17.07.2019

Сапонины влияние на организм. Растительный мир и его лекарственные вещества. Сапонины полезны для снижения уровня холестерина


Гликозиды, получаемые в чистом виде, представляют собой кристаллические вещества, легко растворимые в воде, труднее - в спирте; горькие на вкус; многие из них ядовиты. Для лечебных целей применяются в малых дозах. Очень близки к гормонам.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Гликозиды, характеристика, классификация применение лекарственных растений, продуктов переработки сырья, содержащего гликозиды

Гликозиды, характеристика, классификация применение лекарственных растений, продуктов переработки сырья, содержащего гликозиды


ВВЕДЕНИЕ


1 ГЛИКОЗИДЫ

1.1 Понятие и характеристика гликозидов

1.2 Общая классификация гликозидов

1.3 Распространенность и функции гликозидов


2 ЗАГОТОВКА И ПУТИ ИСПОЛЬЗОВАНИЯ СЫРЬЯ


3 ХАРАКТЕРИСТИКА ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, СОДЕРЖАЩИХ ГЛИКОЗИДЫ

3.1 Лекарственные растения, содержащие цианогенные гликозиды

3.2 Лекарственные растения, содержащие тиогликозиды

3.3 Лекарственные растения, содержащие сердечные гликозиды

3.4 Лекарственные растения, содержащие сапонины


ВЫВОДЫ


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Гликозиды - вещества растительного происхождения, состоят из двух компонентов: сахара и несахарной части - агликона. Они широко распространены в растительном мире и могут содержаться во всех частях растений. В присутствии воды, ферментов (энзимов) легко расщепляются на сахар и агликон. Лечебное действие гликозидов обусловлено главным образом агликоном, но сахар также оказывает терапевтический эффект, влияя на растворимость и всасывание агликона.

В связи с тем что гликозиды очень быстро расщепляются ферментами, в свежесрезанных растениях они начинают быстро распадаться и, таким образом, теряют свои лечебные свойства. Поэтому при сборе трав, содержащих гликозиды, их следует сушить быстро и хранить в абсолютно сухом месте, не допуская отсыревания сырья. В сухом материале активность ферментов незначительна и они не проявляют своего выраженного разрушающего действия.

Гликозиды, получаемые в чистом виде, представляют собой кристаллические вещества, легко растворимые в воде, труднее - в спирте; горькие на вкус; многие из них ядовиты. Для лечебных целей применяются в малых дозах. Очень близки к гормонам.

В связи с нестойкостью гликозиды до настоящего времени редко применялись в чистом виде, чаще использовались в виде различных извлечений. Сейчас широко используются чистые препараты, такие, как строфантин, гликозиды наперстянки, эризимин и др.

Наибольшее значение имеют сердечные гликозиды. До настоящего времени среди всех лекарственных средств, применяемых для лечения сердечно-сосудистых заболеваний, большую часть составляют растительные препараты. К растениям, образующим в своих клетках гликозиды сердечного действия, относятся: различные виды наперстянки, ландыш, горицвет, желтушник серый, кендырь коноплевый, лук морской.

Именно этим обусловлена актуальность данной работы.

Цель работы : изучение понятия и характеристики гликозидов а также лекарственных растений как сырья для их получения.

Задачи работы :

Изучить понятие и характеристику гликозидов;

Рассмотреть классификацию гликозидов;

Рассмотреть заготовку и пути использования сырья;

Изучить некоторые лекарственные растения, содержащие гликозиды, условия сбора и заготовки сырья.

Предмет изучения : гликозиды.

Объект изучения : лекарственные растения, содержащие гликозиды.


1 ГЛИКОЗИДЫ

1.1 Понятие и характеристика гликозидов

Гликозиды, группа углеводсодержащих веществ, образующихся при реакции конденсации циклических моно- и олигосахаридов со спиртами, фенолами, тиолами и аминами, широко представленных в живых организмах, особенно в растениях. Синтезировано также множество гликозидов, не имеющих природных аналогов. Для гликозидов характерна способность к гидролизу (т.е. расщеплению в реакции с водой) с образованием одного или нескольких остатков сахаров и вещества неуглеводной природы, так называемого агликона. Гидролиз осуществляется в теплой воде в присутствии специфических ферментов или при кипячении с разбавленными кислотами. Некоторые типы гликозидов гидролизуются также при нагревании с разбавленными растворами щелочей.

Термин «гликозид» происходит от греч. «гликос», означающего «сладкий». Иногда ошибочно этот класс называют глюкозидами, но глюкозидами являются лишь те из гликозидов, при гидролизе которых освобождается только глюкоза (декстроглюкоза, или декстроза) в качестве единственного сахарного компонента. Названия природных гликозидов имеют суффикс -ин, а корень производится от научного или народного названия растения или растительного продукта, в котором этот гликозид был впервые обнаружен: например, гитагин от Agrostemma githago (куколь), хедерин от Hedera helix (плющ).

1.2 Общая классификация гликозидов

Обычно гликозиды классифицируют по типу агликона. Основные классы гликозидов перечислены ниже.

Тиольные гликозиды (тиоцианатные, изотиоцианатные, сульфо- и неорганические агликоны) в основном встречаются в растениях семейства крестоцветных (Cruciferae): например, синигрин, выделенный из семян черной горчицы и корней хрена, синальбин из семян белой горчицы и глюкотропеолин из садовой настурции.

Цианогенные гликозиды (циангидрин, синильная кислота) обнаружены в сотнях видов растений: амигдалин из горького миндаля, дуррин из сорго и лотузин из Lotus arabicus. [ 18 , с.1 95 ]

Фенольные гликозиды, при гидролизе которых образуются различные типы фенолов: арбутин (образуется гидрохинон), салицин (орто-гидроксибензиловый спирт), хелицин и спиреин (салициловый альдегид), геин (эвгенол) и т.д.

Антрагликозиды, которые включают гликозиды гидроксиантрахинонов и антрахинонов, встречаются во многих видах растений, применяемых как слабительное и в качестве сырья для получения красителей. Примерами служат барбалоин из алоэ, франгулин из коры крушины, полигонин из Polygonum sieboldi (горца), реохризин из корней китайского ревеня.

Пигментные гликозиды объединяют гликозиды антоксантина, антоциана, флавона, флавонола и других пигментов растений: например, пуницин из плодов граната, мальвин из дикой мальвы (просвирника), генистеин из дрока красильного, идеин из клюквы.

Сердечные гликозиды используются при лечении различных сердечных заболеваний. Наиболее важными среди них являются гликозиды из наперстянки (Digitalis) – дигитоксин, гитоксин и гиталин. Строфантины – гликозиды из семян растений рода Strophanthus – задолго до их использования в современной кардиологии применялись в неочищенном виде африканскими племенами как яды для стрел. [ 11 , с. 380 ]

Сапониновые гликозиды (сапонины) – класс веществ, подобно мылу образующих пену при встряхивании их водных растворов. Отсюда их название: «sapo» по-латыни означает «мыло». Как правило, сапонины – аморфные, растворимые в воде и спирте, нейтральные вещества с раздражающим едким вкусом. При гидролизе они дают агликоны (сапогенины) с довольно большой молекулярной массой и относительно много сахаров. Сапонины широко распространены в растительном мире, особенно среди растений семейств розоцветных и гвоздичных (мыльнянка рода Saponaria). [ 16 , с. 261 ]

Сапонины действуют на организм характерным образом: 1) попадая на слизистую носа, вызывают чихание; 2) вызывают образование гематом (гемолиз); 3) являются смертельным ядом для рыб и низших животных; 4) заметно понижают поверхностное натяжение в жидкостях, которые служат им растворителем. Сапонины и сапонинсодержащие материалы широко применяются в фармации, медицине и технике. Они используются как моющие средства, особенно для шелка и других ценных тканей, как яды для рыб и насекомых, в огнетушителях (для стабилизации пены). Примерами сапонинов являются дигитонин из наперстянки, сарсапонин из сарсапарили (смилакс лекарственный или смилакс китайский) и триллин из триллиума (вороний глаз, растение из семейства лилейных).

