) или экзогенным (поступающим из тканей). Внутренний путь активации свёртывания крови определяется как коагуляция, инициируемая компонентами, полностью находящимися в пределах сосудистой системы. Когда процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, говорят о внешней системе свёртывания крови. В результате запуска реакций системы гемостаза независимо от источника активации образуется фактор Xa, обеспечивающий превращение протромбина в тромбин, а последний катализирует образование фибрина из фибриногена. Таким образом, и внешний и внутренний пути замыкаются на единый – общий путь свёртывания крови.

      • Внутренний путь активации свёртывания крови

        Компонентами внутреннего пути являются факторы XII, XI, IX, XIII, кофакторы – высокомолекулярный кининоген (ВМК) и прекалликреин (ПК), а также их ингибиторы.

        Внутренний путь (рис. 10 п. 2) запускается при повреждении эндотелия, когда обнажается отрицательно заряженная поверхность (например, коллаген) в пределах сосудистой стенки. Контактируя с такой поверхностью, активируется ФXII (образуется ФXIIa). Фактор XIIa активирует ФXI и превращает прекалликреин (ПК) в калликреин, который активирует фактор XII (петля положительной обратной связи). Механизм взаимной активации ФXII и ПК отличается большей быстротой по сравнению с механизмом самоактивации ФXII, что обеспечивает многократное усиление системы активации. Фактор XI и ПК связываются с активирующей поверхностью посредством высокомолекулярного кининогена (ВМК). Без ВМК активации обоих проферментов не происходит. Связанный ВМК может расщепляться калликреином (К) или связанным с поверхностью ФXIIa и инициировать взаимную активацию систем ПК-ФXII.

        Фактор XIa активирует фактор IX. Фактор IX может также активироваться под действием комплекса ФVIIa/ФIII (перекрёст с каскадом внешнего пути), причём считается, что in vivo это доминирующий механизм. Активированный ФIXa требует наличия кальция и кофактора (ФVIII), для прикрепления к тромбоцитарному фосфолипиду (тромбоцитарному фактору 3 – см. раздел сосудисто-тромбоцитарный гемостаз) и превращения фактора X в фактор Xa (переход с внутреннего на общий путь). Фактор VIII действует в качестве мощного ускорителя завершающей ферментативной реакции.

        Фактор VIII, который также называют антигемофильным фактором, кодируется большим геном, расположенным на конце X-хромосомы. Он активируется под действием тромбина (основной активатор), а также факторов IXa и Xa. ФVIII циркулирует в крови, будучи связанным с фактором фон Виллебранда (ФВ) – большим гликопротеином, продуцируемым эндотелиальными клетками и мегакариоцитами (см. также раздел сосудисто-тромбоцитарный гемостаз). ФВ служит внутрисосудистым белком-носителем для ФVIII. Связывание ФВ с ФVIII стабилизирует молекулу ФVIII, увеличивает её период полусуществования внутри сосуда и способствует её транспорту к месту повреждения. Однако чтобы активированный фактор VIII мог проявить свою кофакторную активность, он должен отсоединиться от ФВ. Воздействие тромбина на комплекс ФVIII/ФВ приводит к отделению ФVIII от несущего протеина и расщеплению на тяжёлую и лёгкую цепи ФVIII, которые важны для коагулянтной активность ФVIII.

      • Общий путь свёртывания крови (образование тромбина и фибрина)

        Внешний и внутренний пути свёртывания крови замыкаются на активации ФX, с образования ФXa начинается общий путь (рис. 10 п. 3). Фактор Xa активирует ФV. Комплекс факторов Xa, Va, IV (Ca 2+) на фосфолипидной матрице (главным образом это тромбоцитарный фактор 3 – см. сосудисто-тромбоцитарный гемостаз) является протромбиназой, которая активирует протромбин (превращение ФII в ФIIa).

        Тромбин (ФIIa) представляет собой пептидазу, особенно эффективно расщепляющую аргиниловые связи. Под действием тромбина наступает частичный протеолиз молекулы фибриногена. Однако функции тромбина не ограничиваются влиянием на фибрин и фибриноген. Он стимулирует агрегацию тромбоцитов, активирует факторы V, VII, XI и XIII (положительная обратная связь), а также разрушает факторы V, VIII и XI (петля отрицательная обратной связи), активирует фибринолитическую систему, стимулирует эндотелиальные клетки и лейкоциты. Он также вызывает миграцию лейкоцитов и регулирует тонус сосудов. Наконец, стимулируя рост клеток, способствует репарации тканей.

