21.09.2019

Open Library - открытая библиотека учебной информации. Научная электронная библиотека


Материал из Википедии - свободной энциклопедии

Критерий оптимальности (критерий оптимизации) - характерный показатель решения задачи, по значению которого оценивается оптимальность найденного решения, то есть максимальное удовлетворение поставленным требованиям. В одной задаче может быть установлено несколько критериев оптимальности.

Оптимизационные задачи

Примером задачи многопараметрической (двухпараметрической) оптимизации будет задача выбора диаметра трубопровода с горячей жидкостью или паром, так как одновременно выбирается диаметр трубопровода и толщина тепловой изоляции при постоянстве остальных. При этом оба параметра дискретны, так как существуют как сортамент труб , так и типовые параметры готовых теплоизоляционных сегментов . Оптимизации подлежат параметры многих технологических процессов , объёмы производства предприятий , уровни надёжности продукции и мн. др.

Большие сложности вызывают «неисчисляемые» критерии оптимальности, которые касаются, например, гуманитарных вопросов, художественного впечатления, изменения ландшафта и т. п. (например, максимум удобства, красоты). Для учёта таких критериев могут применяться экспертные оценки .

Наиболее разработаны методы однокритериальной оптимизации, в большинстве случаев позволяющие получить однозначное решение. В задачах многокритериальной оптимизации абсолютно лучшее решение выбрать невозможно (за исключением частных случаев), так как при переходе от одного варианта к другому, как правило, улучшаются значения одних критериев, но ухудшаются значения других. Состав таких критериев называется противоречивым, и окончательно выбранное решение всегда будет компромиссным. Компромисс разрешается введением тех или иных дополнительных ограничений или субъективных предположений. Поэтому невозможно говорить об объективном единственном решении такой задачи.

Часто многокритериальную задачу сводят к однокритериальной применением «свёртки» критериев в один комплексный, называемый целевой функцией (или функцией полезности). Например, в конкурсных процедурах выбора подрядчиков и поставщиков целевая функция рассчитывается на основе балльных критериев. В ряде случаев успешно применяются ранжирование и последовательное применение критериев оптимальности, метод анализа иерархий .

Иногда общим методом для многокритериальных задач называют оптимальность по Парето , которое позволяет найти ряд «неулучшаемых» решений, однако этот метод не гарантирует глобальной оптимальности решений. Менее известна «оптимальность по Слейтеру».

Нормирование критериев

Для удобства и однозначности восприятия критерии K i (где i = 1,…, m ; m - число критериев) нормируют , то есть обычно приводят к следующему виду:

  • K i ≥ 0;
  • критерии K i убывают с улучшением решения, с ростом качества проектируемого объекта (встречается и обратное требование).
Например, минимальная цена, потери энергии (равны 1- КПД);
  • предпочтительно критерии приводить к безразмерному виду.
например, относительная цена (по отношению к цене самого дорогого варианта);
  • как следствие, наилучшее значение критерия равно нулю. Решения, у которого все критерии нулевые (K i = 0), соответствует идеальному конечному результату (ИКР ), когда объекта нет, но его функция выполняется.

См. также

Напишите отзыв о статье "Критерий оптимальности"

Примечания

Литература

  1. Вентцель Е.С. Исследование операций: задачи, принципы, методология. - М .: Наука, 1988. - С. 206.
  2. Черноруцкий И.Г. Методы оптимизации в теории управления. - СПб. : Питер, 2004. - С. 256. - ISBN 5-94723-514-5 .
  3. Штойер Р. Многокритериальная оптимизация: теория, вычисления и приложения. - М .: Радио и связь, 1992. - С. 504.