Другие классы гликозидов включают гликозиды галловой кислоты, стеринов, кумаринов, пуринов и пиримидинов (нуклеозиды), меркаптанов, алкалоидов, терпенов, сфингозинов (цереброзиды и ганглиозиды) и некоторых антибиотиков.

1.3 Распространенность и функции гликозидов

Гликозиды встречаются в коре, плодах, корнях, клубнях, цветках и других частях растений. Иногда в одном растении содержится несколько разных гликозидов. Они образуются там, где активно идет биосинтез, например в листьях и зеленых стеблях, и в растворенном виде переносятся к местам накопления – корням и семенам. Большинство растительных пигментов – это гликозиды. Многие таннины также являются гликозидами. Первоначально предполагалось, что гликозиды образуются только в растениях, однако теперь известно, что они могут возникать и в организме животных в процессе пищеварения, когда некоторые вредные организму вещества, соединяясь с глюкуроновой кислотой (которая родственна глюкозе и играет ту же роль, что и глюкоза в растительных гликозидах), экскретируются с мочой. [ 17 , с. 368 ]

Из нескольких теорий, предложенных для объяснения роли гликозидов в физиологии растений, следующие три наиболее правдоподобны. 1) В незрелых фруктах гликозиды, благодаря их горькому вкусу, служат для защиты от поедания животными. По мере созревания фруктов бесцветные горькие гликозиды расщепляются, выделяя пигменты, придающие плодам привлекательный цвет, ароматические вещества, сообщающие им аромат, и сахара, делающие их сладкими. Все это привлекает различных животных, птиц и насекомых, что ведет к эффективному распространению семян. 2) Согласно другой теории, гликозиды являются средством удаления ядовитых веществ путем их связывания и превращения в инертные формы (детоксикация). 3) Третья теория утверждает, что гликозиды представляют собой форму сохранения сахаров как резерва питания. Их расщепление – быстрый путь обеспечения растения сахарами.

Гликозиды проявляют нейтральные или слабокислотные свойства. Они растворимы в воде и разбавленном водном спирте и могут экстрагироваться этими растворителями. При экстракции нужно позаботиться об инактивации или разрушении ферментов, чтобы предупредить гидролиз гликозидов. Этого можно достичь, применяя горячие растворители. Для исключения возможности кислотного гидролиза поддерживают нейтральную реакцию, например, прибавляя мел. [ 13 , с. 465 ]

Гликозиды распознают, идентифицируя продукты их расщепления – сахара и агликоны. Для этого применяют обычные методы разделения и идентификации органических соединений: различные виды хроматографии, масс-спектрометрию, спектроскопию ядерного магнитного резонанса и т.п. Для количественной оценки содержания гликозидов в сырье проводится определение свободных сахаров до и после гидролиза: прирост количества свободных сахаров соответствует количеству разрушенных гидролизом гликозидных связей. Зная состав гликозидов, можно оценить их содержание в образце.


2 ЗАГОТОВКА И ПУТИ ИСПОЛЬЗОВАНИЯ СЫРЬЯ

В зависимости от органа растения сырье заготавливают в фазу максимального накопления гликозидов. Листья толокнянки и брусники собирают за сезон дважды; рано весной, до цветения растений и осенью - во время плодоношения до сентября - октября. Листья трилистника водяного - после цветения, траву череды трехраздельной - в фазу бутонизации. При заготовке соблюдают охранные мероприятия, чередуя места сбора между административными районами, оставляя часть хорошо развитых растений на заросли. При сборе соцветий, трав не следует повреждать подземные органы, их собирают после обсеменения растений и на место корней засыпают семена (кроме солодки, у которой БАВ накапливаются в фазу цветения). Сырье, содержащее гликозиды, необходимо собирать в сухую, солнечную погоду, лучше в полуденные часы. Собранное сырье не должно долго лежать в таре (оно самосогревается, и в присутствии тепла и влаги активизируются ферменты). Сушка должна быть быстрая, желательно искусственная при температуре 55-60°С или на чердаках под железной или шиферной крышей, раскладывать сырье нужно тонким слоем, ворошить. Медленная сушка вызывает ступенчатый распад гликозидов (сердечные гликозиды).

Хранить сырье следует в хорошо упакованной таре, в сухих, хорошо проветриваемых складских помещениях, на подтоварниках. .[ 10 , с. 346 ]

При сборе, сушке, упаковке и хранении сырья следует учитывать свойство гликозидов легко подвергаться гидролизу под действием ферментов, поэтому необходимо четко соблюдать правила для каждого вида сырья, предусмотренные в инструкции по заготовке.

Сырье используется для приготовления различных препаратов:

1) Из безрецептурного отдела аптек листья толокнянки, брусники, трава хвоща полевого, зверобоя, плоды жостера, черемухи, черники, подземные органы змеевика, лапчатки, кровохлебки, семена льна и т. д. отпускаются населению для изготовления в домашних условиях настоев и отваров;

2) Изготовление настоев и отваров производится и в аптеках по рецептам врачей (настой горицвета весеннего);

3) На фармацевтических фабриках готовят настойки, концентраты, экстракты, таблетки (настойка пустырника, жидкий экстракт горца перечного, таблетки "Адонисбром", концентрат - листья наперстянки пурпуровой);

4) На химико-фармацевтических заводах готовят суммарные препараты, выделяют индивидуальные гликозиды (дигитоксин, гранулы мать-и-мачехи, бессмертника). Сборы (потогонный, мочегоный, желудочный); брикеты (трава зверобоя, пустырника, полевого хвоща и др.). [ 3 , с. 88 ]


3 ХАРАКТЕРИСТИКА ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, СОДЕРЖАЩИХ ГЛИКОЗИДЫ

3.1 Лекарственные растения, содержащие цианогенные гликозиды

Цианогенные гликозиды, содержащие в составе агликона синильную кислоту, довольно часто встречаются в растительном мире. Большее их число (амигдалин, пруназин, прулауразин, самбунигрин и др.) в качестве второго компонента содержат бензальдегид. В некоторых гликозидах синильная кислота образует соединения с ацетоном (линамарин) или с метилэтилкетоном (лотаустралин). Цианогенные гликозиды наиболее характерны для растений семейства розоцветных и прежде всего подсемейства сливовых, где они локализуются в основном в семенах. Из цианогенных гликозидов в медицинской практике нашел применение амигдалин, открытый еще в 1830 г. Робике. [ 9 , с. 234 ]

Семя горького миндаля (Semen Amugdali amarae)

Растение. Миндаль обыкновенный (разновидность — горький) — Amygdalus communis L. var. amara; семейство розоцветные — Rosaceae подсемейство сливовые — Prunaceae.(рис.1)

Рис.1 Миндаль обыкновенный.

В семенах горького миндаля до 3 % гликозида амигдалина, распадающегося при гидролизе на глюкозу, синильную кислоту и бензальдегид. Около 92 % заготавливаемого миндального семени потребляет пищевая промышленность, 6 % — медицина и около 2 % — парфюмерия.