        Тромбин вызывает гидролиз фибриногена до фибрина. Фибриноген (фактор I) представляет собой сложный гликопротеин, состоящий из трёх пар неидентичных полипептидных цепей. Тромбин прежде всего расщепляет аргинин-глициновые связи фибриногена с образованием двух пептидов (фибринопептид А и фибринопептид B) и мономеров фибрина. Эти мономеры образуют полимер, соединяясь бок в бок (фибрин I) и удерживаясь рядом водородными связями (растворимые фибрин-мономерные комплексы – РФМК). Последующий гидролиз этих комплексов при действии тромбина приводит к выделению фибринопептида B. Кроме того, тромбин активирует ФXIII, который в присутствии ионов кальция связывает боковые цепи полимеров (лизин с глутаминовыми остатками) изопептидными ковалентными связями. Между мономерами возникают многочисленные перекрёстные связи, создающие сеть взаимодействующих фибриновых волокон (фибрин II), весьма прочных и способных удерживать тромбоцитарную массу на месте травмы.

        Однако на этой стадии трёхмерная сеть волокон фибрина, которая удерживает в больших количествах клетки крови и кровяные пластинки, всё ещё относительно рыхлая. Свою окончательную форму она принимает после ретракции: через несколько часов волокна фибрина сжимаются и из него как бы выдавливается жидкость – сыворотка, т.е. лишённая фибриногена плазма. На месте сгустка остаётся плотный красный тромб, состоящий из сети волокон фибрина с захваченными ею клетками крови. В этом процессе участвуют тромбоциты. В них содержится тромбостенин – белок, сходный с актомиозином, способный сокращаться за счёт энергии АТФ. Благодаря ретракции сгусток становится более плотным и стягивает края раны, что облегчает её закрытие клетками соединительной ткани.

    • Регуляция системы свертывания крови

      Активация свёртывания крови in vivo модулируется рядом регуляторных механизмов, которые ограничивают реакции местом повреждения и предотвращают возникновение массивного внутрисосудистого тромбоза. К регулирующим факторам относят: кровоток и гемодилюцию, клиренс, осуществляемый печенью и ретикулоэндотелиальной системой (РЭС), протеолитическое действие тромбина (механизм отрицательной обратной связи), ингибиторы сериновых протеаз.

      При быстром кровотоке происходит разбавление активных сериновых протеаз и транспорт их в печень для утилизации. Кроме того, диспергируются и отсоединяются периферические тромбоциты от тромбоцитарных агрегатов, что ограничивает размер растущей гемостатической пробки.

      Растворимые активные сериновые протеазы инактивируются и удаляются из кровообращения гепатоцитами и ретикулоэндотелиальными клетками печени (купферовскими клетками) и других органов.

      Тромбин в качестве фактора, ограничивающего свёртывание, разрушает факторы XI, V, VIII, а также инициирует активацию фибринолитической системы посредством белка C, что приводит к растворению фибрина, в том числе за счёт стимуляции лейкоцитов (клеточный фибринолиз – см. раздел « фибринолиз »).

      • Ингибиторы сериновых протеаз

        Процесс свёртывания крови строго контролируется присутствующими в плазме белками (ингибиторами), которые ограничивают выраженность протеолитических реакций и обеспечивают защиту от тромбообразования (рис. 11). Главными ингибиторами факторов свёртывания крови являются антитромбин III (АТ III, гепариновый кофактор I), гепариновый кофактор II (ГК II), протеин «си» (PC) и протеин «эс» (PS), ингибитор пути тканевого фактора (ИПТФ), протеаза нексин-1 (ПН-1), C1-ингибитор, α 1 -антитрипсин (α 1 -АТ) и α 2 -макроглобулин (α 2 -М). Большинство этих ингибиторов, за исключением ИПТФ и α 2 -М, относятся к серпинам (СЕРиновых Протеаз ИНгибиторы).

