24.08.2019

Понятие экг. Что позволяет определить электрокардиограмма. Что такое ЭКГ


Электрокардиограмма

Эле́ктрокардиогра́фия - методика регистрации и исследования электрических полей, образующихся при работе сердца . Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии .

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) - графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

История

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

  • Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений - аритмии).
  • Показывает острое или хроническое повреждение миокарда (инфаркт миокарда , ишемия миокарда).
  • Может быть использована для выявления нарушений обмена калия , кальция , магния и других электролитов .
  • Выявление нарушений внутрисердечной проводимости (различные блокады).
  • Метод скрининга при ишемической болезни сердца , в том числе и при нагрузочных пробах.
  • Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).
  • Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии .
  • В определённом проценте случаев может быть абсолютно неинформативна.
  • Позволяет удалённо диагностировать острую кардиальную патологию (инфаркт миокарда , ишемия миокарда) с помощью кардиофона .

Прибор

Как правило, электрокардиограмма записывается на термобумаге. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере. Скорость движения бумаги составляет обычно 25 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 50 мм/с или 100 мм/с. В начале каждой записи, регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 мм/мВ.

Электроды

Для измерения разности потенциала на различные участки тела накладываются электроды.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5-1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50-60 Гц нивелирует сетевые наводки. Антитреморный фильтр высокой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Соответствие участков ЭКГ с соответствующей фазой работы сердца

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает работу предсердий, комплекс QRS - систолу желудочков, а сегмент ST и зубец T - процесс реполяризации миокарда.

Отведения

Каждая из измеряемых разниц потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I - правая рука - левая рука, II - правая рука - левая нога, III - левая рука - левая нога.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF - однополюсные отведения.

При однополюсном отведении регистрирующий электрод определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведён) и гипотетическим электрическим нулём. Однополюсные грудные отведения обозначаются буквой V.

Схема установки электродов V 1 -V 6

Отведения Расположение регистрирующего электрода
V 1 В 4-м межреберье у правого края грудины
V 2 В 4-м межреберье у левого края грудины
V 3 На середине расстояния между V 2 и V 4
V 4 В 5-м межреберье по срединно-ключичной линии
V 5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V 6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V 7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V 8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V 9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V 1 по V 6 . Отведения V 7 -V 8 -V 9 редко используются в клинической практике, они нужны только для более точных и детальных исследований.

Для поиска и регистрации патологических феноменов «немых» участков миокарда применяют дополнительные отведения (не входящие в стандартный набор):

  • Дополнительные отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Брюшные отведения предложены в г. J.Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются
  • Отведения по Небу - Гуревичу. Предложены в г. немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям - задней стенке сердца, передней и прилегающей к перегородке.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Электрическая ось сердца - проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и влево (нормальные значения: 30°...70°), но может и выходить за эти пределы у высоких людей и лиц с повышенной массой тела (вертикальная ЭОС с углом 70°...90°, или горизонтальная - с углом 0°...30°). Отклонение от нормы может означать как наличие каких либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо - соответственно левограммой или правограммой.

Другие методы

Внутрипищеводная электрокардиография

Активный электрод вводится в полость пищевода. Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения. Важен при диагностике некоторых видов блокад сердца .

Векторкардиография

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование

Холтеровское мониторирование

Синоним - суточное мониторирование ЭКГ . На ремне пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от двух или трёх отведений в течение суток или более. Результаты измерений передаются в компьютер и обрабатываются специальным программным обеспечением и врачом.

Гастрокардиомониторирование

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке , для чего используется рН-зонд , введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Отражение в культуре

Изображение зубцов ЭКГ настолько распространилось, что их очень часто можно видеть на логотипах компаний или по телевидению, где они часто означают приближение смерти или экстремальные ситуации.

Литература

Зудбинов Ю. И. Азбука ЭКГ. Издание 3-е. Ростов-на-Дону: изд-во «Феникс», 2003. - 160с.

Примечания

Ссылки на сайты с родственной информацией

Смотри также

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Электрокардиограмма" в других словарях:

    Электрокардиограмма … Орфографический словарь-справочник

    - (ЭКГ), запись электрической активности сердца, выполненная при помощи прибора на движущейся полосе бумаги. Прибор, служащий для этой цели, называют электрокардиографом. ЭКГ используют для диагностирования сердечных заболеваний … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 3 кардиограмма (8) нормограмма (1) экг (1) … Словарь синонимов

    электрокардиограмма - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrocardiogram … Справочник технического переводчика

    Ы; ж. Графическое изображение работы сердца, сделанное электрокардиографом. Сделать электрокардиограмму. / Разг. О состоянии сердца, о работе сердца. Плохая э. Удовлетворительная э. Э. стала лучше. * * * ЭЛЕКТРОКАРДИОГРАММА ЭЛЕКТРОКАРДИОГРАММА… … Энциклопедический словарь

    - (см. электро...) графическая запись электрических явлений, происходящих в сердце во время его работы ср. кардиограмма). Новый словарь иностранных слов. by EdwART, 2009. электрокардиограмма мед. кривая записи деятельности сердца, полученная… … Словарь иностранных слов русского языка

Электрокардиография - что это такое необходимо узнать до начала обследования. Предварительно пациента знакомят с условиями подготовки к предстоящей процедуре.

Медицинские показания

Электрокардиография - это распространенная в медицине методика оценки состояния сердца. Для этого специалисты используют графическую регистрацию электрических и генерирующих потенциалов, распространяющихся в различных направлениях.

Если регистрация ЭКГ проводится в покое, тогда применяют 5 электродов. Если обследование пациента проводится при помощи современного электрокардиографа, укомплектованного компьютером и контактным гелем, тогда электроды не используются.

Возбуждение сердечной мускулатуры провоцирует разность потенциалов, которую воспринимают металлические пластины, расположенные на теле пациента. Данные потенциалы передаются через вход устройства. Так как напряжение низкое, оно проходит через различные лампы, провоцируя повышение данного показателя. В период полного сердечного цикла изменяется величина и направление электродвижущей силы главного органа. Все колебания регистрирует гальванометр.

Электрокардиограмма записывается в период ее регистрации. При этом бумажная лента двигается со скоростью в 50 мм/с. Скорость, с которой она будет двигаться в дальнейшем, при расчете выявит продолжительность необходимого элемента на ЭКГ.

ЭКГ позволяет определить первые нарушения в работе сердца, оценить динамику сердечных патологий и эффективность назначенной терапии. Перед проведением электрокардиографии врач должен объяснить пациенту, что процедура оценивает электрическую активность главного органа. Ограничения в питании отсутствуют. Процедура не вызывает у пациента дискомфорт. В период регистрации ЭКГ нельзя разговаривать.

Проведение коронарографии сосудов сердца - что это такое и как это делают?

Методы проведения исследования

Поэтапное проведение электрокардиографии:

  • пациент занимает горизонтальное либо полулежащее положение;
  • установка электродов в области груди, запястий и лодыжек;
  • подключение оборудования к сети;
  • проверка работоспособности лентопротяжного устройства.

Если проводится многоканальная запись ЭКГ, тогда электроды фиксируют к запястьям и груди. Перед применением разовых электродов удаляется защитная оболочка. Присоски соединяют с проводами. Оборудование записывает показания одновременно в 12 отведениях. Если отведения не записываются, проверяют соединения. Электрокардиограф требует предварительной регулировки. Для этого вершины зубцов должны располагаться в соответствующей части ленты. Если процедура завершена, электроды удаляют.