Отрывок, характеризующий Критерий оптимальности

Пьер тоже нагнул голову и отпустил руки. Не думая более о том, кто кого взял в плен, француз побежал назад на батарею, а Пьер под гору, спотыкаясь на убитых и раненых, которые, казалось ему, ловят его за ноги. Но не успел он сойти вниз, как навстречу ему показались плотные толпы бегущих русских солдат, которые, падая, спотыкаясь и крича, весело и бурно бежали на батарею. (Это была та атака, которую себе приписывал Ермолов, говоря, что только его храбрости и счастью возможно было сделать этот подвиг, и та атака, в которой он будто бы кидал на курган Георгиевские кресты, бывшие у него в кармане.)
Французы, занявшие батарею, побежали. Наши войска с криками «ура» так далеко за батарею прогнали французов, что трудно было остановить их.
С батареи свезли пленных, в том числе раненого французского генерала, которого окружили офицеры. Толпы раненых, знакомых и незнакомых Пьеру, русских и французов, с изуродованными страданием лицами, шли, ползли и на носилках неслись с батареи. Пьер вошел на курган, где он провел более часа времени, и из того семейного кружка, который принял его к себе, он не нашел никого. Много было тут мертвых, незнакомых ему. Но некоторых он узнал. Молоденький офицерик сидел, все так же свернувшись, у края вала, в луже крови. Краснорожий солдат еще дергался, но его не убирали.
Пьер побежал вниз.
«Нет, теперь они оставят это, теперь они ужаснутся того, что они сделали!» – думал Пьер, бесцельно направляясь за толпами носилок, двигавшихся с поля сражения.
Но солнце, застилаемое дымом, стояло еще высоко, и впереди, и в особенности налево у Семеновского, кипело что то в дыму, и гул выстрелов, стрельба и канонада не только не ослабевали, но усиливались до отчаянности, как человек, который, надрываясь, кричит из последних сил.

