30.09.2019

Определение угла наклона прямой к оси абсцисс. Уравнение прямой с угловым коэффициентом - теория, примеры, решение задач


В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831

Теме «Угловой коэффициент касательной как тангенс угла наклона» в аттестационном экзамене отводится сразу несколько заданий. В зависимости от их условия, от выпускника может требоваться как полный ответ, так и краткий. При подготовке к сдаче ЕГЭ по математике ученику обязательно стоит повторить задачи, в которых требуется вычислить угловой коэффициент касательной.

Сделать это вам поможет образовательный портал «Школково». Наши специалисты подготовили и представили теоретический и практический материал максимально доступно. Ознакомившись с ним, выпускники с любым уровнем подготовки смогут успешно решать задачи, связанные с производными, в которых требуется найти тангенс угла наклона касательной.

Основные моменты

Для нахождения правильного и рационального решения подобных заданий в ЕГЭ необходимо вспомнить базовое определение: производная представляет собой скорость изменения функции; она равна тангенсу угла наклона касательной, проведенной к графику функции в определенной точке. Не менее важно выполнить чертеж. Он позволит найти правильное решение задач ЕГЭ на производную, в которых требуется вычислить тангенс угла наклона касательной. Для наглядности лучше всего выполнить построение графика на плоскости ОХY.

Если вы уже ознакомились с базовым материалом на тему производной и готовы приступить к решению задач на вычисление тангенса угла наклона касательной, подобных заданиям ЕГЭ, сделать это можно в режиме онлайн. Для каждого задания, например, задач на тему «Связь производной со скоростью и ускорением тела» , мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут попрактиковаться в выполнении задач различного уровня сложности. В случае необходимости упражнение можно сохранить в разделе «Избранное», чтобы потом обсудить решение с преподавателем.

Прямая y=f(x) будет касательной к изображенному на рисунке графику в точке х0 в том случае, если она проходит через точку с координатами (х0; f(x0)) и обладает угловым коэффициентом f"(x0). Найти такой коэффициент, зная особенности касательной, несложно.

Вам понадобится

  • - математический справочник;
  • - простой карандаш;
  • - тетрадь;
  • - транспортир;
  • - циркуль;
  • - ручка.

Инструкция

Если значения f‘(x0) не существует, то либо касательной нет, либо она проходит вертикально. Ввиду этого, наличие производной функции в точке х0 обусловлено существованием невертикальной касательной, соприкасающейся с графиком функции в точке (х0, f(х0)). В этом случае угловой коэффициент касательной равен будет f"(х0). Таким образом, становится ясен геометрический смысл производной – расчет углового коэффициента касательной.

Изобразите на дополнительные касательные, которые бы соприкасались с графиком функции в точках x1, х2 и х3, а также отметьте углы, образуемые этими касательными с осью абсцисс (такой угол отсчитывают в положительном направлении от оси до касательной прямой). К примеру, угол, то есть, α1, будет острым, второй (α2) – тупой, а третий (α3) равен нулю, поскольку касательная прямая параллельна оси ОХ. В таком случае тангенс тупого угла – отрицательное , тангенс острого угла – положительное, а при tg0 результат равен нулю.

Обратите внимание

Правильно определите угол, образуемый касательной. Для этого используйте транспортир.

Полезный совет

Две наклонные прямые будут параллельными в том случае, если их угловые коэффициенты равны между собой; перпендикулярными, если произведение угловых коэффициентов этих касательных равно -1.

Источники:

  • Касательная к графику функции

Косинус, как и синус, относят к «прямым» тригонометрическим функциям. Тангенс (вместе с котангенсом) причисляют к другой паре, называемой «производными». Существует несколько определений этих функций, которые делают возможным нахождение тангенса заданного по известному значению косинуса от этой же величины.

Инструкция

Вычтите частное от единицы на возведенное в значение косинуса заданного угла, а из результата извлеките квадратный корень - это и будет значение тангенса от угла, выраженное его косинус: tg(α)=√(1-1/(cos(α))²). При этом обратите внимание на то, что в формуле косинус стоит в знаменателе дроби. Невозможность деления на ноль исключает использование этого выражения для углов, равных 90°, а также отличающихся от этой величины на числа, кратные 180° (270°, 450°, -90° и т.д.).