        Антитромбин III (АТ III) является серпином и основным ингибитором тромбина, ФXa и ФIXa, он также инактивирует ФXIa и ФXIIa (рис. 11). Антитромбин III нейтрализует тромбин и другие сериновые протеазы посредством ковалентного связывания. Скорость нейтрализации сериновых протеаз антитромбином III в отсутствии гепарина (антикоагулянта) невелика и существенно увеличивается в его присутствии (в 1000 – 100000 раз). Гепарин представляет собой смесь полисульфатированных эфиров гликозаминогликанов; он синтезируется тучными клетками и гранулоцитами, его особенно много в печени, лёгких, сердце и мышцах, а также в тучных клетках и базофилах. В терапевтических целях вводят синтетический гепарин (нефракционированный гепарин, низкомолекулярные гепарины). Гепарин образует с АТ III комплекс, называемый антитромбином II (АТ II), повышая тем самым эффективность АТ III и подавляя образование и действие тромбина. Кроме того, гепарин служит активатором фибринолиза и поэтому способствует растворению сгустков крови. Значение АТ III, как основного модулятора гемостаза подтверждается наличием тенденции к тромбообразованию у лиц с врождённым или приобретённым дефицитом АТ III.

        Протеинс си (PC) – витамин К-зависимый белок, синтезируемый гепатоцитами. Циркулирует в крови в неактивной форме. Активируется небольшим количеством тромбина. Эта реакция значительно ускоряется тромбомодулином (ТМ) – поверхностным белком эндотелиальных клеток, который связывается с тромбином. Тромбин в комплексе с тромбомодулином становится антикоагулянтным белком, способным активировать сериновую протеазу – PC (петля отрицательной обратной связи). Активированный PC в присутствии своего кофактора – протеина S (PS) расщепляет и инактивирует ФVa и ФVIIIa (рис. 11). PC и PS являются важными модуляторами активации свёртывания крови и их врождённый дефицит связан со склонностью к тяжёлым тромботическим нарушениям. Клиническое значение PC доказывает повышенное тромбообразование (тромбофилия) у лиц с врождённой патологией ФV (Лейденская мутация – замена гуанина 1691 аденином, что приводит к замещению аргинина глутамином в позиции 506 аминокислотной последовательности белка). Такая патология ФV устраняет сайт, по которому происходит расщепление активированным протеином C, что мешает инактивации фактора V и способствует возникновению тромбоза.

        Активированный PC посредством механизма обратной связи подавляет продукцию эндотелиальными клетками ингибитора активатора плазминогена-1 (ИАП-1), оставляя без контроля тканевой активатор плазминогена (ТАП – см. разле фибринолиз). Это косвенно стимулирует фибринолитическую систему и усиливает антикоагулянтную активность активированного PC.

        α 1 -антитрипсин (α 1 -АТ) нейтрализует ФXIa и активированный PC.

        С1-ингибитор (С1-И) также является серпином и главным ингибитором сериновых ферментов контактной системы. Он нейтрализует 95% ФXIIa и более 50% всего калликреина, образующегося в крови. При дефиците С1-И возникает ангионевротический отёк. ФXIa инактивируется в основном α1-антитрипсином и АТ III.

        Гепариновый кофактор II (ГК II) – серпин, ингибирующий только тромбин в присутствии гепарина или дерматан-сульфата. ГК II находится преимущественно во внесосудистом пространстве, где локализуется дерматан-сульфат, и именно здесь может играть решающую роль в ингибировании тромбина. Тромбин способен стимулировать пролиферацию фибробластов и других клеток, хемотаксис моноцитов, облегчать адгезию нейтрофилов к эндотелиальным клеткам, ограничивать повреждение нервных клеток. Способность ГК II блокировать эту деятельность тромбина играет определённую роль в регулировании процессов заживления ран, воспаления или развития нервной ткани.

        Протеаза нексин-1 (ПН-1) – серпин, ещё один вторичный ингибитор тромбина, предотвращающий его связывание с клеточной поверхностью.

        Ингибитор пути тканевого фактора (ИПТФ) представляет собой куниновый ингибитор свёртывания (кунины гомологичны ингибитору панкреатического трипсина – апротинину). Синтезируется главным образом эндотелиальными клетками и в меньшей степени – мононуклеарами и гепатоцитами. ИПТФ связывается с ФXa, инактивируя его, а затем комплекс ИПТФ-ФXa инактивирует комплекс ТФ-ФVIIa (рис. 11). Нефракционированный гепарин, низкомолекулярные гепарины стимулируют выделение ИПТФ и усиливают его антикоагулянтную активность.

        Рисунок 11. Действие ингибиторов коагуляции. ФЛ – фосфолипиды. Пояснения в тексте .