Главное действие Бородинского сражения произошло на пространстве тысячи сажен между Бородиным и флешами Багратиона. (Вне этого пространства с одной стороны была сделана русскими в половине дня демонстрация кавалерией Уварова, с другой стороны, за Утицей, было столкновение Понятовского с Тучковым; но это были два отдельные и слабые действия в сравнении с тем, что происходило в середине поля сражения.) На поле между Бородиным и флешами, у леса, на открытом и видном с обеих сторон протяжении, произошло главное действие сражения, самым простым, бесхитростным образом.
Сражение началось канонадой с обеих сторон из нескольких сотен орудий.
Потом, когда дым застлал все поле, в этом дыму двинулись (со стороны французов) справа две дивизии, Дессе и Компана, на флеши, и слева полки вице короля на Бородино.
От Шевардинского редута, на котором стоял Наполеон, флеши находились на расстоянии версты, а Бородино более чем в двух верстах расстояния по прямой линии, и поэтому Наполеон не мог видеть того, что происходило там, тем более что дым, сливаясь с туманом, скрывал всю местность. Солдаты дивизии Дессе, направленные на флеши, были видны только до тех пор, пока они не спустились под овраг, отделявший их от флеш. Как скоро они спустились в овраг, дым выстрелов орудийных и ружейных на флешах стал так густ, что застлал весь подъем той стороны оврага. Сквозь дым мелькало там что то черное – вероятно, люди, и иногда блеск штыков. Но двигались ли они или стояли, были ли это французы или русские, нельзя было видеть с Шевардинского редута.
Солнце взошло светло и било косыми лучами прямо в лицо Наполеона, смотревшего из под руки на флеши. Дым стлался перед флешами, и то казалось, что дым двигался, то казалось, что войска двигались. Слышны были иногда из за выстрелов крики людей, но нельзя было знать, что они там делали.
Наполеон, стоя на кургане, смотрел в трубу, и в маленький круг трубы он видел дым и людей, иногда своих, иногда русских; но где было то, что он видел, он не знал, когда смотрел опять простым глазом.
Он сошел с кургана и стал взад и вперед ходить перед ним.
Изредка он останавливался, прислушивался к выстрелам и вглядывался в поле сражения.
Не только с того места внизу, где он стоял, не только с кургана, на котором стояли теперь некоторые его генералы, но и с самых флешей, на которых находились теперь вместе и попеременно то русские, то французские, мертвые, раненые и живые, испуганные или обезумевшие солдаты, нельзя было понять того, что делалось на этом месте. В продолжение нескольких часов на этом месте, среди неумолкаемой стрельбы, ружейной и пушечной, то появлялись одни русские, то одни французские, то пехотные, то кавалерийские солдаты; появлялись, падали, стреляли, сталкивались, не зная, что делать друг с другом, кричали и бежали назад.
С поля сражения беспрестанно прискакивали к Наполеону его посланные адъютанты и ординарцы его маршалов с докладами о ходе дела; но все эти доклады были ложны: и потому, что в жару сражения невозможно сказать, что происходит в данную минуту, и потому, что многие адъютапты не доезжали до настоящего места сражения, а передавали то, что они слышали от других; и еще потому, что пока проезжал адъютант те две три версты, которые отделяли его от Наполеона, обстоятельства изменялись и известие, которое он вез, уже становилось неверно. Так от вице короля прискакал адъютант с известием, что Бородино занято и мост на Колоче в руках французов. Адъютант спрашивал у Наполеона, прикажет ли он пореходить войскам? Наполеон приказал выстроиться на той стороне и ждать; но не только в то время как Наполеон отдавал это приказание, но даже когда адъютант только что отъехал от Бородина, мост уже был отбит и сожжен русскими, в той самой схватке, в которой участвовал Пьер в самом начале сраженья.
Прискакавший с флеш с бледным испуганным лицом адъютант донес Наполеону, что атака отбита и что Компан ранен и Даву убит, а между тем флеши были заняты другой частью войск, в то время как адъютанту говорили, что французы были отбиты, и Даву был жив и только слегка контужен. Соображаясь с таковыми необходимо ложными донесениями, Наполеон делал свои распоряжения, которые или уже были исполнены прежде, чем он делал их, или же не могли быть и не были исполняемы.
Маршалы и генералы, находившиеся в более близком расстоянии от поля сражения, но так же, как и Наполеон, не участвовавшие в самом сражении и только изредка заезжавшие под огонь пуль, не спрашиваясь Наполеона, делали свои распоряжения и отдавали свои приказания о том, куда и откуда стрелять, и куда скакать конным, и куда бежать пешим солдатам. Но даже и их распоряжения, точно так же как распоряжения Наполеона, точно так же в самой малой степени и редко приводились в исполнение. Большей частью выходило противное тому, что они приказывали. Солдаты, которым велено было идти вперед, подпав под картечный выстрел, бежали назад; солдаты, которым велено было стоять на месте, вдруг, видя против себя неожиданно показавшихся русских, иногда бежали назад, иногда бросались вперед, и конница скакала без приказания догонять бегущих русских. Так, два полка кавалерии поскакали через Семеновский овраг и только что въехали на гору, повернулись и во весь дух поскакали назад. Так же двигались и пехотные солдаты, иногда забегая совсем не туда, куда им велено было. Все распоряжение о том, куда и когда подвинуть пушки, когда послать пеших солдат – стрелять, когда конных – топтать русских пеших, – все эти распоряжения делали сами ближайшие начальники частей, бывшие в рядах, не спрашиваясь даже Нея, Даву и Мюрата, не только Наполеона. Они не боялись взыскания за неисполнение приказания или за самовольное распоряжение, потому что в сражении дело касается самого дорогого для человека – собственной жизни, и иногда кажется, что спасение заключается в бегстве назад, иногда в бегстве вперед, и сообразно с настроением минуты поступали эти люди, находившиеся в самом пылу сражения. В сущности же, все эти движения вперед и назад не облегчали и не изменяли положения войск. Все их набегания и наскакивания друг на друга почти не производили им вреда, а вред, смерть и увечья наносили ядра и пули, летавшие везде по тому пространству, по которому метались эти люди. Как только эти люди выходили из того пространства, по которому летали ядра и пули, так их тотчас же стоявшие сзади начальники формировали, подчиняли дисциплине и под влиянием этой дисциплины вводили опять в область огня, в которой они опять (под влиянием страха смерти) теряли дисциплину и метались по случайному настроению толпы.