Существует и альтернативный способ вычисления тангенса по известному значению косинуса. Его можно применять, если не установлено ограничение на использование других . Для реализации этого способа сначала определите величину угла по известному значению косинуса - это можно сделать с помощью функции арккосинус. Затем просто рассчитайте тангенс для угла полученной величины. В общем виде этот алгоритм можно записать так: tg(α)=tg(arccos(cos(α))).

Есть и еще экзотический вариант с использованием определения косинуса и тангенса через острые углы прямоугольного треугольника. Косинусу в таком определении соответствует отношение длины прилежащего к рассматриваемому углу катета к длине гипотенузы. Зная значение косинуса можно подобрать соответствующие ему длины этих двух сторон. Например, если cos(α)=0,5, то прилежащий можно принять равным 10см, а гипотенузу - 20см. Конкретные числа здесь значения не имеют - одинаковое и правильное вы получите с любыми значениями, имеющими же . Затем по теореме Пифагора определите длину недостающей стороны - противолежащего катета. Она будет равна квадратному корню из разницы между длинами возведенных в квадрат гипотенузы и известного катета: √(20²-10²)=√300. Тангенсу по определению соответствует отношение длин противолежащего и прилежащего катетов (√300/10) - рассчитайте его и получите значение тангенса, найденное с использованием классического определения косинуса.

Источники:

  • косинус через тангенс формула

Одна из тригонометрических функций, чаще всего обозначаемая буквами tg, хотя встречаются и обозначения tan. Проще всего представить тангенс как отношение синуса угла к его косинусу. Это нечетная периодическая и не непрерывная функция, каждый цикл которой равен числу Пи, а точка разрыва соответствует отметке в половину этого числа.


На рисунке показан угол наклона прямой и указано значение углового коэффициента при различных вариантах расположения прямой относительно прямоугольной системы координат.

Нахождение углового коэффициента прямой при известном угле наклона к оси Ox не представляет никаких сложностей. Для этого достаточно вспомнить определение углового коэффициента и вычислить тангенс угла наклона.

Пример.

Найдите угловой коэффициент прямой, если угол ее наклона к оси абсцисс равен .

Решение.

По условию . Тогда по определению углового коэффициента прямой вычисляем .

Ответ:

Задача нахождения угла наклона прямой к оси абсцисс при известном угловом коэффициенте немного сложнее. Здесь необходимо учитывать знак углового коэффициента. При угол наклона прямой является острым и находится как . При угол наклона прямой является тупым и его можно определить по формуле .

Пример.

Определите угол наклона прямой к оси абсцисс, если ее угловой коэффициент равен 3 .

Решение.

Так как по условию угловой коэффициент положителен, то угол наклона прямой к оси Ox острый. Его вычисляем по формуле .

Ответ:

Пример.

Угловой коэффициент прямой равен . Определите угол наклона прямой к оси Ox .

Решение.

Обозначим k – угловой коэффициент прямой, - угол наклона этой прямой к положительному направлению оси Ox . Так как , то используем формулу для нахождения угла наклона прямой следующего вида . Подставляем в нее данные из условия: .

Ответ:

Уравнение прямой с угловым коэффициентом.

Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

Давайте разберемся со смыслом фразы: «прямая на плоскости в фиксированной системе координат задана уравнением с угловым коэффициентом вида ». Это означает, что уравнению удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точкек плоскости. Таким образом, если при подстановке координат точки получается верное равенство, то прямая проходит через эту точку. В противном случае точка не лежит на прямой.

Пример.

Прямая задана уравнением с угловым коэффициентом . Принадлежат ли точки и этой прямой?

Решение.

Подставим координаты точки в исходное уравнение прямой с угловым коэффициентом: . Мы получили верное равенство, следовательно, точка М 1 лежит на прямой.

При подстановке координат точки получаем неверное равенство: . Таким образом, точка М 2 не лежит на прямой.

Ответ:

Точка М 1 принадлежит прямой, М 2 – не принадлежит.

Следует отметить, что прямая, определенная уравнением прямой с угловым коэффициентом , проходит через точку , так как при подстановке ее координат в уравнение мы получаем верное равенство: .

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением прямой с угловым коэффициентом вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку.

Сейчас решим очень важную задачу: получим уравнение прямой с заданным угловым коэффициентом k и проходящую через точку .

Так как прямая проходит через точку , то справедливо равенство . Число b нам неизвестно. Чтобы избавиться от него, вычтем из левой и правой частей уравнения прямой с угловым коэффициентом соответственно левую и правую части последнего равенства. При этом получим . Это равенство представляет собой уравнение прямой с заданным угловым коэффициентом k , которая проходит через заданную точку .