В современной медицине применяют семена и масло. Масло, получаемое холодным прессованием из семян горького и сладкого миндаля, отличается приятным вкусом и высоким качеством. Используется как растворитель для инъекционных растворов, в масляных эмульсиях, в составе мазей, а самостоятельно — внутрь как слабительное средство. Миндальные отруби после отжатия масла потребляются с косметической целью для смягчения кожи. Из жмыха горького миндаля раньше получали горько-миндальную воду, которая содержала до 0,1 % синильной кислоты и применялась в виде капель в качестве успокаивающего и обезболивающего средства.

3.2 Лекарственные растения, содержащие тиогликозиды

Тиогликозиды особенно характерны для растений семейства Craciferae (горчица, хрен, редька, редис и др.), но они содержатся также и в некоторых растениях других семейств, например Liliaceae (Allium), Tropaeolaceae (Tropaeolum) и др. [ 16 , с. 259 ]

Тиогликозиды обладают одним общим свойством — при гидролизе раздражающе действовать на слизистые оболочки и кожу. Благодаря этому свойству некоторые растения, содержащие тиогликозиды, издавна используются в качестве сырья для получения лекарств, оказывающих местное раздражение или отвлекающее действие.

Семя горчицы сарептской (Semen Sinapis jHnceae)

Растение. Сарептская горчица — Brassica juncea Czern. (Syn. Sinapis jun-cea L.); семейство крестоцветные — Craciferae. Однолетнее травянистое растение с ветвистым стеблем высотой 50—60 см. Листья очередные, голые, нижние— лировидные, рассеченные, средние — ланцетовидные, выемчатые, верхние — цельнокрайниё. Нижние листья зеленые, верхние — Сизоватые. Соцветие — щитковидная кисть. Цветки мелкие, венчик четырехмерный; чашелистики отстоящие, венчик золотисто-желтый. Стручки линейные, тон-кие, бугорчатые, отклоненные от стебля. Семена почти шаровидные, диаметром около 1 мм, черно-сизые, коричневые или светло-желтые (в зависимости от сорта), ясно ячеистые.(рис.2)

Рис.2 Сарептская горчица.

В семенах сарептской (а также и черной) горчицы содержится гликозид синигрин, представляющий собой двойной эфир аллилизо-тиоцианата с бисульфатом калия и глюкозой. В присутствии воды при оптимальной температуре 50—60 °С ферменты, содержащиеся в семенах горчицы, расщепляют гликозид на свои компоненты. Гидролиз идет в два этапа: вначале с помощью фермента миросульфатазы (сульфатазы — специфические эстеразы, расщепляющие сложные эфиры, образуемые неорганическими кислотами) от синигрина отщепляется бисульфат калия. Затем с помощью другого фермента — тиоглюкозидазы расщепляется глюкозидная связь у атома серы и образуются глюкоза и аллилизотиоцианат (иначе называемый горчичным эфирным маслом). [ 11 , с. 302 ]

Семена горчицы богаты жирным маслом (до 40%), белками и слизистыми веществами.

Семена сарептской горчицы являются промышленным пищевым сырьем для получения горчичного жирного масла. Последнее получают прессованием из предварительно обрушенных семян, т. е. более или менее освобожденных от семенной оболочки с помощью обдирочных вальцовых машин. Остающийся жмых представляет собой фармацевтическое сырье. После измельчения в виде тонкого порошка его используют для приготовления горчичников, а также для получения эфирного масла. Подлинность жмыха устанавливают по жгучему вкусу и образованию при растирании порошка жмыха с теплой водой характерного эфирного^ масла, пары кото­рого сильно раздражают слизистые оболочки. [ 12 , с.1 92 ]

3.3 Лекарственные растения, содержащие сердечные гликозиды

Сердечные гликозиды - обширная и весьма важная в медицинском отношении группа природных гликозидов.

Сердечными гликозидами называются гликозиды, агликоном которых являются производные циклопентанопергидрофенантрена, содержащие в положение 17 ненасыщенное пятичленное или шестичленное лактонное кольцо и оказывающие специфическое действие на сердечную мышцу. Сердечные гликозиды пока не имеют себе равных синтетических заменителей; растения служат единственным источником их получения.

Растения, содержащие сердечные гликозиды, довольно широко распространены в природе. Они встречаются во флоре всех континентов мира. Сердечные гликозиды накапливаются во всех представителях растительного мира - кцустарниках, лианах, травянистых растениях.

Известно около 45 ботанических родов, в которых обнаружены сердечные гликозиды, из них до 20 произрастает в нашей стране. [ 14 , с. 134 ]

Ландыш майский . - Convallaria Mayalis L . Семейство спаржевые - Asparagaceae.

Растение. Многолетние травянистое растение высотой 15 - 20см. Корневище горизонтальное, ползучие, ветвистое, в узлах с многочисленными корнями. Листья крупные, овально-ланцетовидные или продолговато-эллиптические, в числе 2 - 3, на верхушке заостренные, цельнокрайние, длиной около 20см, шириной 4 - 8см, с дугонервным жилкованием, ярко-зеленые, с верхней стороны с сизоватым налетом. Цветочная стрелка с 3 - 6 чешуевидными фиолетово-розовыми недоразвитыми листьями при основании, заканчивается кистью душистых, желтовато-белых круглоколокольчатых цветков. Цветки на изогнутых цветоножках, окруженные у основания пленчатыми прицветниками. Околоцветник простой, венчиковидный, колокольчатый с 6 зубцами. Тычинки в числе 6, на коротких нитях; завязь верхняя, столбик с расширенным рыльцем. Запах слабый. Плод - красная шаровидная ягода.(рис.3)

Рис.3 Ландыш майский.

Лекарственным сырьем являются трава, листья и цветки. Сбор проводят только в сухую погоду, после высыхания росы. Траву и цветки собирают в фазу цветения, листья - до цветения и в начале цветения. При сборе траву и листья растения срезают ножом или серпом на высоте 3 - 5см от почвы. Запрещается обрывать или выдергивать растения. При заготовке цветков (соцветий) цветочные кисти срезают, отступя примерно 3см от нижнего цветка соцветия. Чтобы сохранить заросли, необходимо оставлять нетронутыми не менее одного растения на 1кв.м., а также строго следить, чтобы при сборе растения не обрывались, а срезались. Срезанные растения рыхло укладывают в корзины или мешки из редкой ткани и немедленно доставляют к месту сушки. Задержка с сушкой сырья приводит к значительной потере его биологической активности. Сырье следует сушить в сушилках при температуре 50 - 60 С, или в тени под навесом, на сквозняке. Сырье раскладывают тонким слоем, часто ворошат. Соцветия раскладывают слоем толщиной не более 1см и не переворачивают, чтобы не измельчать. .[ 10 , с. 328 ]

Растение содержит до 20 сердечных гликозидов, среди которых основными являются конваллатоксин, конваллатоксол, конваллозид. Кроме сердечных гликозидов, из цветков выделены фарнезол и ликопин, обнаружены также флавоноиды и кумарины. Сердечные гликозиды содержаться во всех органах ландыша.

Трава горицвета (адониса) (Herba Fdonidis vernalis)

Растение. Горицвет (адонис) весенний - Adonis vernalis; семейство лютиковые - Ranunculactat.

Рис.4 Трава горицвета.

Растение. Многолетнее травянистое растение с коротким корневищем. Стебли их несколько прямостоячие, простые или ветвящиеся, густоолиственные, с прижатыми ветвями. Листья в очертании широко-яйцевидные, пальчаторассеченные; сегментики узкие, линейные, цельнокрайные. Цветки на концах побегов одиночные. Лепестков 10 - 20, ярко-желтые. Плод - многоорешек. [ 11 , с. 117 ]

Горицвет - одно из первых весенних растений. Цветет одновременно с появлением листьев в апреле - мае. Произрастает в лесостепной и степной зонах Европейской части России, на Украине, на Северном Кавказе, а также в Сибири. Растет главным образом в разнотравных степях, по опушкам степных дубрав и лесов. В связи с распашкой степей заросли адониса сократились.