Для проведения одноканальной записи ЭКГ используют стандартные либо разовые электроды. Их крепят к запястьям и лодыжкам. Затем специалист калибрует прибор. Регистрация ЭКГ проводится в течение 3-6 с. Затем устройство переключается в режим ожидания. Подобным образом проводится регистрация ЭКГ во всех отведениях.

Перед использованием грудного прибора специалист обрабатывает электрод специальным гелем. Присоска фиксируется в определенной позиции. После фиксации данных ручка переключателя отведений поворачивается в другую позицию. По завершении электрокардиографии остатки геля удаляют полотенцем. При проведении двух видов записи ЭКГ указывается дата и время записи. После процедуры прибор выключается, но электроды не снимают (если предусматривается многократная запись).

Перед обследованием необходимо проверить электрическое оборудование на наличие заземленности. Провода отведений к присоскам проверяют на наличие изоляции. Электроды должны плотно прилегать к кожному покрову. Если проводка оголенная либо изношенная, ее заменяют новой. Пациентам с электрокардиостимулятором ЭКГ проводят с помощью магнита либо без него. На ленте специалист указывает наличие электрокардиостимулятора.

Анализ полученных данных

Чтобы изучить ритм главного органа и выявить нарушения, показано ЭКГ в отведении П. Нормальное значение показателей в этом отведении следующие:

  • амплитуда зубца Р - 2,5 мм;
  • длительность - 0,12 с;
  • длительность интервала РR - 0,12-0,2 с;
  • ЧСС превышает 60 уд/мин.

Интервал QT может меняться с учетом значения ЧСС и длительности периода. Ишемию миокарда определяют по форме сегмента ST. Если электрокардиограмма выявила отклонения, тогда проводится дополнительное обследование пациента. Редко изменения на ЭКГ диагностируются только при стенокардии либо в период физических нагрузок.

На результат полученных данных прямое влияние оказывают следующие факторы:

  • неправильная фиксация присосок;
  • в процессе проведения ЭКГ пациент разговаривал либо двигался;
  • медикаментозное лечение;
  • сбой в работе электрокардиографа.

Для каждого отведения характерно определенное электрическое поле.

Сердечные патологии

Расшифровка диагностических данных может указывать на развитие различных патологий главного органа. При желудочковых экстрасистолах диагностируется эктопический очаг электрической активности в стенках желудочка. Специалисты различают поли- (несколько очагов) и монотопные ЖЭ (1 очаг). В последнем случае на ЭКГ зубец Р отсутствует. ЖЭ сменяется компенсаторной паузой. К причинам развития такой патологии относят инфаркт миокарда, гипоксию, токсичное влияние некоторых медикаментов.

Чаще с помощью ЭКГ врач выявляет АВ блокаду 1 степени у пациентов, принимающих СГ либо антиаритмические медицинские средства (хинидин). У деток данное явление может указывать на острую ревматическую лихорадку. С помощью ЭКГ врач может выявить гипокалиемию, которая провоцирует быструю утомляемость и высокую возбудимость сердечных желудочков.

При тяжелом течении болезни наблюдается выраженная симптоматика, которая может спровоцировать паралич, усугубив ЖЭ. Ранняя симптоматика гипокалиемии на ЭКГ - появление высоких зубцов, удлинение некоторых интервалов, уплотнение либо инверсия зубцов Т.

Изменения показателей

Инфаркт миокарда сопровождается различными изменениями одновременно в нескольких отведениях. С помощью ЭКГ врач определяет локализацию и протяженность пораженных участков. Если болезнь протекает в острой форме, врач выявляет вид изменений сердечной мышцы (поражение внутренней зоны, некроз, ишемия).

На электрокардиограмме специалисты выявляют подъем сегмента ST, который связан с формированием ишемии. Затем уплотняются зубцы Т. Могут образовываться глубокие зубцы Q, указывающие на некроз. Зубцы Т в дальнейшем могут оставаться инвертированными либо приобрести нормальную форму. Зубцы Q остаются навсегда. Они свидетельствуют о перенесенном инфаркте. Для определения его локализации врач изучает сегмент ST, зубцы Q и Е в разных отведениях.

Рассматриваемое обследование не рекомендуется проводить при обострении инфекционного процесса заболевания. Для тестирования ишемической болезни без нагрузочного тестирования ЭКГ малоэффективна. В таких случаях электрокардиография включается в комплексное обследование пациенту. Редко после ЭКГ у пациента может возникнуть аллергия на материал, из которого изготовлены электроды.

Электрокардиография - это метод графической регистрации разности потенциалов электрического поля сердца, возникающего при его деятельности. Регистрация производится при помощи аппарата - электрокардиографа. Он состоит из усилителя, позволяющего улавливать токи очень малого напряжения; гальванометра, измеряющего величину напряжения; системы питания; записывающего устройства; электродов и проводов, соединяющих пациента с аппаратом. Записываемая кривая называется электрокардиограммой (ЭКГ). Регистрация разности потенциалов электрического поля сердца с двух точек поверхности тела называют отведением. Как правило, ЭКГ записывают в двенадцати отведениях: трех - двухполюсных (три стандартных отведения) и девяти - однополюсных (три однополюсных усиленных отведения от конечностей и 6 однополюсных грудных отведений). При двухполюсных отведениях к электрокардиографу подключают по два электрода, при однополюсных отведениях один электрод (индифферентный) является объединенным, а второй (дифферентный, активный) помещается в выбранную точку тела. Если активный электрод помещают на конечность, отведение называют однополюсным, усиленным от конечности; если этот электрод помещен на грудь - однополюсным грудным отведением.

Для регистрации ЭКГ в стандартных отведениях (I, II и III) на конечности накладывают матерчатые салфетки, смоченные физиологическим раствором, на которые кладут металлические пластинки электродов. Один электрод с красным проводом и одним рельефным кольцом помещают на правое , второй - с желтым проводом и двумя рельефными кольцами - на левое предплечье и третий - с зеленым проводом и тремя рельефными кольцами - на левую голень. Для регистрации отведений к электрокардиографу по очереди подключают по два электрода. Для записи I отведения подключают электроды правой и левой рук, II отведения - электроды правой руки и левой ноги, III отведения - электроды левой руки и левой ноги. Переключение отведений производится поворотом ручки. Кроме стандартных, от конечностей снимают однополюсные усиленные отведения. Если активный электрод расположен на правой руке, отведение обозначают как aVR или уП, если на левой руке - aVL или уЛ, и если на левой ноге - aVF или уН.


Рис. 1. Расположение электродов при регистрации передних грудных отведений (указано цифрами соответствующими их порядковым 1 номерам). Вертикальные полосы, пересекающие цифры, соответствуют анатомическим линиям: 1 - правой грудинной; 2 - левой грудинной; 3 - левой окологрудинной; 4-левой среднеключичной; 5-левой передней подмышечной; 6 - левой средней подмышечной.

При регистрации однополюсных грудных отведений активный электрод помещают на грудной клетке. ЭКГ регистрируют в следующих шести позициях электрода: 1) у правого края грудины в IV межреберье; 2) у левого края грудины в IV межреберье; 3) по левой окологрудинной линии между IV и V межреберьями; 4) по среднеключичной линии в V межреберье; 5) по передней подмышечной линии в V межреберье и 6) по средней подмышечной линии в V межреберье (рис. 1). Однополюсные грудные отведения обозначают латинской буквой V или русскими - ГО. Реже регистрируют двухполюсные грудные отведения, при которых один электрод располагался на грудной клетке, а другой на правой руке или левой ноге. Если второй электрод располагался на правой руке, грудные отведения обозначали латинскими буквами CR или русскими - ГП; при расположении второго электрода на левой ноге грудные отведения обозначали латинскими буквами CF или русскими - ГН.

