26.09.2019

Построение расстояния между скрещивающимися прямыми. Нахождение расстояния между скрещивающимися прямыми


Приведем без доказательств сведения из стереометрии, необходимые для решения названной задачи.

1. Общим перпендикуляром двух скрещивающихся прямых называется отрезок,

концы которого лежат на данных прямых и который перпендикулярен к ним.

2. Общий перпендикуляр двух скрещивающихся прямых существует и единствен.

3. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра.

Задача. Даны скрещивающиеся прямые АВ и CD. Определить расстояние между прямыми (рис. 8.7).

Решение задачи выполним методом замены плоскостей проекций. Проекционный алгоритм решения в этом случае может быть следующим:

1) вводится новая система плоскостей проекций

П 1 , П 4 , таким образом, что П 4 // АВ, т.е. на КЧ

строится ось х 1 // А 1 В 1 ;

2) на П 4 строятся новые проекции А 4 В 4 (НВ отрезка АВ) и C 4 D 4 ;

3) вводится новая система плоскостей П 4 , П 5 с

осью х 2 ^ А 4 В 4 такая, что П 5 ^ AB;

4) на П 5 строятся новые проекции – отрезок C 5 D 5 и точка А 5 = В 5 ;

5) строится перпендикуляр E 5 F 5 ^ C 5 D 5 из точки

Е 5 (= А 5 = В 5);

В итоге, по смыслу построений в методе замены плоскостей проекций и приведенному понятию расстояния между скрещивающимися прямыми, получаем, что r(E 5 , C 5 D 5) = r(AB, CD). Для полноты решения задачи необходимо вернуть отрезок EF длиной r(AB, CD) на исходные плоскости проекций:

1) строим E 4 F 4 // x 2 ;

2) строим E 1 F 1 по проекциям E 5 F 5 , E 4 F 4 ; E 2 F 2 по проекциям E 4 F 4 , E 1 F 1 .

Отрезки E 2 F 2 , E 1 F 1 представляют собой основные проекции отрезка EF.

В стереометрии известно еще одно определение рассматриваемого расстояния: расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проведенными через эти прямые.

Такое определение расстояния позволяет предложить более короткий путь решения рассматриваемой задачи. Пусть AB и CD – скрещивающиеся прямые (рис. 8.8). Переместим в пространстве прямую АВ параллельно самой себе в положение А 1 В 1 до пересечения с CD. Если взять теперь на прямой АВ любую точку Е и опустить из этой точки перпендикуляр ЕЕ 1 на образовавшуюся плоскость Σ(CD, A 1 B 1), то длина этого перпендикуляра будет искомым расстоянием r(AB,CD). Рассмотрим проекционное решение задачи.

Задача. Даны скрещивающиеся прямые АВ и CD (рис. 8.9). Определить расстояние между ними.

Решение задачи может быть следующим.

1. Перенесем прямую АВ параллельно самой себе до пересечения с CD. Таких

переносов может быть бесконечное множество. Один из переносов, например

А 1 В 1 ® А 1 1 В 1 1 , А 2 В 2 = А 2 1 В 2 1 – наиболее простой для данного КЧ вариант.

2. Получаем новые условия задачи: задана плоскость Σ (А 1 В 1 , CD), где А 1 В 1 Ç CD и точка А; требуется определить расстояние r(А, Σ). Решение задачи выполняется методом замены плоскостей проекций по ранее изложенной схеме проекционного решения.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Стереометрия Расстояние между скрещивающимися прямыми

Общим перпендикуляром двух скрещивающихся прямых называют отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. a b A B Расстоянием между скрещивающимися прямыми называют длину их общего перпендикуляра.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из этих прямых до плоскости, проходящей через вторую прямую параллельно первой прямой.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между двумя параллельными плоскостями, содержащими эти прямые.

№ 1 В единичном кубе найдите

№ 2 В единичном кубе найдите

№ 3 В единичном кубе найдите

№ 4 В единичном кубе найдите

Общий перпендикуляр двух скрещивающихся прямых и есть отрезок, соединяющий середины отрезков и Е – середина F – середина

№ 5 В единичном кубе найдите ~

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между их проекциями на плоскость, перпендикулярную одной из них.