Генералы Наполеона – Даву, Ней и Мюрат, находившиеся в близости этой области огня и даже иногда заезжавшие в нее, несколько раз вводили в эту область огня стройные и огромные массы войск. Но противно тому, что неизменно совершалось во всех прежних сражениях, вместо ожидаемого известия о бегстве неприятеля, стройные массы войск возвращались оттуда расстроенными, испуганными толпами. Они вновь устроивали их, но людей все становилось меньше. В половине дня Мюрат послал к Наполеону своего адъютанта с требованием подкрепления.

), содержанием целей, на достижение которых направлены действия, и т. д. Принцип оптимальности заимствован из математического программирования и теории управления. Методологической основой теории оптимизации экономики является принцип народно-хозяйственной оптимальности, т. е. изучение экономических явлений с позиций целого, с позиций всего народного хозяйства.

К. о. призван помочь обосновать решение. Практические задачи обоснования решения можно условно на 3 типа. Сущность задач 1-го типа заключается в необходимости выбора наилучшего варианта действий, обеспечивающих достижение определённого, т. е. заданного результата при минимальном расходе ресурсов. В задачах 2-го типа объём имеющихся ресурсов зафиксирован, нужно наилучший вариант их использования для получения максимального результата. Задачи, в которых поиск наилучшего варианта ведётся при отсутствии жёстких ограничений как по объёму используемых ресурсов, так и по конечному результату, относятся к 3-му типу. При обосновании решений оперируют понятием степень достижения цели, которую характеризуют определённым показателем.

На разных этапах проектирования встает задача выбора наилучшего варианта из множества допустимых проектных решений, удовлетворяющих предъявленным требованиям.

Процесс принятия решения при оптимальном проектировании характеризуют следующие основные черты: наличие цели (критериев оптимальности) и альтернативных вариантов проектируемого объекта, и учет существенных факторов при проектировании.

Понятие «оптимальное решение» при проектировании имеет вполне определенное толкование - лучшее в том или ином смысле проектное решение, допускаемое обстоятельствами. В подавляющем большинстве случаев одна и та же техническая задача может быть решена несколькими способами, приводящими не только к различным выходным характеристикам, схемам и конструкциям, но даже и к физическим принципам, положенным в основу построения объекта. При этом одно из решений может превосходить другое по одним свойствам и уступать ему по другим. В этих условиях часто чрезвычайно трудно сказать, не только какая из систем оптимальна, но даже какая из них предпочтительнее.

Если выделяют один параметр, который характеризует свойства, то этот параметр принимается за целевую функцию. При этом другие параметры подпадают под категорию ограничений. При решении однокритериальных задач применяется математический аппарат исследования операций. При создании вычислительной сети в большинстве случаев однокритериальные задачи не удовлетворяют полученному решению. Сложные ВС характеризуются многими параметрами (емкость памяти, время счета, пропускная способность каналов и т. п.), определяющими ее качество. Среди этих параметров есть такие, значения которых желательно всемерно увеличивать, но есть и такие, которые желательно минимизировать.

Таким образом, ограничения и связи между отдельными параметрами ВС приводят к необходимости идти на компромисс и выбирать для каждой характеристики не максимально возможное в принципе значение, а мень­шее, но такое, при котором и другие важные характеристики тоже будут иметь приемлемые значения. Поэтому необходимо принимать во внимание всю совокупность характеристик ВС. Задачи проектирования, проводимые по нескольким критериям оптимизации, носят название многокритериальных, или задач векторной оптимизации.

Известные методы векторной оптимизации прямо или косвенно сводят решаемые задачи к задачам скалярной оптимизации, т. е. частные критерии тем или иным способом объединяются в составной критерий, который затем максимизируется (или минимизируется). Если составной критерий отражает физическую суть ВС и вскрывает объективную связь между частными критериями и составным критерием, то оптимальное решение является объективным.