Специфическим карденолидом горицвета является адонитоксин, который гидролизуется на адонитоксигенин и L- рамнозу. Известно также содержание в горицвете цимарина. Установленно также наличие в горицвете К-строфантина.

В траве горицвета имеется незначительное количество других сердечных гликозидов и сапонинов. Найден флавоновый гликозид адонивернит. [ 8 , с. 488 ]

Лекарственное сырье - надземная часть. Заготавливают от начала цветения до полного осыпания плодов. Траву срезают ножом или серпом. Категорически запрещается вырывать растение, поскольку при этом обрываются почки возобновления, заложенные на 2 - 3 года, что ведет к уничтожению зарослей. Собранную траву во избежание разложения гликозидов быстро сушат на воздухе в тени или в сушилках при температуре 50 - 60 градусов С. Высушенное сырье - густоолиственные стебли длинной 10 - 30см, с цветками и часто плодами. Стеблевые листья у основания полустеблеобъемлющие, очередные, сидячие, голые, в очертании широкояйцевидные, пильчаторассеченные на 5сегментов, из них 2нижних сегмента короче, а 3 остальных сегмента почти одинаковой длины. Нижние сегменты перисторассеченные, остальные - дваждыперисторассеченные на узколинейные сегментики, на верхушке шиловидно- заостренные. Цветки ярко-желтые, в поперечнике до 3,5см (в сухом сырье), одиночные, правильные. Чашечка зеленая, 5 - 8-листовая, опушенная; чашелистики яйцевидные с немногими редкими зубцами. Лепестки продолговатые, мелкозазубренные. Тычинок много. Плод овальной формы, состоит из многочисленных мелких зеленоватых орешков с загнутыми книзу крючковатым столбиком; поверхность плодиков петлисто-ячеистая, опушенная. Запах слабый, характерный. Вкус горький.

Горицвет издавна применяется в народной медицине в качестве средства против водянки. В настоящее время это одно из важнейших сердечных средств. Препараты горицвета не обладают кумулятивным действием. Основным показателем к их применению являются хроническая недостаточность сердечной деятельности и невроз сердца. Кроме того, в сочетании с бромом их назначают при повышенной нервной возбудимости, бессонице, эпилепсии. Назначают в виде препарата новой галеники - адонизида и водного настоя. Сухой экстракт горицвета входит в состав таблеток "Адонисбром", таблеток по прописи Бехтерева и других комплексных сердечных средств. Траву горицвета и препараты хранят по списку Б. .[ 4 , с. 2 43]

Род растений Digitalis насчитывает до 36 видов, из которых в СССР произрастает 7 видов. Наперстянки — многолетние травянистые растения, в первый год жизни они образуют розетку прикорневых листьев, а на втором году развивается высокий прямой стебель с однобокой кистью крупных цветов.

Наперстянка пурпуровая — Digitalis purpurea L.; наперстянка крупноцветковая — Digitalis grandiflora Mill. (syn. D. ambiqua Murr.), наперстянка шерстистая — Digitalis lanata Ehrb.; наперстянка ржавая — Digitalis ferruginea L.; наперстянка реснитчатая — Digitalis ciliata Trantv.; семейство норичниковые — Scrophulariaceae.(рис.5)

Рис.5 Наперстянка пурпуровая.

Помимо гликозидов типа карденолидов, в листьях всех видов наперстянки обнаружены стероидные гликозиды, известные под названием дигитанол-гликозидов. В этих соединениях претерпело изменение боковое пятичленное лактонное кольцо. Этерифицированы они сахарами дигинозой, дигиталозой и олеандрозой.

Из других веществ, присутствующих в наперстянках, следует указать на флавонц, обладающие диуретическим свойством, и на стероидные сапонины дигитонин и гитонин в листьях наперстянки шерстистой и реснитчатой.

Сырьем наперстянки являются листья, и только от наперстянки реснитчатой собирают траву. Сушку листьев начинают немедленно после сбора при температуре 60—70°С и заканчивают в короткий срок во избежание разложения гликозидов. Сушат в тепловых сушилках или в сухих, хорошо проветриваемых помещениях. .[ 3 , с. 89 ]

Препараты наперстянки пурпуровой широко используются в медицине как важнейшие средства, регулирующие деятельность сердца и кровеносных сосудов. Препараты применяются при нарушении кровообращения II и III степени, вызванного расстройством компенсации, при клапанных пороках сердца, мерцательной аритмии и гипертонической" болезни.

Гликозиды наперстянки избирательно действуют на сердце: усиливают систолу и углубляют диастолу, замедляют ритм сердечной деятельности, обладают выраженной способностью к кумуляции. Это действие характеризуется тем, что гликозиды, медленно выделяясь, накапливаются в организме и обыкновенной дозой при продолжительном применении вызывают отравление. Вследствие этого рекомендуется чередовать наперстянку с другими, менее опасными, но медленнее действующими сердечными средствами. Наличие в наперстянке сапонинов способствует повышению растворимости и всасыванию гликозидов.

Препараты наперстянки ржавой применяются в тех же случаях сердечной недостаточности и с такими же показаниями и противопоказаниями, как и наперстянки пурпуровой. Препараты наперстянки ржавой обладают более выраженными кумулятивными свойствами, чем наперстянка пурпуровая.

У наперстянки реснитчатойой высокая биологическая активность, чем у наперстянки пурпуровой и ржавой; применяется при острой сердечной недостаточности с тяжелым нарушением кровообращения.

Препараты наперстянки шерстистой применяют в тех же случаях, что и наперстянки пурпуровой, но отличительными особенностями являются их более быстрое действие на сердце, лучшая переносимость и менее выраженные кумулятивные свойства. Особенно интересно действие гликозида дигиланида С. Он действует и выделяется из организма быстрее других гликозидов наперстянки шерстистой, менее токсичен и по своему действию занимает промежуточное положение между дигитоксином и строфантином.

3.4 Лекарственные растения, содержащие сапонины

Все сапонины, являясь по своей химической природе гликозидами. состоят из агликонов (сапогенинов) и углеводной части.

Стероидные сапонины типичны для представителей семейств лилейных, меллисовых, диоскорейных растений, в том числе из некоторых имеющих лекарственное значение. .[ 11 , с. 376 ]

Диоскорея ниппонская —Dioscorea nipponica Makino (Dioscorea polystachya Turcz., диоскорея кавказская (D. caucasica Lipsky); семейство диоскорейные— Dioscoreaceae (рис. 6).

Рис.6 Диоскорея ниппонская.

У диоскореи горизонтальное, сильно разветвленное, коричневато-бурое плотное корневище длиной до 1,5—2 м и толщиной до 2 см и более, несущее на всем протяжении тонкие жесткие корни и остатки отмерших стеблей. Стебли простые, голые. Листья очередные или почти супротивные, черешковые; у диоскореи ниппонской они в очертании широкосердцевидные, 3—7-лопастные, длиной 6—10 см, а у диоскореи кавказской — сердцевидно-яйцевидные со слегка выемчатым краем, длиной до 16 см. Цветки однополые, двудомные, мелкие, зеленоватые, с глубоко 6-раздельным околоцветником. Тычиночные цветки, собранные по 3—7 в полузонтики, образуют простые, реже ветвистые пазушные кисти; пестичные цветки собраны в простую кисть. Плод — коробочка с 3 перепончатыми крыльями длиной 1,5—2,5 см; семена также окаймлены крылом. Цветет в мае—июле. Оба вида введены в культуру.