ЭКГ здоровых людей отличается вариабельностью. Она зависит от возраста, телосложения и др. Однако в норме на ней всегда можно различить определенные зубцы и интервалы, отражающие последовательность возбуждения сердечной мышцы (рис. 2). По имеющейся отметке времени (на фотобумаге расстояние между двумя вертикальными полосами равно 0,05 сек., на миллиметровой бумаге при скорости протяжки 50 мм/сек 1 мм равен 0,02 сек., при скорости 25 мм/сек - 0,04 сек.) можно рассчитать продолжительность зубцов и интервалов (сегментов) ЭКГ. Высоту зубцов сравнивают со стандартной отметкой (при подаче на прибор импульса напряжением 1 мв регистрируемая линия должна отклоняться от исходного положения на 1 см). Возбуждение миокарда начинается с предсердий, и на ЭКГ появляется предсердный зубец Р. В норме он небольшой: высотой - 1-2 мм и продолжительностью 0,08-0,1 сек. Расстояние от начала зубца Р до зубца Q (интервал Р-Q) соответствует времени распространения возбуждения от предсердий к желудочкам и равно 0,12-0,2 сек. Во время возбуждения желудочков записывается комплекс QRS, причем величина его зубцов в разных отведениях выражена различно: продолжительность комплекса QRS - 0,06- 0,1 сек. Расстояние от зубца S до начала зубца Т - сегмент S-T, в норме располагается на одном уровне с интервалом Р- Q и смещения его не должны превышать 1 мм. При угасании возбуждения в желудочках записывается зубец Т. Интервал от начала зубца Q до конца зубца Т отражает процесс возбуждения желудочков (электрическую систолу). Его продолжительность зависит от частоты сердечного ритма: при учащении ритма он укорачивается, при замедлении - удлиняется (в среднем он равен 0,24-0,55 сек.). Частоту сердечного ритма легко подсчитать по ЭКГ, зная сколько времени продолжается один сердечный цикл (расстояние между двумя зубцами R) и сколько таких циклов содержится в минуте. Интервал Т- Р соответствует диастоле сердца, аппарат в это время записывает прямую (так называемую изоэлектрическую) линию. Иногда после зубца Т регистрируется зубец U, происхождение которого не вполне ясно.


Рис. 2. Электрокардиограмма здорового человека.

В патологии величина зубцов, их продолжительность и направление, так же как и продолжительность и расположение интервалов (сегментов) ЭКГ, может значительно изменяться, что дает основание использовать электрокардиографию в диагностике многих заболеваний сердца. С помощью электрокардиографии диагностируются различные нарушения сердечного ритма (см. ), на ЭКГ находят отражение воспалительные и дистрофические поражения миокарда. Особенно важную роль играет электрокардиография в диагностике коронарной недостаточности и инфаркта миокарда.

По ЭКГ можно определить не только наличие инфаркта, но и выяснить, какая стенка сердца поражена. В последние годы для изучения разности потенциалов электрического поля сердца используется метод телеэлектрокардиографии (радиоэлектрокардиографии), основанный на принципе беспроволочной передачи электрического поля сердца при помощи радиопередатчика. Этот метод позволяет зарегистрировать ЭКГ во время физической нагрузки, в движении (у спортсменов, летчиков, космонавтов).

Электрокардиография (греч. kardia - сердце, grapho - пишу, записываю) - метод регистрации электрических явлений, возникающих в сердце во время его сокращения.

История электрофизиологии, а следовательно, и электрокардиография начинается с опыта Гальвани (L. Galvani), обнаружившего в 1791 г. электрические явления в мышцах животных. Маттеуччи (С. Matteucci, 1843) установил наличие электрических явлений в вырезанном сердце. Дюбуа-Реймон (Е. Dubois-Reymond, 1848) доказал, что и нервах и мышцах возбужденная часть электроотрицательна по отношению к находящейся в покое. Келликер и Мюллер (A. Kolliker, Н. Muller, 1855), накладывая на сокращающееся сердце нервно-мышечный препарат лягушки, состоящий из седалищного нерва, соединенного с икроножной мышцей, получали при сокращении сердца двойное сокращение: одно в начале систолы и другое (непостоянное) в начале диастолы. Таким образом, была впервые зарегистрирована электродвижущая сила (ЭДС) обнаженного сердца. Зарегистрировать ЭДС сердца с поверхности человеческого тела впервые удалось Уоллеру (A. D. Waller, 1887) посредством капиллярного электрометра. Уоллер считал,что человеческое тело является проводником, окружающим источник ЭДС - сердце; различные точки человеческого тела имеют потенциалы различной величины (рис. 1). Однако полученная капиллярным электрометром запись ЭДС сердца неточно воспроизводила ее колебания.


Рис. 1. Схема распределения изопотенциальных линий на поверхности человеческого тела, обусловленных электродвижущей силой сердца. Цифрами обозначены величины потенциалов.

Точная запись ЭДС сердца с поверхности человеческого тела - электрокардиограмма (ЭКГ) - была произведена Эйнтховеном (W. Einthoven, 1903) посредством струнного гальванометра, построенного по принципу аппаратов для приема трансатлантических телеграмм.

Согласно современным представлениям клетки возбудимых тканей, в частности клетки миокарда, покрыты полупроницаемой оболочкой (мембраной), проницаемой для ионов калия и непроницаемой для анионов. Заряженные положительно ионы калия, находящиеся в избытке в клетках по сравнению с окружающей их средой, удерживаются на наружной поверхности мембраны отрицательно заряженными анионами, расположенными на внутренней ее поверхности, непроницаемой для них.

Таким образом, на оболочке живой клетки возникает двойной электрический слой - оболочка поляризована, причем наружная поверхность ее заряжена положительно по отношению к внутреннему содержимому, заряженному отрицательно.

Эта поперечная разность потенциалов является потенциалом покоя. Если к наружной и внутренней сторонам поляризованной мембраны приложить микроэлектроды, то в наружной цепи возникает ток. Запись получившейся разности потенциалов дает монофазную кривую. При возникновении возбуждения мембрана возбужденного участка утрачивает полунепроницаемость, деполяризуется и поверхность ее становится электроотрицательной. Регистрация двумя микроэлектродами потенциалов наружной и внутренней оболочки деполяризованной мембраны также дает монофазную кривую.

Вследствие разности потенциалов между поверхностью возбужденного деполяризованного участка и поверхностью поляризованного, находящегося в покое, возникает ток действия - потенциал действия. Когда возбуждение охватывает все мышечное волокно, поверхность его становится электроотрицательной. Прекращение возбуждения вызывает волну реполяризации, и восстанавливается потенциал покоя мышечного волокна (рис. 2).


Рис. 2. Схематическое изображение поляризации, деполяризации и реполяризации клетки.

Если клетка находится в состоянии покоя (1), то с обеих сторон клеточной мембраны отмечается электростатическое равновесие, состоящее в том, что поверхность клетки является электроположительной (+) по отношению к ее внутренней стороне (-).