    • Фибринолиз

      Конечная стадия в репаративном процессе после повреждения кровеносного сосуда происходит за счёт активации фибринолитической системы (фибринолиза), что приводит к растворению фибриновой пробки и началу восстановления сосудистой стенки.

      Растворение кровяного сгустка – такой же сложный процесс, как и его образование. В настоящее время считается, что даже в отсутствие повреждения сосудов постоянно происходит превращение небольшого количества фибриногена в фибрин. Это превращение уравновешивается непрерывно протекающим фибринолизом. Лишь в том случае, когда свёртывающая система дополнительно стимулируется в результате повреждения ткани, выработка фибрина в области повреждения начинает преобладать и наступает местное свёртывание.

      Существуют два главных компонента фибринолиза: фибринолитическая активность плазмы и клеточный фибринолиз.

      • Фибринолитическая система плазмы

        Фибринолитическая система плазмы (рис. 12) состоит из плазминогена (профермент), плазмина (фермент), активаторов плазминогена и соответствующих ингибиторов. Активация фибринолитической системы приводит к образованию плазмина – мощного протеолитического фермента, обладающего разнообразным действием in vivo.

        Предшественник плазмина (фибринолизина) – плазминоген (профибринолизин) представляет собой гликопротеин, продуцируемый печенью, эозинофилами и почками. Активация плазмина обеспечивается механизмами, аналогичными внешней и внутренней свёртывающим системам. Плазмин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину. Плазмин отщепляет от фибрина путём гидролиза растворимые пептиды, которые тормозят действие тромбина (рис. 11) и, таким образом, препятствуют дополнительному образованию фибрина. Плазмин расщепляет также другие факторы свёртывания: фибриноген, факторы V, VII, VIII, IX, X, XI и XII, фактор Виллебранда и тромбоцитарые гликопротеины. Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свёртываемость крови. Он также активирует компоненты каскада комплемента (C1, C3a, C3d, C5).

        Превращение плазминогена в плазмин катализируется активаторами плазминогена и строго регулируется различными ингибиторами. Последние инактивируют как плазмин, так и активаторы плазминогена.

        Активаторы плазминогена образуются или сосудистой стенкой (внутренняя активация), или тканями (внешняя активация). Внутренний путь активации включает активацию белков контактной фазы: ФXII, XI, ПК, ВМК и калликреина. Это важный путь активации плазминогена, но основной – через ткани (внешняя активация); он происходит в результате действия тканевого активатора плазминогена (ТАП), выделяемого эндотелиальными клетками. ТАП также продуцируется другими клетками: моноцитами, мегакариоцитами и мезотелиальными клетками.

        ТАП представляет собой сериновую протеазу, которая циркулирует в крови, образуя комплекс со своим ингибитором, и имеет высокое сродство к фибрину. Зависимость ТАП от фибрина ограничивает образование плазмина зоной аккумуляции фибрина. Как только небольшое количество ТАП и плазминогена соединилось с фибрином, каталическое действие ТАП на плазминоген многократно усиливается. Затем образовавшийся плазмин разлагает фибрин, обнажая новые лизиновые остатки, с которыми связывается другой активатор плазминогена (одноцепочечная урокиназа). Плазмин превращает эту урокиназу в иную форму – активную двуцепочечную, вызывая дальнейшую трансформацию плазминогена в плазмин и растворение фибрина.

        Одноцепочечная урокиназа выявляется в большом количестве в моче. Как и ТАП, она относится к сериновым протеазам. Основная функция этого фермента проявляется в тканях и заключается в разрушении внеклеточного матрикса, что способствует миграции клеток. Урокиназа продуцируется фибробластами, моноцитами/макрофагами и эндотелиальными клетками. В отличие от ТАП циркулирует в не связанной с ИАП форме. Она потенцирует действие ТАП, будучи введённой после (но не до) ТАП.

        Как ТАП, так и урокиназа синтезируются в настоящее время методами рекомбинантной ДНК и пспользуются в качестве лекарственны средств (рекомбинантный тканевой активатор плазминогена, урокиназа). Другими активаторами плазминогена (нефизиологическими) являются стрептокиназа (продуцируемая гемолитическим стрептококком), антистрептлаза (комплекс человеческого плазминогена и бактериальной стрептокиназы) и стафилокиназа (продуцируемая золотистым стафилококком) (рис. 12). Эти вещества используются в качестве фармакологических тромболитических средств, применяются для лечения острого тромбоза (например, при остром коронарном синдроме, ТЭЛА).