На практике из-за сложности обычно составной критерий объединяет частные, что ведет к субъективности решения; такой критерий является обобщенным, или интегральным. В зависимости от того, каким образом частные критерии объединяются в обобщенный критерий, различают критерии аддитивные, мультипликативные и минимаксные (максиминные).

Если оптимизация ведется без учета статистического разброса характеристик, то соответствующий критерий оптимальности называют детерминированным критерием; если разброс параметров учитывается, то имеем критерий статистический. Статистический критерий оптимальности наиболее полно отражает качество ВС, но его использование требует больших затрат машинного времени.

Рассмотрим способы выбора критериев оптимальности.

Частные критерии

При проектировании по частным критериям в качестве целевой функции F(X) принимается наиболее важный выходной параметр проектируемой ВС, все остальные параметры в виде соответствующих условий работоспособности относятся к ограничениям. В этом случае задача оптимального проектирования является однокритериальной задачей математического программирования: максимизировать (или минимизировать) значение целевой функции при наличии ограничений на параметры ВС.

Из постановки задачи вытекает, что параметры, для которых выполняются ограничения в виде строгих неравенств, имеют определенный запас по сравнению с заданными техническими требованиями. Ряд параметров, для которых условия работоспособности имеют вид неравенств, запасов вообще не имеет, и любые изменения технических требований для этих параметров приводят как к изменению характеристик и структуры проектируемого объекта, так и к изменению значения целевой функции.

Частные критерии используются при проектировании ВС различного назначения.

Аддитивные критерии

В этих критериях целевая функция образуется путем сложения нормированных значений частных критериев. Частные критерии имеют различную физическую природу и в соответствии с этим - различную размерность. Поэтому при образовании обобщенного критерия следует оперировать не с «натуральными» критериями, а с их нормированными значениями. Нормированные критерии представляют собой отношение «натурального» частного критерия к некоторой нормирующей величине, измеренной в тех же единицах, что и сам критерий. При этом выбор нормирующего делителя должен быть логически обоснован. Возможны несколько подходов к выбору нормирующего делителя.

Первый подход предлагает принимать в качестве нормирующего делителя директивные значения параметров, заданные заказчиком. Логически слабым моментом такого подхода является негласное предположение того, что в ТЗ на проектируемую ВС заданы оптимальные значения параметров объекта, и что совокупность заданных значений критериев рассматривается как образцовая.

Второй подход предполагает выбор в качестве нормирующих делителей максимальных значений критериев, достигаемых в области существования проектных решений (в области компромисса). Возможен подход, при котором в качестве нормирующих делителей выбирают разность между максимальным и минимальным значениями критерия в области компромисса.

Выбор подхода к формированию безразмерной формы частных критериев носит иногда субъективный характер и должен обосновываться в каждом конкретном случае. Пусть при проектировании ВС существует п частных критериев. Тогда целевая функция задачи оптимизации в случае применения аддитивного критерия определяется

где - весовой коэффициент частного критерия;

Нормирующий делитель;

Нормированное значение частного критерия.

Такая целевая функция позволяет осуществить компромисс, при котором улучшение значения одного нормированного частного критерия компенсирует ухудшение значений других.

Введение весовых коэффициентов должно учитывать различную значимость частных критериев при формировании аддитивного критерия. Определение весовых коэффициентов сталкивается с серьезными трудностями и обычно сводится либо к использованию формальных процедур, либо к применению экспертных оценок. С появлением обобщенного критерия исчезают логические проблемы, связанные с установлением взаимосвязей между частными критериями различной размерности и выбором наилучшего варианта ВС, и остаются лишь вычислительные трудности. Но аддитивный критерий имеет ряд недостатков, главный из которых состоит в том, что он не вытекает из объективной роли частных критериев в функционировании ВС и выступает поэтому как формальный математический прием, придающий задаче удобный для решения вид.