Волна возбуждения (2) моментально нарушает это равновесие, и поверхность клетки становится электроотрицательной по отношению к ее внутренней стороне; такое явление называют деполяризацией или же, правильнее, инверсионной поляризацией. После того как возбуждение прошло по всему мышечному волокну, оно становится полностью деполяризированным (3); вся его поверхность обладает одинаковым отрицательным потенциалом. Такое новое равновесие не продолжается долго, так как после волны возбуждения следует волна реполяризации (4), которая восстанавливает поляризацию состояния покоя (5).

Процесс возбуждения в нормальном человеческом сердце - деполяризация - идет следующим образом. Возникающая в синусовом узле, расположенном в правом предсердии, волна возбуждения распространяется со скоростью 800-1000 мм в 1 сек. лучеобразно по мышечным пучкам сначала правого, а затем левого предсердия. Длительность охвата возбуждением обоих предсердий 0,08-0,11 сек.

Первые 0,02 - 0,03 сек. возбуждено только правое предсердие, затем 0,04 - 0,06 сек.- оба предсердия и последние 0,02 - 0,03 сек.- только левое предсердие.

По достижении атрио-вентрикулярного узла распространение возбуждения замедляется. Затем с большой и постепенно увеличивающейся скоростью (от 1400 до 4000 мм в 1 сек.) оно направляется по пучку Гиса, его ножкам, их ветвям и разветвлениям и достигает конечных окончаний проводниковой системы. Достигнув сократительного миокарда, возбуждение со значительно уменьшенной скоростью (300-400 мм в 1 сек.) распространяется по обоим желудочкам. Так как периферические разветвления проводниковой системы рассеяны преимущественно под эндокардом, раньше всего приходит в возбуждение внутренняя поверхность сердечной мышцы. Дальнейший ход возбуждения желудочков не связан с анатомическим расположением мышечных волокон, а направлен от внутренней поверхности сердца к наружной. Время возникновения возбуждения в мышечных пучках, расположенных на поверхности сердца (субэпикардиальные), определяется двумя факторами: временем возбуждения наиболее близко расположенных к этим пучкам разветвлений проводниковой системы и толщиной мышечного слоя, отделяющего субэпикардиальные мышечные пучки от периферических разветвлений проводниковой системы.

Раньше всего возбуждаются межжелудочковая перегородка и правая сосочковая мышца. В правом желудочке возбуждение сначала охватывает поверхность его центральной части, так как мышечная стенка в этом месте тонка и ее мышечные слои тесно соприкасаются с периферическими разветвлениями правой ножки проводниковой системы. В левом желудочке раньше всего приходит в возбуждение верхушка, так как стенка, отделяющая ее от периферических разветвлений левой ножки, тонка. Для различных точек поверхности правого и левого желудочков нормального сердца период возбуждения наступает в строго определенное время, причем раньше всего приходит в возбуждение большинство волокон на поверхности тонкостенного правого желудочка и лишь небольшое количество волокон на поверхности левого желудочка благодаря их близости к периферическим разветвлениям проводниковой системы (рис. 3).


Рис. 3. Схематическое изображение нормального возбуждения межжелудочковой перегородки и внешних стенок желудочков (по Соди-Пальяресу с сотр.). Возбуждение желудочков начинается на левой стороне перегородки в средней ее части (0,00- 0,01 сек.) и затем может достигнуть основания правой сосочковой мышцы (0,02 сек.). После этого возбуждаются субэндокардиальные мышечные слои наружной стенки левого (0,03 сек.) и правого (0,04 сек.) желудочков. Последними возбуждаются базальные части внешних стенок желудочков (0,05-0,09 сек.).

Процесс прекращения возбуждения мышечных волокон сердца - реполяризацию - нельзя считать полностью изученным. Процесс реполяризации предсердий совпадает большей частью с процессом деполяризации желудочков и отчасти с процессом их реполяризации.

Процесс реполяризации желудочков идет значительно медленнее и в несколько иной последовательности, чем процесс деполяризации. Объясняется это тем, что длительность возбуждения мышечных пучков поверхностных слоев миокарда меньше длительности возбуждения субэндокардиальных волокон и сосочковых мышц. Запись процесса деполяризации и реполяризации предсердий и желудочков с поверхности человеческого тела и дает характерную кривую - ЭКГ, отражающую электрическую систолу сердца.

Запись ЭДС сердца производится в настоящее время несколько иными методами, чем регистрировалась Эйнтховеном. Эйнтховен регистрировал ток, получающийся при соединении двух точек поверхности человеческого тела. Современные аппараты - электрокардиографы - регистрируют непосредственно напряжение, обусловленное электродвижущей силой сердца.

Напряжение, обусловленное сердцем, равное 1-2 мВ, усиливается радиолампами, полупроводниками или электроннолучевой трубкой до 3-6 В, в зависимости от усилителя и регистрирующего аппарата.

Чувствительность измерительной системы устанавливают таким образом, чтобы разность потенциалов в 1 мВ давала отклонение в 1 см. Запись производится на фотобумаге или фотопленке либо непосредственно на бумаге (чернильнопишущие, с тепловой записью, со струйной записью). Наиболее точные результаты дают запись на фотобумаге или фотопленке и струйная запись.

Для объяснения своеобразной формы ЭКГ были предложены различные теории ее генеза.

А. Ф. Самойлов рассматривал ЭКГ как результат взаимодействия двух монофазных кривых.

Учитывая, что при регистрации двумя микроэлектродами наружной и внутренней поверхности мембраны в состояниях покоя, возбуждения и повреждения получается монофазная кривая, М. Т. Удельнов считает, что монофазная кривая отражает основную форму биоэлектрической активности миокарда. Алгебраическая сумма двух монофазных кривых дает ЭКГ.

Патологические изменения ЭКГ обусловлены сдвигами монофазных кривых. Эта теория генеза ЭКГ носит название дифференциальной.

Наружную поверхность мембраны клетки в периоде возбуждения можно представить схематически как состоящую из двух полюсов: отрицательного и положительного.

Непосредственно перед волной возбуждения в любом месте ее распространения поверхность клетки является электроположительной (состояние поляризации в состоянии покоя), а непосредственно за волной возбуждения поверхность клетки является электроотрицательной (состояние деполяризации; рис. 4). Данные электрические заряды противоположных знаков, группирующиеся в пары с одной и другой стороны каждого места, охваченного волной возбуждения, образуют электрические диполи (а). Реполяризация также создает неисчислимое количество диполей, но, в отличие от вышеуказанных диполей, отрицательный полюс находится спереди, а положительный полюс - сзади по отношению к направлению распространения волны (б). Если деполяризация или реполяризация закончена, поверхность всех клеток обладает одинаковым потенциалом (отрицательным или положительным); диполи полностью отсутствуют (см. рис. 2, 3 и 5).


Рис. 4. Схематическое изображение электрических диполей при деполяризации (а) и реполяризации (б), возникающих с обеих сторон волны возбуждения и волны реполяризации в результате изменения электрического потенциала на поверхности волокон миокарда.


Рис. 5. Схема равностороннего треугольника по Эйнтховену, Фару и Варту.

Мышечное волокно является маленьким двухполюсным генератором, продуцирующим маленькую (элементарную) ЭДС - элементарный диполь.

В каждый момент систолы сердца происходит деполяризация и реполяризация огромного числа волокон миокарда, расположенных в различных частях сердца. Сумма образовавшихся элементарных диполей создает соответствующую величину ЭДС сердца в каждый момент систолы. Таким образом, сердце представляет как бы один суммарный диполь, изменяющий в течение сердечного цикла свою величину и направление, но не меняющий места расположения своего центра. Потенциал в различных точках поверхности человеческого тела имеет различную величину в зависимости от расположения суммарного диполя. Знак потенциала зависит от того, по какую сторону от линии, перпендикулярной к оси диполя и проведенной через его центр, расположена данная точка: на стороне положительного полюса потенциал имеет знак +, а на противоположной стороне - знак -.