В корневищах обоих видов диоскореи содержатся сапонины (до 10%), в числе которых стероидный сапонин диосцин (1—1,15%), при гидролизе освобождающий сапогенин диосгенин, глюкозу и 2 молекулы рамнозы.

Собирают корневища с корнями весной не во время фазы цветения и осенью, режут на куски и сушат. Сырье представляет собой куски корневищ разной длины со шнуровидными корнями толщиной от 0 до 4 см.

Препарат диоснонин (Diosponinum), представляющий собо сухой очищенный экстракт корневищ диоскореи. Содержит водорастворимые стероидные сапонины, предложен для применения при атеросклерозе.


ВЫВОДЫ

Лечебные свойства растений обусловлены содержанием в них активно действующих веществ, способных оказывать определенное влияние на организм в целом, на его органы и системы. Количество активных веществ не постоянное, оно меняется в зависимости от фазы развития растения, от почвы, на которой оно растет, правил заготовки, обработки и хранения.

Как показывают проведенные исследования, среди действующих активных веществ растений наибольший лечебный эффект имеют алкалоиды, гликозиды, сапонины, полисахариды, эфирные масла, органические кислоты, флавониды, фитонциды, витамины, химические элементы, пигменты, смолы, жирные масла.

Гликозиды - это органические вещества растительного происхождения, состоящие из сахаристой части - гликона и несахаристой - агликона, на которые они распадаются при кипячении и под действием ферментов. Гликозиды, получаемые в чистом виде, обычно горькие кристаллические вещества, хорошо растворимые в воде. В лечебной практике наиболее часто используются сердечные гликозиды, представителями которых являются строфантин, эризимин, гликозиды наперстянки. Гликозидсодержащими растениями являются адонис весенний, желтушник серый, кендырь коноплевый, ландыш майский, диоскорея ниппонская, морской лук, наперстянка пурпурная и многие другие.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Алтымышев А. А. Природные целебные средства. — М.: Профиздат, 2002. — 272 с.
  2. Анисимов М. М., Чирова В. Я. О биологической роли тритерпеновых гликозидов // Успехи современ. биол.—2000.—Т. 90.—Вып. 3/6/. — С. 351—354.
  3. Антонова В. И., Суслова Т. А. Ресурсы лекарственного растительного сырья и возможности его заготовки в Вологодской области // Проблемы природопользования в условиях севера европейской части СССР.— Вологда, 2003. – С. 86—95.
  4. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.:Медицина,2003.
  5. Биология. / Н.П.Соколова, И.И.Андреева и др. - М.: Высшая школа, 2004.
  6. Гаммерман А.Ф., Гром И.И. Дикорастущие лекарственные растения СССР. М., 2006. 286 с.
  7. Георгиевский В. П. и др. Биологически активные вещества лекарственных растений. — Новосибирск: Наука, Сиб. отделение, 2001,—216 с.
  8. Искандеров Г.Б. Стероидные сапогенины Tribulusterrestris // Химия природн. соед. 2000. №4. С.488-489.
  9. Ковалева Н.Г. Лечение растениями. - М.: Медицина, 2001.
  10. Кондрашенко П. Г., Кур С. Д., Рожко Ф. М. Заготовка, выращивание и обработка лекарственных растений.— М.: Медицина, 2005—346 с.
  11. Корсун В.Ф., Ситкевич А.Е., Ефимов В.В. Лечение препаратами растительного происхождения. – Минск, 2005. – 383 с.
  12. Кузнецова М. А. Лекарственное растительное сырье и препараты: Справ. пособие для хим.-технол. техникумов, фарм. и мед. Училищ.—2-е изд. перераб. и доп.- М.: Высш. шк., 2004.—191 с.
  13. Машковский М.Д. Лекарственные средства: в 2–х томах. Т.2.–9–е изд. – М.: Медицина, 2004.
  14. Муравьев Д.А. Фармакогнозия. - М.: Медицина,2001 - 560 с.
  15. Пастушенков Л.В., Пастушенков А.Л., Пастушенков В.Л. Лекарственные растения: Использование в народной медицине и быту. Л., 2003. 382 с.
  16. Перепелица Э. Д., Кинтя П. К. Химическое изучение стероидных гликозидов Tribulusterrestris. IV. Стероидные сапонины. Химия природн. соединений, 2005, N 2. С.260-261.
  17. Соколов С.Я. Фитотерапия и фитофармакология: Руководство для врачей. М.: Медицинское информационное агенство, 2000. 976 с.
  18. Чекман И. С. Биохимическая фармакодинамика. - К., 2001, 201 с.
  19. Чиков П.С. Лекарственные растения – путь к здоровью. – М.: 2002, - 489 с.

Другие похожие работы, которые могут вас заинтересовать.вшм>

3199. Фармакогностический анализ сырья лекарственных растений, содержащих эфирные масла, на примере мяты перечной и мелиссы лекарственной 2.31 MB
Провести фармакогностический анализ и сделать сравнительную характеристику лекарственного растительного сырья Мяты перечной производства фирм ООО «Фитофарм» и ОАО «Красногорск Лек Средства» и сырья Мелиссы лекарственной двух производителей - ЗАО «Здоровье» и ООО «Фитофарм»
956. Народнохозяйственное значение переработки плодов и овощей в различные виды продуктов. Методы переработки 39.56 KB
Классификация показателей качества товарного зерна. Прорастание и старение зерна при хранении и мероприятия предупреждающие эти явления. Классификация показателей качества товарного зерна. Вещества входящие в состав зерна распределены очень неравномерно.
2637. Аппликационные лекарственные препараты. Общая характеристика. Классификация. Основные требования. Технология нанесения адгезивов на подложку при производстве аппликационных лекарственных препаратов 64.04 KB
Аппликационные лекарственные препараты – пластыри мозольные лейкопластыри перцовые пластыри кожные клеи – жидкие пластыри пленки ТТС и др. Общая характеристика и классификация пластырей Пластыри Emplstr лекарственная форма для наружного применения обладающая способностью прилипать к коже оказывающая действие на кожу подкожные ткани и в ряде случаев общее воздействие на организм. Пластыри одна из старейших лекарственных форм известная с очень древних времен прародители современных препаратов четвертого поколения...
12120. Способы геотехнологической переработки природного и техногенного сульфидсодержащего сырья 19.49 KB
В результате проведенных экспериментов моделирующих длительное взаимодействие искусственных геохимических барьеров с сульфатными растворами никеля и меди и с использованием метода термодинамического моделирования программный комплекс Селектор было показано что термоактивированные хвосты обогащения медноникелевых руд смеси активного кремнезема и карбонатита серпофита и карбонатита являются перспективным материалом обогащаемого слоя при реализации физикохимических геотехнологий как для доизвлечения ценных компонентов так и для...
17748. Диоксины и безопасность продовольственного сырья и продуктов питания 57.47 KB
Диоксин и родственные соединения непрерывно и во все возрастающих масштабах генерируются цивилизацией в последние полвека, выбрасываются в природную среду и накапливаются в ней. Этот процесс не знает ни пределов насыщения, ни национальных границ
12010. Технология получения возобновляемого растительного сырья – биомассы культивируемых клеток высших растений 17.6 KB
При отсутствии природного растительного сырья получают культуру клеток данного вида растения которую можно выращивать в биореакторах значительных объемов вплоть до десятков куб.м и таким образом получать биомассу культур клеток ценных лекарственных растений представляющую собой возобновляемое растительное сырье. Культура клеток оказывается незаменимой в случае редких исчезающих или тропических видов лекарственных растений.
9495. Классификация, характеристика ассортимента пушно-мехового сырья и пушно-мехового полуфабриката, строение пушно-меховой шкуры, строение волоса и разновидность его форм, технология изготовления пушнины 1.05 MB
Меховые пластины полосы определенной формы сшитые из подобранных выделанных шкурок и предназначенные для раскроя на детали меховых изделий. К зимним видам пушного сырья относятся шкурки и шкуры пушных зверей добыча которых производится преимущественно в зимнее время когда качество шкурок особенно высоко. СТРОЕНИЕ И ХИМИЧЕСКИЙ СОСТАВ ШКУРОК ПУШНОМЕХОВОГО и овчинношубного СЫРЬЯ ПОНЯТИЕ О ТОПОГРАФИИ ШКУРКИ Шкуркой называют наружный покров животного отделенный от его тушки и состоящий из кожной ткани и волосяного покрова. У...
5956. Классификация болезней растений 17.14 KB
Симптомы болезней растений. Иммунитет растений к инфекционным заболеваниям. Симптомы болезней растений.
15134. Применение метода комплексонометрия в анализе лекарственных средств 44.37 KB
Приготовление оттитрованного раствора для проведения комплексонометрического титрования. Общие понятия Титриметрический анализ Титриметрический анализ титрование - методы количественного анализа в аналитической и фармацевтической химии основанные на измерении объёма раствора реактива известной концентрации расходуемого для реакции с определяемым веществом. По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа Виды титриметрического анализа Титриметрический анализ может быть основан на различных типах...
12941. Общая характеристика рецепторов растений 22.16 KB
Рецепторы растений – это молекулы или молекулярные комплексы воспринимающие внешние или внутренние сигналы физической механической химической электрохимической осмотической или иной природы трансформирующие эти сигналы и передающие их структуре обеспечивающей формирование ответной реакции. Рецепторы растений можно охарактеризовать по крайней мере двумя особенностями. Рецепторные системы растений и животных Рецепторная система Растения Животные Специализированные рецепторные клетки нет есть Гликокаликс на внешней поверхности клетки...