Другой недостаток заключается в том, что в аддитивном критерии может происходить взаимная компенсация частных критериев. Это значит, что значительное уменьшение одного из критериев вплоть до нулевого значения может быть покрыто возрастанием другого критерия. Для ослабления этого недостатка следует вводить ограничения на минимальные значения частных критериев и их весовых коэффициентов.

Несмотря на слабые стороны, обобщенный аддитивный критерий позволяет в ряде случаев успешно решать многокритериальные задачи и получать полезные результаты.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-03-24

Обычно оптимизируемая величина связана с экономичностью работы рассматриваемого объекта (аппарат, цех, завод). Оптимизируемый вариант работы объекта должен оцениваться какой-то количественной мерой - критерием оптимальности .

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта.

На основании выбранного критерия оптимальности составляется целевая функция , представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации. Таким образом, задача оптимизации сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах оптимизации, когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, температура). Например, устанавливается оптимальный температурный профиль, длительность цикла "реакция-регенерация".

Рассмотрим более подробно требования, которые должны предъявляться к критерию оптимальности.

1. Критерий оптимальности должен выражаться количественно.

2. Критерий оптимальности должен быть единственным.

3. Критерий оптимальности должен отражать наиболее существенные стороны процесса.

4. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

Любой оптимизируемый объект схематично можно представить в соответствии с рис. 2.

При постановке конкретных задач оптимизации желательно критерий оптимальности записать в виде аналитического выражения.

В том случае, когда случайные возмущения невелики и их воздействие на объект можно не учитывать, критерий оптимальности может быть представлен как функция входных , выходных и управляющих параметров:

Так как , то при фиксированных можно записать:
.

Математическое программирование ("планирование") – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач . Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.


Временем рождения линейного программирования принято считать 1939г., когда была напечатана брошюра Леонида Витальевича Канторовича "Математические методы организации и планирования производства". Американский математик А. Данциг в 1947 году разработал весьма эффективный конкретный метод численного решения задач линейного программирования (он получил название симплекс метода ).

Линейное программирование - это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача линейного программирования математически записывается следующим образом:

где X = (x 1 , x 2 , ... , x n) ; W – область допустимых значений переменных x 1 , x 2 , ... , x n ;f(Х) – целевая функция.

Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое, что при любом .

Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешимой, если целевая функция f(Х) не ограничена сверху на допустимом множестве W .

Методы решения оптимизационных задач зависят как от вида целевой функции f(Х) , так и от строения допустимого множества W . Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

Характерные черты задач линейного программирования следующие:

  • показатель оптимальности f(X) представляет собой линейную функцию от элементов решения X = (x 1 , x 2 , ... , x n) ;
  • ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

(2)
(3)
(4)
(5)

При этом система линейных уравнений (3) и неравенств (4), (5), определяющая допустимое множество решений задачи W , называется системой ограничений задачи линейного программирования, а линейная функция f(Х) называется целевой функцией или критерием оптимальности .

При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели таких свойств, как пропорциональность и аддитивность . Пропорциональность означает, что вклад каждой переменной в целевой функции и общий объем потребления соответствующих ресурсов должен быть прямо пропорционален величине этой переменной. Например, если, продавая j -й товар в общем случае по цене 100 рублей, фирма будет делать скидку при определенном уровне закупки до уровня цены 95 рублей, то будет отсутствовать прямая пропорциональность между доходом фирмы и величиной переменной x j . Т.е. в разных ситуациях одна единица j -го товара будет приносить разный доход. Аддитивность означает, что целевая функция и ограничения должны представлять собой сумму вкладов от различных переменных. Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

Допустимое решение – это совокупность чисел (план ) X = (x 1 , x 2 , ... , x n) , удовлетворяющих ограничениям задачи. Оптимальное решение – это план, при котором целевая функция принимает свое максимальное (минимальное) значение.

На следующем шаге рассмотрим построение модели линейного программирования на примере .