Большую часть времени возбуждения сердца поверхность правой половины туловища, правой руки, головы и шеи имеет отрицательный потенциал, а поверхность левой половины туловища, обеих ног и левой руки - положительный (рис. 1). Таково схематическое объяснение генеза ЭКГ согласно теории диполя.

ЭДС сердца в течение электрической систолы меняет не только свою величину, но и направление; следовательно, она является векторной величиной. Вектор изображается отрезком прямой линии определенной длины, размер которой при определенных данных регистрирующего аппарата указывает на абсолютную величину вектора.

Стрелка на конце вектора указывает направление ЭДС сердца.

Возникшие одновременно векторы ЭДС отдельных волокон сердца суммируются по правилу сложения векторов.

Суммарный (интегральный) вектор двух векторов, расположенных параллельно и направленных в одну сторону, равняется по абсолютной величине сумме составляющих его векторов и направлен в ту же сторону.

Суммарный вектор двух векторов одинаковой величины, расположенных параллельно и направленных в противоположные стороны, равен 0. Суммарный вектор двух векторов, направленных друг к другу под углом, равняется диагонали параллелограмма, построенного из составляющих его векторов. Если оба вектора образуют острый угол, то их суммарный вектор направлен в сторону составляющих его векторов и больше любого из них. Если оба вектора образуют тупой угол и, следовательно, направлены в противоположные стороны, то их суммарный вектор направлен в сторону наибольшего вектора и короче его. Векторный анализ ЭКГ заключается в определении по зубцам ЭКГ пространственного направления и величины суммарной ЭДС сердца в любой момент его возбуждения.

Примененный в практических целях в 70-х годах 19 века англичанином А. Уоллером аппарат, записывающий электрическую активность сердца, продолжает верой и правдой служить человечеству по сей день. Конечно, почти за 150 лет он претерпевал многочисленные изменения и усовершенствования, однако принцип его работы, основанный на записи электрических импульсов, распространяющихся в сердечной мышце , остался прежним.

Сейчас практически каждая бригада скорой помощи снабжена переносным, легким и мобильным электрокардиографом, который позволяет быстро снять ЭКГ, не терять драгоценных минут, диагностировать и оперативно доставить больного в стационар. Для крупноочагового инфаркта миокарда, и других заболеваний, требующих принятия экстренных мер, счет идет на минуты, поэтому снятая в срочном порядке электрокардиограмма ежедневно спасает не одну жизнь.

Расшифровка ЭКГ для врача кардиологической бригады – дело обычное и, если она указывает на наличие острой сердечно-сосудистой патологии, то бригада немедленно, включив сирену, отправляется в больницу, где, минуя приемный покой, доставят больного в блок интенсивной терапии для оказания срочной помощи. Диагноз-то с помощью ЭКГ уже поставлен и время не потеряно.

Пациентам хочется знать…

Да, пациентам хочется знать, что же обозначают непонятные зубцы на ленте, оставленные самописцем, поэтому, прежде чем зайти к врачу, пациенты хотят сами расшифровать ЭКГ. Однако все не так просто и для того, чтобы понять «мудреную» запись, нужно знать, что представляет собой человеческий «мотор».

Сердце млекопитающих, к которым относится и человек, состоит из 4 камер: двух предсердий, наделенных вспомогательными функциями и имеющих сравнительно тонкие стенки, и двух желудочков, несущих на себе основную нагрузку. Левый и правый отдел сердца также различаются между собой. Обеспечение кровью малого круга менее затруднительно для правого желудочка, чем выталкивание крови в большой круг кровообращения левым. Поэтому левый желудочек более развит, но и страдает больше. Однако не глядя на разницу, оба отдела сердца должны работать равномерно и слаженно.

Сердце по своей структуре и электрической активности неоднородно, поскольку сократимые элементы (миокард) и несократимые (нервы, сосуды, клапаны, жировая клетчатка) отличаются между собой различной степенью электрического ответа.

Обычно больные, особенно старшего возраста, беспокоятся: нет ли признаков инфаркта миокарда на ЭКГ, что вполне понятно. Однако для этого нужно больше узнать о сердце и кардиограмме. И мы постараемся предоставить такую возможность, рассказав о зубцах, интервалах и отведениях и, конечно, о некоторых распространенных сердечных заболеваниях.

Способности сердца

О специфических функциях сердца впервые мы узнаем еще со школьных учебников, поэтому представляем, что сердце обладает:

  1. Автоматизмом , обусловленным самопроизвольной выработкой импульсов, которые затем вызывают его возбуждение;
  2. Возбудимостью или способностью сердца активизироваться под воздействием возбуждающих импульсов;
  3. или «умением» сердца обеспечивать проведение импульсов от места их возникновения до сократительных структур;
  4. Сократимостью , то есть, способностью сердечной мышцы осуществлять сокращения и расслабления под управлением импульсов;
  5. Тоничностью , при которой сердце в диастоле не теряет свою форму и обеспечивает непрерывную циклическую деятельность.

В целом, мышца сердца в спокойном состоянии (статическая поляризация) электронейтральна, а биотоки (электрические процессы) в ней формируются при воздействии возбуждающих импульсов.

Биотоки в сердце можно записать

Электрические процессы в сердце обусловлены движением ионов натрия (Na+), которые первоначально находятся снаружи миокардиальной клетки, внутрь ее и движением ионов калия (К+), устремляющихся изнутри клетки наружу. Это перемещение создает условия для изменения трансмембранных потенциалов во время всего сердечного цикла и повторяющихся деполяризаций (возбуждение, затем сокращение) и реполяризаций (переход в первоначальное состояние). Электрической активностью обладают все миокардиальные клетки, однако медленная спонтанная деполяризация свойственна лишь клеткам проводящей системы, почему они и способны к автоматизму.

Возбуждение, распространяющееся посредством проводящей системы , последовательно охватывает отделы сердца. Начинаясь в синусно-предсердном (синусовом) узле (стенки правого предсердия), который обладает максимальным автоматизмом, импульс проходит через предсердные мышцы, атриовентрикулярный узел, пучок Гиса с его ножками и направляется к желудочкам, возбуждая при этом отделы проводящей системы еще до проявления собственного автоматизма.

Возбуждение, возникающее на наружной поверхности миокарда, оставляет эту часть электронегативный по отношению к участкам, которых возбуждение не коснулось. Однако ввиду того, что ткани организма обладают электропроводностью, биотоки проецируются на поверхность тела и могут быть зарегистрированы и записаны на движущуюся ленту в виде кривой – электрокардиограммы. ЭКГ состоит из зубцов, которые повторяются после каждого сердечного сокращения, и показывает посредством их о тех нарушениях, которые есть в человеческом сердце.

Как снимают ЭКГ?

На этот вопрос, пожалуй, могут ответить многие. Сделать ЭКГ при необходимости тоже не составит никакого труда – электрокардиограф есть в каждой поликлинике. Техника снятия ЭКГ? Это только кажется на первый взгляд, что она всем так уж знакома, а между тем, ее знают лишь медработники, прошедшие специальное обучение по снятию электрокардиограммы. Но вряд ли стоит нам вдаваться в подробности, поскольку к такой работе без подготовки нас все равно никто не допустит.