Сапонины - природные гликозиды (сапонизиды, сапозиды), характерными свойствами которых являются: 1) высокая поверхностная активность (способность при встряхивании образовывать пену, т. е. это детергенты); 2) гемолитическая активность, обусловливающая образование пор в клеточной мембране эритроцитов и, как следствие, выход гемоглобина в плазму крови; 3) токсичность для холоднокровных животных, вызванная способностью сапонинов нарушать функционирование жабр, что обусловило применение некоторыми племенами ЛР, содержащих сапонины, при ловле рыбы.

Понятие «сапонины» произошло от названия растения мыльнянка (Sapo- naria officinalis L., сем. Гвоздичные - Caryophyllaceae). Термин был предложен в 1819 г. Мэлоном для обозначения мыльных свойств веществ, выделенных из этого растения (sapo - мыло).

Химическая структура и классификация сапонинов

По структуре молекул сапонины условно разделяют на стероидные и тритер- пеновые (пента- и тетрациклические), хотя по большому счету все сапонины от
носятся к терпеноидам и основу их генинов составляет циклопентанпергидрофе- нантреновое ядро.

Стероидные сапонины. Стероидные сапонины (фуро- и спиростанолового типа) - большая группа природных соединений. Особенностью агликонов стероидных сапонинов является присутствие в молекуле 27 атомов углерода и атома кислородау С16 (в кольце Е), а иногда также в положении у С1, С2, С5, С12. Вполо- жении С5-С6 у многих имеется двойная связь (например, в молекуле диосгенина, агликона диосцина). В зависимости от ориентации (поворота) спирокетального кольца F стероидные сапонины подразделяют на соединения «нормального» ряда и изо-ряда. Спирокетальные группы обнаружены и у стероидных алкалоидов, что говорит об их общем происхождении и родстве с другими стероидами.


Стероидные сапонины обычно являются С3-О-гликозидами, поскольку ОН-группа у С3-атома агликона является основным местом присоединения остатков сахаров. В гликозильной цепочке может быть несколько мономеров (не только глюкозы - например, в молекуле, выделенной из растений рода Наперстянка (Digitalis), имеется 5 монозидов, в том числе галактоза, ксилоза, глюкоза; са- погенин - дигитонин). Данный случай также показывает, что в растениях, содержащих кардиогликозиды, эти вещества часто встречаются вместе с сапонинами.

Стероидные сапонины и их гликозиды характерны для следующих семейств: Диоскорейные, Лилейные, Норичниковые, а также обнаружены у растений семейств Бобовые, Лютиковые, Пасленовые, Парнолистиковые.

Стероидные сапонины имеют значение прежде всего как исходные продукты для получения кортикостероидов и других стероидных гормональных ЛС (Преднизо- лон, Прогестерон). От других сапонинов они практически ничем не отличаются, кроме способности образовывать с высшими спиртами (в частности, с холестерином) комплексные соединения, не растворимые в воде, но хорошо растворимые в этаноле.

Наиболее типичным представителем стероидных сапонинов является диос- генин, содержащийся в корневищах и корнях разных видов диоскореи: ниппонской, кавказской, дельтовидной. Сапогенин диосгенин у С3 через кислород образует связь с глюкозой, к которой (разветвленно через О-связи) присоединены две L-рамнозы, образуя гликозид диосцин.

Фитоэкдизоны. По структуре молекул к стероидным сапонинам близки соединения, именуемые фитоэкдизонами (экдистероидами).

В основе строения молекул экдизонов лежит циклопентанпергидрофенан- треновый скелет, к которому в С17-положении присоединена алифатическая цепочка из восьми углеродных атомов. По физико-химическим свойствам фитоэкдизоны - твердые кристаллические вещества, хорошо растворимые в этаноле, метаноле, ацетоне, этилацетате и плохо - в хлороформе, не растворимые в петро- лейном эфире, оптически активные.


Впервые фитоэкдизоны были обнаружены у насекомых и ракообразных в связи с тем, что они контролируют метаморфоз и линьку этих беспозвоночных животных. Затем их нашли в растениях - папоротниках, таких как тайваньский папоротник пайючин (Podocarpus nakai), серпуха сухоцветная (Seratula xeranthemoides); у последнего вида их содержание было около 2 %. Установили, что если личинки насекомых не получают достаточного количества экдистерои- дов из растений, используемых ими для питания, то у них не наступают процессы окукливания и превращения в стадию имаго.

Для обнаружения фитоэкдизонов в ЛРС используют их некоторые физикохимические свойства, а также биотест на окукливание личинок при введении им экстракта растения.

Фармакологическое действие экдистероидов изучено недостаточно. Установлено, что они оказывают адаптогенное и психостимулирующее влияние. Кроме того, экдизоны усиливают процессы белкового синтеза в организме и могут быть использованы как анаболические средства, что находит применение в спортивной медицине.

Тритерпеновые сапонины. Их агликоны представлены тетра- или пентациклическими тритерпеноидами: (С5Н8)6, или С30Н48.



Тритерпеноидные сапонины распространены в растительном мире шире, чем стероидные. Особенно богаты ими семейства Аралиевые, Бобовые, Гвоздичные, Конскокаштановые, Розоцветные, Синюховые. В отличие от стероидных сапонинов, которые встречаются главным образом в растениях, произрастающих в сухом и жарком климате, тритерпеновые сапонины обнаруживаются у растений степей, лесостепей и умеренных широт. В растениях сапонины находятся в растворенном виде в клеточном соке (вакуоли). Их количество может колебаться от незначительных чисел до 30 % (мыльный корень). Они могут накапливаться в различных частях растений: корнях (солодка), корневищах с корнями (диоскорея), траве (мыльнянка, астрагал шерстистоцветковый), листьях (наперстянка), цветках (коровяк скипетровидный), семенах (конский каштан).