        Расщепление плазмином пептидных связей в фибрине и фибриногене приводит к образованию различных дериватов с меньшей молекулярной массой, а именно продуктов деградации фибрина (фибриногена) – ПДФ. Самый крупный дериват называется фрагментом X (икс), который ещё сохраняет аргинин-глициновые связи для дальнейшего действия, осуществляемого тромбином. Фрагмент Y (антитромбин) меньше, чем X, он задерживает полимеризацию фибрина, действуя как конкурентный ингибитор тромбина (рис. 11). Два других, меньших по размеру фрагмента, D и E, ингибируют агрегацию тромбоцитов.

        Плазмин в кровотоке (в жидкой фазе) быстро инактивируется естественно образующимися ингибиторами, но плазмини в фибриновом сгустке (гелевая фаза) защищён от действия ингибиторов и лизирует фибрин локально. Таким образом, в физиологических условиях фибринолиз ограничен зоной фибринообрвазония (гелевая фаза), то есть гемостатической пробкой. Однако при патологических состояниях фибринолиз может стать генерализованным, охватывая обе фазы плазминообразования (жидкую и гелевую), что приводит к литическому состоянию (фибринолитическое состояние, активный фибринолиз). Оно характеризуется образованием избыточного количества ПДФ в крови, а также проявляющимся клинически кровотечением.

      • Клиническое значение нарушений в коагуляционном звене гемостаза и фибринолитической системе

        Врождённое (см. табл. 1) или приобретённое уменьшение содержания или активности плазменных факторов свёртывания может сопровождаться повышенной кровоточивостью (геморрагические диатезы с гематомным типом кровоточивости, например гемофилия А, гемофилия B, афибриногенемия, гипокоагуляционная стадия синдрома диссеминированного внутрисосудистого свёртывания – ДВС, печёночно-клеточная недостаточность и др.; дефицит фактора Виллебранда приводит к развитию геморрагического синдрома со смешанным типом кровоточивости, т.к. ФВ участвует и в сосудисто-тромбоцитарном и в коагуляционном гемостазе). Избыточная активация коагуляционного гемостаза (например, в гиперкоагуляционную фазу ДВС), резистентность факторов свёртывания к соответствующим ингибиторам (например, Лейденская мутация фактора V) или дефицит ингибиторов (например, дефицит АТ III, дефицит PС) приводят к развитию тромбозов (наследственные и приобретённые тромбофилии).

        Избыточная активация фибринолитической системы (например, при наследственном дефиците α 2 -антиплазмина) сопровождается повышенной кровоточивостью, её недостаточность (например, при повышенном уровне ИАП-1) – тромбозами.

        В качестве антикоагулянтов в клинической практике применяются следующие лекарственные препараты: гепарины (нефракционированный гепарин – НФГ и низкомолекулярные гепарины – НМГ), фондапаринукс (взаимодействует с АТ III и селективно ингибирует ФXa), варфарин . Управлением по контролю за качеством пищевых продуктов и лекарственных средств (FDA) США разрешены к применению (по специальным показаниям (например, для лечения гепарининдуцированной тромбоцитопенической пурпуры) внутривенные препараты – прямые ингибиторы тромбина: липерудин, аргатробан, бивалирудин. Клинические испытания проходят пероральные ингибиторы фактора IIa (дабигатран) и фактора Xa (ривароксабан, апиксабан).

        Коллагеновая кровоостанавливающая губка способствует местному гемостазу за счёт активации тромбоцитов и факторов свёртывания контактной фазы (внутренний путь активации гемостаза).

        В клинике используются следующие основные методы исследования системы коагуляционного гемостаза и мониторинга терапии антикоагулянтами: тромбоэластография, определение времени свёртывания крови , времени рекальцификации плазмы, активированного частичного (парциального) тромбопластинового времени (АЧТВ или АПТВ) , протромбинового времени (ПВ), протромбинового индекса, международного нормализованного отношения (МНО) , тромбинового времени , анти-фактор Xa активности плазмы, . транексамовая кислота (циклокапрон). Апротинин (гордокс, контрикал, трасилол) – природный ингибитор протеаз, получаемый из бычьих лёгких. Он подавляет действие многих веществ, участвующих в воспалении, фибринолизе, образовании тромбина. К числу этих веществ относятся калликреин и плазмин.