Пациентам нужно знать, как правильно подготовиться: то есть, желательно не наедаться, не курить, не употреблять алкогольные напитки и лекарства, не увлекаться тяжелым физическим трудом и не пить кофе перед процедурой, иначе можно обмануть ЭКГ. Уж точно будет обеспечена, если не что-то другое.

Итак, совершенно спокойный пациент раздевается до пояса, освобождает ноги и укладывается на кушетку, а медсестра специальным раствором смажет нужные места (отведения), наложит электроды, от которых к аппарату идут провода разных цветов, и снимет кардиограмму.

Ее потом расшифрует врач, но если интересно, можно попробовать самостоятельно разобраться в своих зубцах и интервалах.

Зубцы, отведения, интервалы

Возможно, этот раздел будет не всем интересен, тогда его можно пропустить, но для тех, кто пытается разобраться в своей ЭКГ самостоятельно, может оказаться полезным.

Зубцы в ЭКГ обозначаются с помощью латинских букв: P, Q, R, S, T, U, где каждая из них отражает состояние различных отделов сердца:

  • Р – деполяризация предсердий;
  • Комплекс зубцов QRS – деполяризация желудочков;
  • Т – реполяризация желудочков;
  • Маловыраженный зубец U может указывать на реполяризацию дистальных участков проводящей системы желудочков.

Для записи ЭКГ, как правило, используется 12 отведений:

  • 3 стандартных – I, II, III;
  • 3 усиленных однополюсных отведения от конечностей (по Гольдбергеру);
  • 6 усиленных однополюсных грудных (по Вильсону).

В некоторых случаях (аритмии, аномальное расположение сердца) возникает необходимость применения дополнительных однополюсных грудных и двухполюсных отведений и по Нэбу (D, А, I).

При расшифровке результатов ЭКГ проводят измерение продолжительности интервалов между ее составляющими. Этот расчет необходим для оценки частоты ритма, где форма и величина зубцов в разных отведениях будет показателем характера ритма, происходящих электрических явлений в сердце и (в некоторой степени) электрической активности отдельных участков миокарда, то есть, электрокардиограмма показывает, как работает наше сердце в тот или иной период.

Видео: урок по зубцам, сегментам и интервалам ЭКГ


Анализ ЭКГ

Более строгая расшифровка ЭКГ производится с помощью анализа и расчета площади зубцов при использовании специальных отведений (векторная теория), однако в практике, в основном, обходятся таким показателем, как направление электрической оси , которая представляет собой суммарный вектор QRS. Понятно, что у каждого грудная клетка устроена по-своему и сердце не имеет такого уж строгого расположения, весовое соотношение желудочков и проводимость внутри них тоже у всех разная, поэтому при расшифровке и указывается горизонтальное или вертикальное направление этого вектора.

Анализ ЭКГ врачи осуществляют в последовательном порядке, определяя норму и нарушения:

  1. Оценивают сердечный ритм и измеряет частоту сердечных сокращений (при нормальной ЭКГ – ритм синусовый, ЧСС – от 60 до 80 ударов в минуту);
  2. Рассчитывают интервалы (QT, норма – 390-450 мс), характеризующие продолжительность фазы сокращения (систолы) по специальной формуле (чаще использую формулу Базетта). Если этот интервал удлиняется, то врач вправе заподозрить , . А гиперкальциемия, наоборот, приводит к укорочению интервала QT. Отраженную посредством интервалов проводимость импульсов, рассчитывают с помощью компьютерной программы, что значительно повышает достоверность результатов;
  3. начинают рассчитывать от изолинии по высоте зубцов (в норме R всегда выше S) и если S превышает R, а ось отклоняется вправо, то думают о нарушениях деятельности правого желудочка, если наоборот – влево, и при этом высота S больше R в II и III отведениях – подозревают гипертрофию левого желудочка;
  4. Изучают комплекс QRS, который формируется при проведении электрических импульсов к мышце желудочков и определяет деятельность последних (норма – отсутствие патологического зубца Q, ширина комплекса не более 120 мс). В случае, если данный интервал смещается, то говорят о блокадах (полных и частичных) ножек пучка Гиса или нарушении проводимости. Причем неполная блокада правой ножки пучка Гиса является электрокардиографическим критерием гипертрофии правого желудочка, а неполная блокада левой ножки пучка Гиса – может указывать на гипертрофию левого;
  5. Описывают сегменты ST, которые отражают период восстановления исходного состояния сердечной мышцы после ее полной деполяризации (в норме находится на изолинии) и зубец Т, характеризующий процесс реполяризации обоих желудочков, который направлен вверх, ассиметричен, его амплитуда ниже зубца по продолжительности он длиннее комплекса QRS.

Работу по расшифровке проводит только врач, правда, некоторые фельдшера скорой помощи часто встречающуюся патологию прекрасно распознают, что очень важно в экстренных случаях. Но для начала все-таки нужно знать норму ЭКГ.

Так выглядит кардиограмма здорового человека, сердце которого работает ритмично и правильно, но что обозначает эта запись, далеко не каждый знает, которая может изменяться при различных физиологических состояниях, например беременности. У беременных сердце занимает другое положение в грудной клетке, поэтому смещается электрическая ось. К тому же, в зависимости от срока, добавляется нагрузка на сердце. ЭКГ при беременности и будет отражать эти изменения.

Отличны показатели кардиограммы и у детей, они будут «расти» вместе с малышом, поэтому и меняться будут соответственно возрасту, лишь после 12 лет электрокардиограмма ребенка начинает приближаться к ЭКГ взрослого человека.

Самый неутешительный диагноз: инфаркт

Самым серьезным диагнозом на ЭКГ, разумеется, является , в распознавании которого кардиограмме принадлежит главная роль, ведь именно она (первая!) находит зоны некроза, определяет локализацию и глубину поражения, может отличить острый инфаркт от и рубцов прошлого.

Классическими признаками инфаркта миокарда на ЭКГ считают регистрацию глубокого зубца Q (OS), возвышение сегмента ST , который деформирует R, сглаживая его, и появление в дальнейшем отрицательного остроконечного равнобедренного зубца Т. Такое возвышение сегмента ST визуально напоминает кошачью спинку («кошка»). Однако различают инфаркт миокарда с зубцом Q и без него.

Видео: признаки инфаркта на ЭКГ


Когда с сердцем что-то не так

Часто в заключениях ЭКГ можно встретить выражение: « ». Как правило, такую кардиограмму имеют люди, сердце которых длительное время несло дополнительную нагрузку, например, при ожирении. Понятно, что левому желудочку в подобных ситуациях приходится нелегко. Тогда электрическая ось отклоняется влево, а S становится больше R.

гипертрофия левого (слева) и правого (справа) желудочков сердца на ЭКГ

Видео: гипертрофии сердца на ЭКГ

На ваш вопрос ответит один из ведущих .

На вопросы данного раздела в текущий момент отвечает: Сазыкина Оксана Юрьевна , кардиолог

Поблагодарить специалиста за помощь или поддержать проект СосудИнфо можно произвольным .

В вопросах по расшифровке ЭКГ обязательно указывайте пол, возраст, клинические данные, диагнозы и жалобы пациента.

  • Электрокардиограмма отражает только электрические процессы в миокарде: деполяризацию (возбуждение) и реполяризацию (восстановление) клеток миокарда.

    Соотношение интервалов ЭКГ с фазами сердечного цикла (систола и диастола желудочков).