Даммарандиол

Большинство пентациклических тритерпеновых сапонинов относится к пяти типам: а-амирина, Р-амирина, лупеола, фриделина и гопана. В природе наиболее широко представлены продукты Р-амирина - олеаноловая кислота, производные которой имеются у аралии, синюхи, солодки, патринии и многих других ЛР. Производные а-амирина, представителем которых является урсоловая кислота и ее продукты, выделены из растений семейств Брусничные, Вересковые, Кутровые. Производные лупеола, такие как бетуловая кислота, бетулин, выделены из березы.

Тритерпеновые сапонины могут быть нейтральными и кислыми. Кислый характер рН обусловлен присутствием карбоксильной группы в агликоне или уро- новых кислот в гликозильной части молекулы. Гидроксильные группы могут быть ацилированы уксусной кислотой (пропионовой или другими). Сахаристые остатки могут присоединяться к агликону по гидроксильной или карбоксильной группам; гликозильная цепочка может быть линейной или разветвленной.

Физико-химические свойства

По физико-химическим свойствам сапонины - это бесцветные или желтоватые аморфные гигроскопичные вещества. В кристаллическом виде получены отдельные гликозиды сапонинов, которые содержат не более четырех моносахаридов.

Как стероидные, так и тритерпеновые сапониновые гликозиды (сапонизиды, или сапозиды) растворимы в воде, а также в разведенных водой (60-70 %) низших спиртах (этаноле, метаноле) даже на холоде. В более высоких концентрациях этих спиртов (80-95 %) только при нагревании и при охлаждении выпадают в осадок. Растворимость в воде определяется количеством моносахаридов в гликозидной части молекулы сапонизидов и увеличивается с возрастанием их числа. Гликозиды сапонинов с 1-4 моносахаридами обычно плохо растворимы в воде. Как правило, сапонизиды при растворении в воде образуют коллоидные растворы. В растворе оптически активны (за счет гликозильных остатков). Сапонизиды не растворимы в эфире, бензоле, ацетоне, хлороформе и других органических растворителях.

Многие сапонины образуют молекулярные комплексы с солями тяжелых металлов, фенольными веществами, стеринами, липидами, белками. При этом их гликозильные части определяют способность связывания, а сапогенины гемолитически не активны и не токсичны для рыб.

Из водных растворов сапонины осаждаются солями тяжелых металлов, гидроксидами бария (или магния), белками и таннинами; из спиртовых растворов - неполярными органическими растворителями (диэтиловым эфиром, этилацетатом и др.), стеринами, липидами. Под действием кислот и ферментов гликозиды сапонинов распадаются на агликон и остаток сахара. Сапонины обладают жгучим раздражающим вкусом и вызывают чихание и покраснение глаз, аллергию.

Некоторые сапонины могут быть не растворимы в воде, плохо пениться, не проявлять гемолитических свойств.

Стероидные сапонины образуют комплексы и осадки с высшими спиртами и холестерином. Стероидные сапонины в основном рН-нейтральны, а тритерпеновые - в основном кислые. Сапогенины - кристаллические вещества с четкой температурой плавления (в отличие от гликозидов, которые не имеют определенной температуры плавления). Сапогенины, как правило, растворимы в спиртах, диэтиловом эфире, ацетоне, бензоле, но не растворимы в воде.

Выделение сапонинов из ЛРС

Этот процесс проводят по следующей схеме. Предварительно ЛРС обрабатывают петролейным эфиром или четыреххлористым углеродом - для разрушения комплекса сапонинов со стеринами, которые не растворимы в спиртах. Из ЛРС сапонины экстрагируют водой, этанолом, метанолом или их водными растворами. Водой в основном извлекают гликозиды (чем больше гликозильных остатков, тем растворимость в воде больше). Поэтому обычно 60-70 % спиртом извлекаются и гликозиды, и агликоны сапонинов.

Из водных вытяжек различные тритерпеновые сапонины осаждают тяжелыми металлами (кислые сапонины с металлами образуют соли, которые затем разлагают серной или угольной кислотами). Если образуются холестериновые комплексы, проводят извлечение холестерина бензолом, если белковые комплексы - проводят разрушение комплекса кипячением с этанолом (сапонины переходят в раствор, белок остается в осадке).

Из танниновых комплексов сапонины освобождают кипячением с оксидом цинка: таннины остаются в осадке в виде комплекса с цинком, сапонины переходят в раствор.

Полученные фракции сапонинов разделяют на индивидуальные вещества с помощью колоночной хроматографии на силикагеле, оксиде алюминия, активированном угле, гельфильтрацией на сефадексе и т. п.

Качественное определение наличия сапонинов

Методы обнаружения сапонинов в ЛРС основаны на использовании трех различных свойств этих веществ: физических, химических и биологических.

1. Реакции, основанные на физических свойствах сапонинов. Гликозиды сапонинов обладают детергентной активностью, что связано с наличием в одной молекуле гидрофильного (углеводная часть) и гидрофобного остатков (агликон). Образование пены обусловлено тем, что сапонины понижают поверхностное натяжение на границе двух сред: воды и воздуха, воды и жира, т. е. они способны эмульгировать жиры.

Реакция пенообразования. При встряхивании в пробирке водного извлечения, содержащего сапонины, образуется довольно устойчивая пена. По характеру и степени пенообразования примерно определяют групповую принадлежность сапонинов (стероидную или тритерпеновую). Для проведения этой реакции водные экстракты из ЛРС делят на две части: первую подкисляют до рН ~ 1, вторую подщелачивают до рН и 13. Оба раствора в пробирке встряхивают. Наблюдают образование столбов пены. Если в пробирках образуются примерно равные по величине и стойкости столбики пены, то ЛРС содержит тритерпеновые сапонины, если же столбики пены больше при щелочном растворе рН, чем при кислом, то сырье содержит стероидные сапонины.

2. Реакции, основанные на химических свойствах сапонинов. Это реакции осаждения сапонинов и цветные реакции.

Реакции осаждения сапонинов:

Из водных растворов сапонины осаждаются Ba(OH)2, Mg(OH)2, CuSO4, ацетатом Pb, причем тритерпеновые сапонины осаждаются средним ацетатом свинца, а стероидные - основным;

Из спиртовых экстрактов стероидные и тритерпеновые сапонины осаждаются спиртовым раствором холестерина в виде комплексов (холестеридов).

Реакции окрашивания сапонинов:

К 2 мл водного извлечения прибавляют 1 мл 10 % NaNO^ 1 каплю концентрированной H2SO4. В результате появляется кроваво-красное окрашивание;

К 2 мл водного извлечения прибавляют 2 мл хлороформа и 5 капель концентрированной H2SO4 - возникает желтое, переходящее в темно-коричневое окрашивание в нижнем (хлороформном) слое;

Реакция Лафона: к2мл водного извлечения прибавляют 1 мл этанола, 1 мл концентрированной H2SO4, затем каплю раствора Fe2(SO4)3. При нагревании пробирки в ней появляется сине-зеленое окрашивание.

Эти три реакции положительны как на стероидные, так и на тритерпеновые сапонины. Только на стероидные сапонины позитивны следующие реакции:

Реакция Либермана - Бурхардта (на стероидное ядро молекулы, как и у кардиогликозидов): к 3 мл водного извлечения из ЛРС, выпаренного досуха, добавляют каплю ледяной уксусной кислоты и затем смесь (50: 1) уксусного ангидрида и концентрированной H2SO4. Через 5 мин появляется розовое окрашивание, переходящее в зеленовато-синее;

Реакция Санье: к2мл1% раствора сурьмы (III) хлорида добавляют несколько капель концентрированной H2SO4, содержащей уксусный ангидрид. В результате взаимодействия реагентов со стероидной частью молекулы сапонинов появляется желтое окрашивание.