№ 5 В единичном кубе найдите O – проекция прямой АС на плоскость

№ 6 Дана правильная пирамида PABC c боковым ребром PA = 3 и стороной основания 2 . Найдите

Прямоугольный - прямоугольный - прямоугольный

№ 7 В единичном кубе найдите расстояние между прямыми и


По теме: методические разработки, презентации и конспекты

Угол между скрещивающимися прямыми

Презентация для подготовки к сдаче ЕГЭ по математике по теме "Угол между скрещивающимися прямыми"...

Разработана совместно с учащимися 11 класса. Рассмотрены различные методы решения задач по данной теме....

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ Координатным и векторным способом Алферова Наталья Васильевна, учитель математики МКОУ «Горячеключевская СОШ» Омского района Омской области

2 слайд

Описание слайда:

Основные понятия Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к данным прямым Расстоянием между скрещивающимися прямыми называется расстояние от точки одной прямой до плоскости параллельной данной прямой и содержащей вторую прямую.

3 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. х y z Точки A1 (1;0;1), B (1;1;0) Вектор A1B {0;1;-1} Точки D (0;0;0), B1 (1;1;1) Вектор DB1 {1;1;1} Пусть КМ ┴А1В и КМ┴DВ1, значит КМ – искомое расстояние. Пусть точка К лежит на прямой A1B, а точка М на прямой DB1. Рассмотрим векторы А1К и DM, сонаправленные с направляющими векторами данных прямых. По лемме о коллинеарных векторах вектор А1К = а · А1В, т.е. вектор А1К{0;a;-a}, вектор DM = b · DB1, т.е. вектор DM {b;b;b}. Тогда К(1;а;1-а), М(b;b;b) и вектор КМ {b-1;b-a;b-1+a}. К М

4 слайд

Описание слайда:

Решим систему из условия перпендикулярности двух векторов KM·A1B=0 0·(b-1)+1·(b-a)-1·(b-1+a) = 0, KM·DB1=0 1·(b-1)+1·(b-a)+1·(b-1+a) = 0 Решив систему получаем a=1/2, b=2/3, подставим эти значения в координаты вектора КМ: КМ { -1/3; 1/6; 1/6}. Найдём длину вектора |КМ| =√х²+y²+z², |КМ| =√1/9+1/36+1/36=√6/6. Ответ: √6/6 a·b = x1x2+y1y2+z1z2 = 0

5 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. K M x y z KM=MB1+BB1+BK=a·DB1+B1B+b·BA1 DB1{1;1;1}, BA1 {0;-1;1}, B1B{0;0;1} KM = {a; a ;a} + {0; 0; 1} + {0; -b ; b}= = {a; a- b; a+1+b} KM·BA1=0 0·a-1·(a-b) +1·(a+1+b)=0, KM·DB1=0 1·a+1·(a-b)+1·(a+1+b) = 0 b= -½, a= -⅓ KM {-1/3; 1/6;1/6} |KM|= √1/9+1/36+1/36 =√6/6

6 слайд

Описание слайда:

В правильной треугольной призме АВСА1В1С1, все ребра которой равны 1, найдите расстояние между прямыми АВ и СВ1 z y x Рассмотрим плоскость (А1В1С), содержащую прямую В1С и параллельную прямой АВ. Расстоянием между скрещивающимися прямыми будет расстояние от точки прямой АВ, например от А, до плоскости (А1В1С). Введём прямоугольную систему координат ОХУZ так, чтобы ось ОХ была параллельна высоте ВН основания, ось ОУ совпадала с АС, ось ОZ совпадала с АА1. Н

7 слайд

Описание слайда:

Рассмотрим ∆АВС в плоскости ОХУ x y A C B H ∆ ABC – правильный, АВ=ВС=АС=1, ВН=√3/2. Составим уравнение плоскости (А1В1С): Ax+By+Cz+D=0. A1(0;0;1), B1(√3/2; 1/2 ;1), C(0;1;0) , подставляем координаты точек в уравнение плоскости, получим систему: 0A+0B+1C+D=0, (√3/2)A+(1/2)B+1C+D=0, 0A+1B+0C+D=0. Получаем C=-D, B=-D, A= (√3/3)D. Уравнение плоскости (А1В1С1): (√3/3)Dx-Dy-Dz+D=0, (√3/3)x-1y-1z+1=0, Формула расстояния от точки до плоскости: d= где (х0;у0;z0)- координаты точки A, d = |√3/3·0-1·0-1·0 +1| / √ (√3/3)²+1+1 =√21/7. Ответ: √21/7. х у z H

Пусть плоскость `alpha` параллельна плоскости `beta`, прямая `b` лежит в плоскости `beta`, точка `B` лежит на прямой `b`. Очевидно, что расстояние от точки `B` до плоскости `alpha` равно расстоянию от прямой `b` до плоскости `alpha` и равно расстоянию между плоскостями `alpha` и `beta`.