Рис.4

Рис.1

Измененное устройство выдает информацию (в том числе и управляющему устройству) о текущем состоянии объекта. В случае если на основании вектора измерений бывают найдены значения всœех координат состояния , не бывают найдены при известном значении вектора измерений , то система будет не полностью наблюдаемой. Управляющее устройства вырабатывает управляющее воздействие . Таких управляющих воздействий будет несколько, в связи с этим полагаем, что вектором - мерный

На вход управляющего устройства поступает задающее воздействие , ĸᴏᴛᴏᴩᴏᴇ содержит инструкцию о том, каково должно быть состояние объекта - так называемое ʼʼжелаемое состояниеʼʼ.

На объект управления может поступать возмущающие воздействие , представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями , называемыми шумами измерения.

Задачей управляющего устройства является выработка такого управляющего воздействия , чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле.

В дальнейшем будем рассматривать только те объекты, которые являются управляемыми, ᴛ.ᴇ. вектор состояния которых можно изменять требуемым образом путем соответствующего измерения вектора управления. Вместе с тем, объект предполагается полностью наблюдаемым, ᴛ.ᴇ. в данном случае, очевидно, можно не делать разницы между векторами и .

Отметим, что в дальнейшем измеряемые внешние воздействия и при рассмотрении задач управления для упрощения задачи не учитывается. Кроме того мы ограничимся рассмотрением объектов, динамика которых описывается обыкновенными дифференциальными уравнениями. С учетом всœего сказанного функциональная схема САУ должна быть приведены к виду рис.2

рис.2

Уточним и конкретизируем постановку задачи оптимального управления. Ранее при обсуждении типовых задач ОУ 5 и 6, речь шла об несколько абстрактных понятиях – управления связи.

, где

и задавалось начальное и конечное значения вектора .

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всœем другим, крайне важно определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели –критерий оптимальности управления. Обычно критерий оптимальности- это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определœенное значение критерия. В качестве критерия оптимальности бывают выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, который одновременно наилучшим образом удовлетворял бы каждому требованию, не существует.

По этой причине из всœех требований нужно выбрать одно главное, ĸᴏᴛᴏᴩᴏᴇ должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений.

Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

В качестве критерия, характеризующего качество процесса управления, чаще всœего выбирается функционал

или

Относительно подынтегральной функции будем предполагать, что она непрерывна по всœем аргументам и имеет непрерывные частные производные по переменным .

Для выполнения задачи управления мы располагаем ограниченными энергетическими и материальными ресурсами. Учёт ограничений, естественно, стесняет выбор закона управления и одновременно делает задачу более определœенной. Некоторые задачи более определœенной. Некоторые задачи, сформулированные без учета ограничений, вообще не имеют смысла.

К примеру, задача о предельном воздействии в линœейной системе (в случае с нажимным устройством прокатного стана) при неограниченных управляющих воздействиях лишена смысла. Время процесса в данном случае будет равно нулю, а воздействия бесконечны.

Математически ограничения часто имеют вид неравенств, относящихся к координатам, управляющим воздействиям или их функциям. К примеру, используемая нами ранее в типовой задаче ʼʼ6ʼʼ запись

Носит достаточно абстрактный характер, говорит лишь о том, что соответствующая величина не может или не должна выходить за допустимые границы, вид которой здесь конкретизирован. Чаше всœего эта граница задается многомерным параллелœепипедом

Так, к примеру, для параллелœепипед предстает прямоугольником, за границы которого конец вектора управления не должен выходить. Такое управление принято называть допустимым.

Максимально допустимые значения координат или воздействий определяются характеристиками технологического процесса и оборудования. Заметим, что учет ограничений – существенно влияет на постановку задачи об оптимальном управлении.

Основную задачу определœения оптимального управления можно сформировать следующим образом.

В фазовом пространстве заданы начальное и конечное состояния ОУ. Среди всœех допустимых управлений , для которых соответствующих траектории проходят через начальное и конечное состояния (если такие управления существуют), крайне важно выбрать такое , для которого функционал (2) принимал минимальное (максимальное) значение.