Рассмотрим пример.

Пример.

Напишите уравнение прямой, проходящей через точку , угловой коэффициент этой прямой равен -2 .

Решение.

Из условия имеем . Тогда уравнение прямой с угловым коэффициентом примет вид .

Ответ:

Пример.

Напишите уравнение прямой, если известно, что она проходит через точку и угол наклона к положительному направлению оси Ox равен .

Решение.

Сначала вычислим угловой коэффициент прямой, уравнение которой мы ищем (такую задачу мы решали в предыдущем пункте этой статьи). По определению . Теперь мы располагаем всеми данными, чтобы записать уравнение прямой с угловым коэффициентом:

Ответ:

Пример.

Напишите уравнение прямой с угловым коэффициентом, проходящую через точку параллельно прямой .

Решение.

Очевидно, что углы наклона параллельных прямых к оси Ox совпадают (при необходимости смотрите статью параллельность прямых), следовательно, угловые коэффициенты у параллельных прямых равны. Тогда угловой коэффициент прямой, уравнение которой нам нужно получить, равен 2 , так как угловой коэффициент прямой равен 2 . Теперь мы можем составить требуемое уравнение прямой с угловым коэффициентом:

Ответ:

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнения прямой и обратно.

При всей привычности уравнение прямой с угловым коэффициентом далеко не всегда удобно использовать при решении задач. В некоторых случаях задачи проще решаются, когда уравнение прямой представлено в другом виде. К примеру, уравнение прямой с угловым коэффициентом не позволяет сразу записать координаты направляющего вектора прямой или координаты нормального вектора прямой . Поэтому следует научиться переходить от уравнения прямой с угловым коэффициентом к другим видам уравнения этой прямой.

Из уравнения прямой с угловым коэффициентом легко получить каноническое уравнение прямой на плоскости вида . Для этого из правой части уравнения переносим слагаемое b в левую часть с противоположным знаком, затем делим обе части полученного равенства на угловой коэффициент k : . Эти действия приводят нас от уравнения прямой с угловым коэффициентом к каноническому уравнению прямой.

Пример.

Приведите уравнение прямой с угловым коэффициентом к каноническому виду.

Решение.

Выполним необходимые преобразования: .

Ответ:

Пример.

Прямая задана уравнением прямой с угловым коэффициентом . Является ли вектор нормальным вектором этой прямой?

Решение.

Для решения этой задачи перейдем от уравнения прямой с угловым коэффициентом к общему уравнению этой прямой: . Нам известно, что коэффициенты перед переменными x и y в общем уравнении прямой являются соответствующими координатами нормального вектора этой прямой, то есть, - нормальный вектор прямой . Очевидно, что вектор коллинеарен вектору , так как справедливо соотношение (при необходимости смотрите статью ). Таким образом, исходный вектор также является нормальным вектором прямой , а, следовательно, является нормальным вектором и исходной прямой .

Ответ:

Да, является.

А сейчас будем решать обратную задачу – задачу приведения уравнения прямой на плоскости к уравнению прямой с угловым коэффициентом.

От общего уравнения прямой вида , в котором , очень легко перейти к уравнению с угловым коэффициентом. Для этого нужно общее уравнение прямой разрешить относительно y . При этом получаем . Полученное равенство представляет собой уравнение прямой с угловым коэффициентом, равным .

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Yandex.RTB R-A-339285-1

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

Определение 1

Угол наклона прямой к оси О х, расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.

Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π) .

Определение 2

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Решение

Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = - 3 .

Ответ: k = - 3 .

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k < 0 , тогда угол тупой, что дает право определить его по формуле α = π - a r c t g k .

Пример 2

Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .

Решение

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .

Ответ: α = a r c t g 3 .

Пример 3

Найти угол наклона прямой к оси О х, если угловой коэффициент = - 1 3 .

Решение

Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х. Отсюда k = - 1 3 < 0 , тогда необходимо применить формулу α = π - a r c t g k При подстановке получим выражение:

α = π - a r c t g - 1 3 = π - a r c t g 1 3 = π - π 6 = 5 π 6 .

Ответ: 5 π 6 .

Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у.

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М, M 1 (x 1 , y 1) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Пример 4

Задана прямая с угловым коэффициентом y = 1 3 x - 1 . Вычислить, принадлежат ли точки M 1 (3 , 0) и M 2 (2 , - 2) заданной прямой.