    В норме деполяризация приводит к сокращению мышечной клетки, а реполяризация - к расслаблению.

    Для упрощения дальше я буду вместо “деполяризации-реполяризации” иногда использовать “сокращение-расслабление”, хотя это не совсем точно: существует понятие “электромеханическая диссоциация “, при которой деполяризация и реполяризация миокарда не приводят к его видимому сокращению и расслаблению.

    Элементы нормальной ЭКГ

    Прежде, чем перейти к расшифровке ЭКГ, нужно разобраться, из каких элементов она состоит.

    Зубцы и интервалы на ЭКГ .

    Любопытно, что за рубежом интервал P-Q обычно называют P-R .

    Любая ЭКГ состоит из зубцов, сегментов и интервалов.

    ЗУБЦЫ - это выпуклости и вогнутости на электрокардиограмме.
    На ЭКГ выделяют следующие зубцы:

    • P (сокращение предсердий),
    • Q , R , S (все 3 зубца характеризуют сокращение желудочков),
    • T (расслабление желудочков),
    • U (непостоянный зубец, регистрируется редко).

    СЕГМЕНТЫ
    Сегментом на ЭКГ называют отрезок прямой линии (изолинии) между двумя соседними зубцами. Наибольшее значение имеют сегменты P-Q и S-T. Например, сегмент P-Q образуется по причине задержки проведения возбуждения в предсердно-желудочковом (AV-) узле.

    ИНТЕРВАЛЫ
    Интервал состоит из зубца (комплекса зубцов) и сегмента . Таким образом, интервал = зубец + сегмент. Самыми важными являются интервалы P-Q и Q-T.

    Зубцы, сегменты и интервалы на ЭКГ.
    Обратите внимание на большие и мелкие клеточки (о них ниже).

    Зубцы комплекса QRS

    Поскольку миокард желудочков массивнее миокарда предсердий и имеет не только стенки, но и массивную межжелудочковую перегородку, то распространение возбуждения в нем характеризуется появлением сложного комплекса QRS на ЭКГ.

    Как правильно выделить в нем зубцы ?

    Прежде всего оценивают амплитуду (размеры) отдельных зубцов комплекса QRS. Если амплитуда превышает 5 мм , зубец обозначают заглавной (большой) буквой Q, R или S; если же амплитуда меньше 5 мм, то строчной (маленькой) : q, r или s.

    Зубцом R (r) называют любой положительный (направленный вверх) зубец, который входит в комплекс QRS. Если зубцов несколько, последующие зубцы обозначают штрихами : R, R’, R” и т. д.

    Отрицательный (направленный вниз) зубец комплекса QRS, находящийся перед зубцом R , обозначается как Q (q), а после - как S (s). Если же в комплексе QRS совсем нет положительных зубцов, то желудочковый комплекс обозначают как QS .

    Варианты комплекса QRS.

    В норме:

    зубец Q отражает деполяризацию межжелудочковой перегородки (возбуждается межжелудоч ковая перегородка )

    зубец R - деполяризацию основной массы миокарда желудочков (возбуждается верхушка сердца и прилегающие к ней области)

    зубец S - деполяризацию базальных (т.е. возле предсердий) отделов межжелудочковой перегородки (возбуждается основание сердца)

    Зубец R V1, V2 отражает возбуждение межжелудочковой перегородки,

    а R V4, V5, V6 - возбуждение мышцы левого и правого желудочков.

    Омертвение участков миокарда (например, при инфаркте миокарде ) вызывает расширение и углубление зубца Q, поэтому на этот зубец всегда обращают пристальное внимание.

    Анализ ЭКГ

    Общая схема расшифровки ЭКГ

    1. Проверка правильности регистрации ЭКГ.
    2. Анализ сердечного ритма и проводимости:
      • оценка регулярности сердечных сокращений,
      • подсчет частоты сердечных сокращений (ЧСС),
      • определение источника возбуждения,
      • оценка проводимости.
    3. Определение электрической оси сердца.
    4. Анализ предсердного зубца P и интервала P - Q.
    5. Анализ желудочкового комплекса QRST:
      • анализ комплекса QRS,
      • анализ сегмента RS - T,
      • анализ зубца T,
      • анализ интервала Q - T.
    6. Электрокардиографическое заключение.

    Нормальная электрокардиограмма.

    1) Проверка правильности регистрации ЭКГ

    В начале каждой ЭКГ-ленты должен иметься калибровочный сигнал - так называемый контрольный милливольт . Для этого в начале записи подается стандартное напряжение в 1 милливольт, которое должно отобразить на ленте отклонение в 10 мм . Без калибровочного сигнала запись ЭКГ считается неправильной.

    В норме, по крайней мере в одном из стандартных или усиленных отведений от конечностей, амплитуда должна превышать 5 мм , а в грудных отведениях - 8 мм . Если амплитуда ниже, это называется сниженный вольтаж ЭКГ , который бывает при некоторых патологических состояниях.

    2) Анализ сердечного ритма и проводимости:

    1. оценка регулярности сердечных сокращений

      Регулярность ритма оценивается по интервалам R-R . Если зубцы находятся на равном расстоянии друг от друга, ритм называется регулярным, или правильным. Допускается разброс длительности отдельных интервалов R-R не более ± 10% от средней их длительности. Если ритм синусовый, он обычно является правильным.

    2. подсчет частоты сердечных сокращений (ЧСС)

      На ЭКГ-пленке напечатаны большие квадраты, каждый из которых включает в себя 25 маленьких квадратиков (5 по вертикали x 5 по горизонтали).

      Для быстрого подсчета ЧСС при правильном ритме считают число больших квадратов между двумя соседними зубцами R - R.

      При скорости ленты 50 мм/с: ЧСС = 600 / (число больших квадратов).
      При скорости ленты 25 мм/с: ЧСС = 300 / (число больших квадратов).

      На скорости 25 мм/с каждая маленькая клеточка равна 0.04 c,

      а на скорости 50 мм/с - 0.02 с.

      Это используется для определения длительности зубцов и интервалов.

      При неправильном ритме обычно считают максимальную и минимальную ЧСС согласно длительности самого маленького и самого большого интервала R-R соответственно.

    3. определение источника возбуждения

      Другими словами, ищут, где находится водитель ритма , который вызывает сокращения предсердий и желудочков.

      Иногда это один из самых сложных этапов, потому что различные нарушения возбудимости и проводимости могут очень запутанно сочетаться, что способно привести к неправильному диагнозу и неправильному лечению.

    СИНУСОВЫЙ ритм (это нормальный ритм, а все остальные ритмы являются патологическими).
    Источник возбуждения находится в синусно-предсердном узле .

    Признаки на ЭКГ:

    • во II стандартном отведении зубцы P всегда положительные и находятся перед каждым комплексом QRS,
    • зубцы P в одном и том же отведении имеют постоянную одинаковую форму.

    Зубец P при синусовом ритме.

    ПРЕДСЕРДНЫЙ ритм . Если источник возбуждения находится в нижних отделах предсердий, то волна возбуждения распространяется на предсердия снизу вверх (ретроградно), поэтому:

    • во II и III отведениях зубцы P отрицательные,
    • зубцы P есть перед каждым комплексом QRS.

    Зубец P при предсердном ритме.

    Ритмы из АВ-соединения . Если водитель ритма находится в атрио-вентрикулярном (предсердно-желудочковом узле ) узле, то желудочки возбуждаются как обычно (сверху вниз), а предсердия - ретроградно (т.е. снизу вверх).