Проиллюстрируем сказанное. Рассмотрим два пространства- управлений и состояний для .

Отметим в них начальное и конечное состояние векторов состояние управления

Кривые в пространстве управлений есть фазовые траектории вектора управления фазовые траектории вектора управления. Траектории допустимые траектории 5,6 –недопустимые т.к. выходят за область ограничений. Аналогично в пространстве состоящие фазовые траектории состояний допустимые, а недопустимые. Предполагается, что фазовой траектории под определœенным номером в пространстве управлений соответствует фазовая траектория в пространстве состояний под тем же номером. Требуется из допустимых управлений (кривая 4 не рассматривается, т.тк.ая 4 нерассматривается авлений ом. тствует фазовая траекттория к. она вызывает недопустимую траекторию состояния 4) выбрать такую, которая, вызывает допустимые траектории состояния доставляет экстремум функционалу (2).

Это шестая типовая задача у управления, как уже отмечалось выше, принято называть неклассической вариационной задачей оптимального управления. В случае если же ограничения на координаты и управления (3) отсутствуют, и всœе вектора управления и состояния являются допустимыми, то возникает пята я типовая задача или классическая вариационная задача оптимального управления, (исследованию которой и посвящена настоящая глава).

Второй важной задачей оптимального управления является синтез оптимального регулятора, ᴛ.ᴇ. определœение оптимального управления как функции либо вектора наблюдения , либо вектора состояния объекта , а не , как мы только что рассматривали.

Выше уже говорилось, что в теории оптимального управления в качестве критериев оптимальности, как правило, применяются интегральные функционалы вида (2). Учитывая зависимость отвида подынтегральной функции бывают получены различные критерии оптимизации, применяемые в практике проектирования оптимальных САУ.

Одним из наиболее распространенных критериев, для которого методика синтеза оптимального управления достаточно хорошо разработана, является время переходного процесса объекта управления из начального состояния в конечное . Этот критерий представляет собой частный случай функционала (2) при тогда

Казалось бы логично пользоваться интегральным критерием вида

, где

Отклонения регулируемой координаты от нового установившегося значения, ĸᴏᴛᴏᴩᴏᴇ она будут иметь после завершения переходного процесса.

Геометрически интеграл (5) интегрируется как площадь под кривой . Эта площадь, а, следовательно, и величина критерия оптимальности, будет тем меньше, чем быстрее затухает переходной процесс и чем меньше величина отклонения в совокупности. Значит управление системой нужно выбирать так, что минимизировать критерий (5). Неудобством этой интегральной оценки является то, что она годится только для монотонных процессов, когда не меняется . В случае если же имеет место колебательный процесс рис.5, то при вычислении интеграла (5) площади будут складываться алгебраически и минимум этого интеграла может соответствовать колебаниям с малым затуханием или вообще без затухания. Что избежать риски подобных ситуаций, следует использовать квадратичный, интегральный функционал

который не зависит от знаков отклонений, а значит и от формы переходного процесса (монотонный или колебательный).

В случае если при проектировании системы оптимального управления ставится задача ограничить резкие изменения выходной переменной во время изменения переходного процесса, при которых 1-ая производная может принимать достаточно большие значения, используется функция:

, где

Весовой коэффициент.

Минимизация этой формулы означает, что составляющая запрещает значительные отклонения от установившегося значения, составляющая запрещает существование больших производных . Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, получается не только быстрый, но и плавный, без разных колебаний переходной процесс. Иногда для этих целœей применяется и более сложные оценки вида:

Выбор того или иного функционала определяется техническими показателями и условиями работы проектируемой САУ и во многом зависит от инструкции и опыта инженера – проектировщика.

Критерий оптимальности - понятие и виды. Классификация и особенности категории "Критерий оптимальности" 2017, 2018.




© 2024
womanizers.ru - Журнал современной женщины