Рассмотрим две скрещивающиеся прямые `a` и `b`. Проведём через прямую `a` плоскость, параллельную прямой `b`. Через прямую `b` проведём плоскость, перпендикулярную плоскости `alpha`, пусть линия пересечения этих плоскостей `b_1` (эта прямая есть проекция прямой `b` на плоскость `alpha`). Точку пересечения прямых `a` и `b_1` обозначим `A`. Точка `A` является проекцией некоторой точки `B` прямой `b`. Из того, что `AB_|_alpha`, следует, что `AB_|_a` и `AB_|_b_1`; кроме того `b``||``b_1`, значит `AB_|_b` - . Прямая `AB` пересекает скрещивающиеся прямые `a` и `b` и перпендикулярна и той, и другой. Отрезок `AB` называется общим перпендикуляром двух скрещивающихся прямых.

Длина общего перпендикуляра скрещивающихся прямых равна расстоянию от любой точки прямой `b` до плоскости `alpha`.

* Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Пусть в пространстве задана прямая `l_1` с известным направляющим вектором `veca_1` (направляющим вектором прямой называется ненулевой вектор, параллельный этой прямой), прямая `l_2` с известным направляющим вектором `veca_2`, точки `A_1` и `A_2`, лежащие соответственно на `l_1` и `l_2`, кроме того, известен вектор `vec(A_1A_2)=vecr`. Пусть отрезок `P_1P_2` - общий перпендикуляр к `l_1` и `l_2` (см. рис. 9). Задача заключается в нахождении длины этого отрезка. Представим вектор `vec(P_1P_2)` в виде суммы `vec(P_1A_1)+vec(A_1A_2)+vec(A_2P_2)`. Затем, пользуясь коллинеарностью векторов `vec(P_1A_1)` и `veca_1`, `vec(A_2P_2)` и `veca_2`, получим для вектора `vec(P_1P_2)` представление `vec(P_1P_2)=xveca_1+yveca_2+vecr`, где `x` и `y` - неизвестные пока числа. Эти числа можно найти из условия перпендикулярности вектора `vec(P_1P_2)` векторам `veca_1` и `veca_2`, т. е. из следующей системы линейных уравнений:

x a → 1 + y a → 2 + r → · a → 1 = 0 , x a → 1 + y a → 2 + r → · a → 2 = 0 . \left\{\begin{array}{l}\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_1=0,\\\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_2=0.\end{array}\right.

После этого находим длину вектора `vec(P_1P_2):`

`P_1P_2=sqrt((xveca_1+yveca_2+vecr)^2)`.

Вычислить расстояние между скрещивающимися диагоналями двух соседних граней куба с ребром `a`.

Пусть дан куб `A...D_1` c ребром `a`. Найдём расстояние между прямыми `AD_1` и `DC_1` (рис. 10). Введём базис `veca=vec(DA)`, `vecb=vec(DC)`, `vecc=vec(DD_1)`. За направляющие векторы прямых `AD_1` и `DC_1` можно взять `vec(AD_1)=vecc-veca` и `vec(DC_1)=vecb+vecc`. Если `P_1P_2` - общий перпендикуляр к рассматриваемым прямым, то `vec(P_1P_2)=x(vecc-veca)+y(vecb+vecc)+veca`.

Составим систему уравнений для нахождения неизвестных чисел `x` и `y`:

x c → - a → + y b → + c → + a → · c → - a → = 0 , x c → - a → + y b → + c → + a → · b → + c → = 0 . \left\{\begin{array}{l}\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow c-\overrightarrow a\right)=0,\\\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow b+\overrightarrow c\right)=0.\end{array}\right.

Приведём эту систему к равносильной:

2 x + y - 1 = 0 , x + 2 y = 0 . \left\{\begin{array}{l}2x+y-1=0,\\x+2y=0.\end{array}\right.

Отсюда находим `x=2/3`, `y=-1/3`. Тогда

`vec(P_1P_2)=2/3(vecc-veca)-1/3(vecb+vecc)+veca=1/3veca-1/3vecb+1/3vecc`,




© 2024
womanizers.ru - Журнал современной женщины