    При этом на ЭКГ:

    • зубцы P могут отсутствовать, потому что наслаиваются на нормальные комплексы QRS,
    • зубцы P могут быть отрицательными, располагаясь после комплекса QRS.

    Ритм из AV-соединения, наложение зубца P на комплекс QRS.

    Ритм из AV-соединения, зубец P находится после комплекса QRS.

    ЧСС при ритме из АВ-соединения меньше синусового ритма и равна примерно 40-60 ударов в минуту.

    Желудочковый, или ИДИОВЕНТРИКУЛЯРНЫЙ, ритм

    В этом случае источником ритма является проводящая система желудочков.

    Возбуждение распространяется по желудочкам неправильными путями и потому медленее. Особенности идиовентрикулярного ритма:

    • комплексы QRS расширены и деформированы (выглядят “страшновато”). В норме длительность комплекса QRS равна 0.06-0.10 с, поэтому при таком ритме QRS превышает 0.12 c.
    • нет никакой закономерности между комплексами QRS и зубцами P, потому что АВ-соединение не выпускает импульсы из желудочков, а предсердия могут возбуждаться из синусового узла, как и в норме.
    • ЧСС менее 40 ударов в минуту.

    Идиовентрикулярный ритм. Зубец P не связан с комплексом QRS.

    d . оценка проводимости .
    Для правильного учета проводимости учитывают скорость записи.

    Для оценки проводимости измеряют:

    • длительность зубца P (отражает скорость проведения импульса по предсердиям), в норме до 0.1 c.
    • длительность интервала P - Q (отражает скорость проведения импульса от предсердий до миокарда желудочков); интервал P - Q = (зубец P) + (сегмент P - Q). В норме 0.12-0.2 с.
    • длительность комплекса QRS (отражает распространение возбуждения по желудочкам). В норме 0.06-0.1 с.
    • интервал внутреннего отклонения в отведениях V1 и V6. Это время между началом комплекса QRS и зубцом R. В норме в V1 до 0.03 с и в V6 до 0.05 с. Используется в основном для распознавания блокад ножек пучка Гиса и для определения источника возбуждения в желудочках в случае желудочковой экстрасистолы (внеочередного сокращения сердца).

    Измерение интервала внутреннего отклонения.

    3) Определение электрической оси сердца.

    4) Анализ предсердного зубца P.

    • В норме в отведениях I, II, aVF, V2 - V6 зубец P всегда положительный .
    • В отведениях III, aVL, V1 зубец P может быть положительным или двухфазным (часть зубца положительная, часть - отрицательная).
    • В отведении aVR зубец P всегда отрицательный.
    • В норме длительность зубца P не превышает 0.1 c , а его амплитуда - 1.5 - 2.5 мм.

    Патологические отклонения зубца P:

    • Заостренные высокие зубцы P нормальной продолжительности в отведениях II, III, aVF характерны для гипертрофии правого предсердия , например, при “легочном сердце”.
    • Расщепленный с 2 вершинами, расширенный зубец P в отведениях I, aVL, V5, V6 характерен для гипертрофии левого предсердия , например, при пороках митрального клапана.

    Формирование зубца P (P-pulmonale) при гипертрофии правого предсердия.

    Формирование зубца P (P-mitrale) при гипертрофии левого предсердия.

    4) Анализ интервала P-Q :

    в норме 0.12-0.20 с .

    Увеличение данного интервала бывает при нарушенном проведении импульсов через предсердно-желудочковый узел (атриовентрикулярная блокада , AV-блокада).

    AV-блокада бывает 3 степеней:

    • I степень - интервал P-Q увеличен, но каждому зубцу P соответствует свой комплекс QRS (выпадения комплексов нет ).
    • II степень - комплексы QRS частично выпадают , т.е. не всем зубцам P соответствует свой комплекс QRS.
    • III степень - полная блокада проведения в AV-узле. Предсердия и желудочки сокращаются в собственном ритме, независимо друг от друга. Т.е. возникает идиовентрикулярный ритм.

    5) Анализ желудочкового комплекса QRST:

    1. анализ комплекса QRS .

      Максимальная длительность желудочкового комплекса равна 0.07-0.09 с (до 0.10 с).

      Длительность увеличивается при любых блокадах ножек пучка Гиса.

      В норме зубец Q может регистрироваться во всех стандартных и усиленных отведениях от конечностей, а также в V4-V6.

      Амплитуда зубца Q в норме не превышает 1/4 высоты зубца R , а длительность - 0.03 с .

      В отведении aVR в норме бывает глубокий и широкий зубец Q и даже комплекс QS.

      Зубец R, как и Q, может регистрироваться во всех стандартных и усиленных отведениях от конечностей.

      От V1 до V4 амплитуда нарастает (при этом зубец r V1 может отсутствовать), а затем снижается в V5 и V6.

      Зубец S может быть самой разной амплитуды, но обычно не больше 20 мм.

      Зубец S снижается от V1 до V4, а в V5-V6 даже может отсутствовать.

      В отведении V3 (или между V2 - V4) обычно регистрируется “переходная зона ” (равенство зубцов R и S).

    2. анализ сегмента RS - T

      Cегмент S-T (RS-T) является отрезком от конца комплекса QRS до начала зубца T. - - Сегмент S-T особенно внимательно анализируют при ИБС, так как он отражает недостаток кислорода (ишемию) в миокарде.

      В норме сегмент S-T находится в отведениях от конечностей на изолинии (± 0.5 мм ).

      В отведениях V1-V3 возможно смещение сегмента S-T вверх (не более 2 мм), а в V4-V6 - вниз (не более 0.5 мм).

      Точка перехода комплекса QRS в сегмент S-T называется точкой j (от слова junction - соединение).

      Степень отклонения точки j от изолинии используется, например, для диагностики ишемии миокарда.

    3. анализ зубца T .

      Зубец T отражает процесс реполяризации миокарда желудочков.

      В большинстве отведений, где регистрируется высокий R, зубец T также положительный.

      В норме зубец T всегда положительный в I, II, aVF, V2-V6, причем T I > T III , а T V6 > T V1 .

      В aVR зубец T всегда отрицательный.

    4. анализ интервала Q - T .

      Интервал Q-T называют электрической систолой желудочков , потому что в это время возбуждаются все отделы желудочков сердца.

      Иногда после зубца T регистрируется небольшой зубец U , который образуется из-за кратковременной повышеной возбудимости миокарда желудочков после их реполяризации.

    6) Электрокардиографическое заключение.
    Должно включать:

    1. Источник ритма (синусовый или нет).
    2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.
    3. Положение электрической оси сердца.
    4. Наличие 4 синдромов:
      • нарушение ритма
      • нарушение проводимости
      • гипертрофия и/или перегрузка желудочков и предсердий
      • повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

    Помехи на ЭКГ

    В связи с частыми вопросами в комментариях насчет вида ЭКГ расскажу о помехах , которые могут быть на электрокардиограмме:

    Три типа помех на ЭКГ (пояснение ниже).

    Помехи на ЭКГ в лексиконе медработников называются наводкой :
    а) наводные токи: сетевая наводка в виде правильных колебаний с частотой 50 Гц, соответствующие частоте переменного электрического тока в розетке.
    б) «плавание » (дрейф) изолинии по причине плохого контакта электрода с кожей;
    в) наводка, обусловленная мышечной дрожью (видны неправильные частые колебания).

    Алгоритм анализа ЭКГ: методика определения и основные нормативы




  • © 2024
    womanizers.ru - Журнал современной женщины