Решение

Необходимо подставить координаты точки M 1 (3 , 0) в заданное уравнение, тогда получим 0 = 1 3 · 3 - 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M 2 (2 , - 2) , тогда получим неверное равенство вида - 2 = 1 3 · 2 - 1 ⇔ - 2 = - 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.

Ответ: М 1 принадлежит прямой, а М 2 нет.

Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 (0 , b) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х, где k = t g α .

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x - 1 . Получим, что прямая пройдет через точку с координатой 0 , - 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х. Отсюда видно, что коэффициент равен 3 .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 (x 1 , y 1) .

Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 (x 1 , y 1) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y - y 1 = k · (x - x 1) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 (x 1 , y 1) .

Пример 5

Составьте уравнение прямой, проходящей через точку М 1 с координатами (4 , - 1) , с угловым коэффициентом равным - 2 .

Решение

По условию имеем, что x 1 = 4 , y 1 = - 1 , k = - 2 . Отсюда уравнение прямой запишется таким образом y - y 1 = k · (x - x 1) ⇔ y - (- 1) = - 2 · (x - 4) ⇔ y = - 2 x + 7 .

Ответ: y = - 2 x + 7 .

Пример 6

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами (3 , 5) , параллельную прямой y = 2 x - 2 .

Решение

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x - 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:

y - y 1 = k · (x - x 1) ⇔ y - 5 = 2 · (x - 3) ⇔ y = 2 x - 1

Ответ: y = 2 x - 1 .

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x - x 1 a x = y - y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y - b = k · x ⇔ k · x k = y - b k ⇔ x 1 = y - b k .

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Пример 7

Привести уравнение прямой с угловым коэффициентом y = - 3 x + 12 к каноническому виду.

Решение

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y = - 3 x + 12 ⇔ - 3 x = y - 12 ⇔ - 3 x - 3 = y - 12 - 3 ⇔ x 1 = y - 12 - 3

Ответ: x 1 = y - 12 - 3 .

Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x - y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.

Пример 8

Дано уравнение прямой вида y = 1 7 x - 2 . Выяснить, является ли вектор с координатами a → = (- 1 , 7) нормальным вектором прямой?

Решение

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y = 1 7 x - 2 ⇔ 1 7 x - y - 2 = 0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , - 1 , отсюда 1 7 x - y - 2 = 0 . Понятно, что вектор a → = (- 1 , 7) коллинеарен вектору n → = 1 7 , - 1 , так как имеем справедливое соотношение a → = - 7 · n → . Отсюда следует, что исходный вектор a → = - 1 , 7 - нормальный вектор прямой 1 7 x - y - 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x - 2 .

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ - A B · x - C B .

Результат и является уравннием с угловым коэффициентом, который равняется - A B .

Пример 9

Задано уравнение прямой вида 2 3 x - 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.

Решение

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

2 3 x - 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .

Ответ: y = 1 6 x + 1 4 .

Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x - x 1 a x = y - y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

x a + y b = 1 ⇔ y b = 1 - x a ⇔ y = - b a · x + b .

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ ⇔ a x · y = a y · x - a y · x 1 + a x · y 1 ⇔ y = a y a x · x - a y a x · x 1 + y 1

Пример 10

Имеется прямая, заданная уравнением x 2 + y - 3 = 1 . Привести к виду уравнения с угловым коэффициентом.

Решение.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на - 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y - 3 = 1 - x 2 ⇔ - 3 · y - 3 = - 3 · 1 - x 2 ⇔ y = 3 2 x - 3 .

Ответ: y = 3 2 x - 3 .

Пример 11

Уравнение прямой вида x - 2 2 = y + 1 5 привести к виду с угловым коэффициентом.

Решение

Необходимо выражение x - 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · (x - 2) = 2 · (y + 1) . Теперь необходимо полностью его разрешить, для этого:

5 · (x - 2) = 2 · (y + 1) ⇔ 5 x - 10 = 2 y + 2 ⇔ 2 y = 5 x - 12 ⇔ y = 5 2 x

Ответ: y = 5 2 x - 6 .

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Пример 12

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = - 1 + 2 · λ .

Решение

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x = λ y = - 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .

Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x 1 = y + 1 2 ⇔ 2 · x = 1 · (y + 1) ⇔ y = 2 x - 1

Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .

Ответ: k = 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter




© 2024
womanizers.ru - Журнал современной женщины