    • Список литературы
      1. Agamemnon Despopoulos, Stefan Silbernagl. Color Atlas of Physiology 5th edition, completely revised and expanded. Thieme. Stuttgart - New York. 2003.
      2. Физиология человека: в 3-х томах. Т. 2. Пер. с англ./Под ред. Р. Шмидта и Г. Тевса. – 3-е изд. – М.: Мир, 2005. – 314 с., ил.
      3. Шиффман Ф. Дж. Патофизиология крови. Пер. с англ. – М. – Спб.: «Издательство БИНОМ» - «Невский диалект», 2000. – 448 с., ил.
      4. Физиология человека: Учебник/ Под. ред. В. М. Смирнова. – М.: Медицина, 2002. – 608 с.: ил.
      5. Физиология человека: Учебник/ В двух томах. Т. I./ В. М. Покровский, Г. Ф. Коротько, В. И. Кобрин и др.; Под. ред. В. М. Покровского, Г. Ф. Коротько. – М.: Медицина, 1997. – 448 с.: ил.
      6. Ройтберг Г. Е., Струтынский А. В. Лабораторная и инструментальная диагностика заболеваний внутренних органов – М.: ЗАО «Издательство БИНОМ», 1999 г. – 622 с.: ил.
      7. Руководство по кардиологии: Учебное пособие в 3 т. /Под ред. Г. И. Сторожакова, А. А. Горбанченкова. – М.: Гэотар-Медиа, 2008. – Т. 3.
      8. T Wajima1, GK Isbister, SB Duffull. A Comprehensive Model for the Humoral Coagulation Network in Humans. Clinical pharmacology & Therapeutic s, VOLUME 86, NUMBER 3, SEPTEMBER 2009., p. 290-298.
      9. Gregory Romney and Michael Glick. An Updated Concept of Coagulation With Clinical Implications. J Am Dent Assoc 2009;140;567-574.
      10. D. Green. Coagulation cascade. Hemodialysis International 2006; 10:S2–S4.
      11. Клиническая фармакология по Гудману и Гилману. Под общей ред. А. Г. Гилмана. Пер. с англ. под общей ред. к. м. н. Н. Н. Алипова. М., "Практика", 2006.
      12. Bauer KA. New Anticoagulants. Hematology Am Soc Hematol Educ Program. 2006:450-6
      13. Karthikeyan G, Eikelboom JW, Hirsh J. New oral anticoagulants: not quite there yet. Pol Arch Med Wewn. 2009 Jan-Feb;119(1-2):53-8.
      14. Руководство по гематологии в 3 т. Т. 3. Под ред. А. И. Воробьёва. 3-е изд. Перераб. и дополн. М.: Ньюдиамед: 2005. 416 с. С ил.
      15. Andrew K. Vine. Recent advances in hemostasis and thrombosis. RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2009, VOLUME 29, NUMBER 1.
      16. Папаян Л. П. Современная модель гемостаза и механизм действия препарата Ново-Севен // Проблемы гематологии и переливания крови. Москва, 2004, №1. – с. 11-17.

Трансформация протромбина в тромбин реализуется протромбиназным комплексом. При этом от протромби­на отщепляется фрагмент F 1+2 , который стабилен в плазме, и его обнаружение иммунологическими методами используется как один из маркеров глобальной активации коагуляции (тромбинемии). В ходе дальнейшего протеолиза одноцепочечная молеку­ла протромбина трансформируется в мейзотромбин, а за­тем в двуцепочный активный фермент - тромбин (фактор IIа).

Тромбин, который непосредственно действует на фибриноген и приводит к образованию фибрина, является основной эффекторной молекулой каскада коагуляции.

III. Образование фибрина

Коагуляция завершается трансформацией растворенного в плазме фибриногена в фибрин, который образует основной каркас сгустка крови.

Образование фибрина происходит в три этапа:

1) образование фибрин-мономеров;

2) полимеризация;

3) стабилизация (рис. ...).

1. Образование фибрин-мономеров (фибриноген ® фибрин-мономер + + 2 фибринопептида А + 2 фибринопептида В).

Тромбин отщепляет от молекулы фибриногена в домене E части полипептидных цепей Аa (фибринопептиды А) и полипептидных цепей Bb (фибринопептиды В), в результате чего становятся доступными для межмолекулярных взаимодействий участки А и В. Это приводит к образованию фибрин-мономера – предшественника фибриновых цепей и фибриновой сети.

2. Полимеризация.

Проходит два этапа:

а) фибрин-мономер ® линейный полимер;

б) линейный полимер ® фибриновая сеть.

А. Фибрин-мономер ® линейный полимер. Фибриновая цепь формируется спонтанно – образуются межмолекулярные нековалентные связи между доменами E и D и концевыми доменами D. В результате фибрин-мономеры образуют линейный полимер шириной в 2 молекулы.

Б. Линейный полимер ® фибриновая сеть. Рост полимера (образование фибриновой сети) обеспечивается реципрокным взаимодействием участка B домена Е одной молекулы и комплиментарным участком b домена D другой молекулы. В результате полимеризации образуется фибриновая сеть представляющая собой гель (макроскопически при этом уже определяется сгусток) – растворимый фибрин (фибрин S), способный растворяться в растворе мочевины или монохлоруксусной кислоты.

3. Стабилизация (растворимый фибрин-полимер ® нерастворимый фибрин-полимер).

Осуществляется фактором XIIIa (трансглютаминаза) в присутствии Ca 2+ . Фактор XIIIа катализирует образование ковалентных связей (пептидных мостиков, соединяющих боковые цепи лизина и глютамина) между g- , а затем a-цепями в областях контактов смежных фибрин-мономеров. Это приводит к прочному перекрестному соединению фибрин-мономеров, стабилизации фибрин-полимера и образованию нерастворимого фибрина (фибрин I). В фибриновый сгусток в ходе его формирования вовлекаются тромбоциты, эритроциты и лейкоциты.

5.2.4. Коагуляция in vivo

Выделение "внутреннего" и "внешнего" путей каскада коагуляции условно и используется, во-первых, из дидактических соображений, а, во-вторых, упрощает трактовку результатов коагуляционных тестов in vitro.

В организме "внешний" и "внутренний" пути не изолированы друг от друга, а представляют собой единую систему. Так, у больных с наследственным дефицитом фактора XII, прекалликреина или ВМК увеличено АПТВ (тест воспроизводящий внутренний путь коагуляции in vivo), но не бывает геморрагического синдрома (наоборот, могут наблюдаться тромбозы обусловленные гипоактивацией фибринолиза). Следовательно, эти белки не являются обязательными компонентами для функционирования гемостаза in vivo. "Контактные" факторы, по-видимому, имеют ограниченное значение при коагуляции с целью остановки кровотечения, но необходимы для формирования фибрина в ходе воспалительной реакции, при заживлении раны и, кроме того, осуществляют внутренний запуск фибринолиза.

Внешняя (быстрая) активация, имеет доминирующее значение для запуска гемостаза. ТФ – ключ к инициированию коагуляции. При повреждении ткани и нарушении целостности сосудистой стенки клетки, не входящие в состав сосудистых стенок и крови соприкасаются с плазмой, что приводит к немедленному образованию комплекса [ТФ-VIIa+Ca 2+ ] в плазме.

Поступление ТФ может происходить также при:

а) интенсивном перемещении жидкости из тканей в кровь (кровопотеря, обезвоживание, уменьшение ОЦК);

б) активации эндотелиальных клеток, моноцитов и макрофагов (стаз крови, гипоксия, ацидоз, действие различных протеаз и других веществ);

в) поступлении в кровоток гетерогенного тромбопластина (например, при эмболии околоплодными водами).

Образование комплекса ТФ-VIIa-Ca 2+ непосредственно приводит к активации фактора X и, в конечном итоге, к образованию фибринового сгустка.

Таким образом, комплекс VII-ТФ-Ca 2+ в каскаде коагуляции in vivo играет главную роль.

Каскад коагуляции подобен лавине: от момента запуска свертывания крови до образования фибрина происходит интенсивное наращивание числа последовательно активируемых молекул. Так, одна молекула фактора IXa активирует несколько десятков молекул фактора X, а одна моле­кула Ха - множество молекул фактора II (протромбина). Именно в связи с наличием этого механизма теория функционирования коагуляции носит название "каскадной". Если для запуска коагуляции необходимы немногие миллиграммы плазменных факторов (например, концентрация фактора VII составляет 5 мг/л, фактора XII - 30 мг/л, причем для эффективного свертывания крови достаточно <10% нормальной величины), то количество конечного продукта коагуляции – фибрина – может составить десятки граммов.

=======================================================================




© 2024
womanizers.ru - Журнал современной женщины