Существует вариант реакции Санье для выявления сапонинов на хроматограммах. Для этого хроматограммы после разделения суммы сапонинов опрыскивают 5 % спиртовым раствором ванилина, 10 мин нагревают в сушильном шкафу при температуре 100-110 °С, затем опрыскивают 50 % раствором H2SO^ снова 10 мин нагревают в сушильном шкафу - пятна гликозидов стероидных сапонинов окрашиваются в желтые тона.

Для хроматографического выявления тритерпеновых сапонинов хроматограммы опрыскивают 20 % раствором H2SO4 и 10 мин нагревают в сушильном шкафу при 110 °С, в результате чего сапонины (особенно аралозиды) проявляются в виде пятен вишневого цвета.

3. Реакции, основанные на биологических свойствах сапонинов. Реакция гемолиза эритроцитов. Для ее проведения используют кровь (или эритроциты крови). Необходимо, чтобы в крови было незначительное содержание холестерина, присутствие которого может сдерживать гемолиз. Кроме того, требуется, чтобы рН был физиологическим (около 7,4), для чего взвесь эритроцитов разводят 0,9 % раствором NaCl. После смешивания равных объемов извлечения из ЛРС (содержащего сапонины) и взвеси эритроцитов в физиологическом растворе через некоторое время кровь становится прозрачной и ярко-красной - происходит гемолиз эритроцитов и выход гемоглобина в среду. Следует отметить, что различные сапонины имеют разный гемолитический индекс. Например, требуется 1 г сапонинов синюхи обыкновенной для гемолиза 10 000 мл крови и 1 г сапонинов диоскореи ниппонской для гемолиза 600 мл крови, т. е. гемолитический индекс у сапонинов синюхи выше, чем у сапонинов диоскореи. У солодки голой и конского каштана сапонины (сапонозиды) гемолитической активностью не обладают, а их агликоны - обладают.

Количественное определение содержания сапонинов в ЛРС. Единого метода количественного определения сапонинов пока нет. Ранее широко применяли гравиметрический метод, основанный на осаждении сапонинов холестерином, солями свинца, меди, магния, гидроксидом бария или концентрированными малополярными растворителями. Однако этот метод неспецифичен и дает завышенные результаты.

Используются также методы спектрофотометрии. Например, в первом методе берут порцию стероидных сапонинов, извлекаемых этанолом из диоскореи, прибавляют реактив Эрлиха (1 % раствор п-диметил-аминобензальдегида в четырехнормальном спиртовом растворе HCl), инкубируют 2 ч при 58 °С, охлаждают и измеряют оптическую плотность раствора. В другом методе спектрофотометрирова- ние раствора проводят после осаждения глицерризиновой кислоты из ацетонового извлечения солодки голой 25 % раствором аммиака. В третьем методе на хроматограммах в парах ортофосфорной кислоты стероидные сапонины дают розовые пятна, ярко флуоресцирующие в УФ-свете, что используют для флуориметрии.

Биологические свойства и фармакологическое действие

Все сапонины:

Обладают гемолитической активностью (за исключением сои, солодки и конского каштана). Гемолитическая активность - это способность сапонинов образовывать комплексы со стеринами и, как следствие, поры в мембранах эритроцитов, что позволяет гемоглобину этих клеток свободно диффундировать в среду или в плазму крови, давая так называемую «лаковую кровь» - явление, открытое Л. Федотовым в 1875 г.;

Токсичны для организмов при попадании в кровь. Сапонины вызывают гемолиз эритроцитов и паралич ЦНС, прежде всего ее дыхательного центра. Поэтому введение этих веществ непосредственно в кровь недопустимо. Возможно пероральное применение препаратов сапонинов, так как они не всасываются ЖКТ;

Даже в очень высоких разведениях (1:1 000 000) сапонины вызывают гибель холоднокровных животных (рыб, червей, лягушек), показано, в частности, их деструктивное действие на жабры - орган дыхания, солевого обмена и осмотического давления у рыб и амфибий;

Сапогенины (агликоны сапонинов) не обладают гемолитическими свойствами и не токсичны для рыб и других холоднокровных животных.

Имеются особенности биологического действия стероидных и тритерпено- вых сапонинов.

Стероидные сапонины проявляют:

Фунгицидную активность: вызывается образованием комплексов стероидных гликозидов со стеринами мембран грибных гиф. Это свойство используется для борьбы с патогенными грибами;

Противоопухолевую активность: выявлена у ряда сапониновых гликозидов. Установлено, что за цитостатическую активность отвечает стериновый агликон и его полярность. Углеводная часть молекулы оказывает влияние на растворимость и содействует транспорту стероидных гликозидов через плазматические мембраны;

Противосклеротическое действие: стероидные сапонины сдерживают развитие атеросклероза, в частности снижают содержание холестерина в крови. Они

также понижают артериальное давление, нормализуют учащенный ритм сердечных сокращений.

Также являются сырьевым продуктом для синтеза стероидных гормональных ЛС, используемых в фармакологии.

Тритерпеновые сапонины обладают токсичным действием на кровь и поэтому их принимают внутрь, так как они почти не всасываются в пищевом тракте, но повышают всасываемость сердечных гликозидов и других препаратов. Кроме того, они оказывают следующее воздействие:

Стимулирующее, тонизирующее и адаптогенное: Сапарал (ЛС из аралии), настойки женьшеня, заманихи, аралии;

Седативное: сапонины синюхи;

Противовоспалительное, противоаллергическое, регулирующее водно-солевой обмен: сапонины солодки;

Гипотензивное: сапонины астрагала шерстисто-цветкового;

Усиливающее секрецию бронхиальных желез, разжижающее мокроту и отхаркивающее: Глицерам (ЛС, получаемое из солодки), а также настойки синюхи, солодки;

Укрепляющее капилляры, тонизирующее вены: ЛС, получаемые из конского каштана - Эскузан, Эсфлазид, Анавенол, Веноплант; их применяют при варикозном расширении вен, поверхностных флебитах;

Эмульгирующее (широко используется при приготовлении эмульсий, суспензий, других лекарственных форм) и пенообразующее (применяется при приготовлении кондитерских изделий, шипучих напитков, а также как поверхностно-активные вещества в огнетушителях и т. д.).

Основные ЛР, содержащие сапонины

Стероидные: диоскорея ниппонская (а также д. кавказская, д. дельтовидная) (сем. Dioscoreaceae);

Тритерпеновые: заманиха высокая, аралия манчжурская и женьшень (Ara- liaceae), солодка голая и с. уральская, астрагал шерстисто-цветковый (Fabaceae), синюха голубая (Polemoniaceae).

К группе сапонинов относятся и основные БАВ хвоща полевого (Equise- taceae) и почечного чая (Lamiaceae).

Кроме того, к сапониновым гликозидам по строению близки фитоэкдизоны (фитоэкдистероиды), обнаруженные, в частности, улевзеи сафлоровидной (Aste- raceae), и витанолиды.

Растительные гликозиды, обладающие способностью образовывать с водой мыльную пену, получили название сапонинов. При гидролизе они образуют агликоны типа спиростанола-β, дигитогенина. При попадании в кровь высокотоксичны – вызывают гемолиз эритроцитов при разведении 1:50 000. Получают стероидные сапонины из наперстянки, диоскореи, аралии, сои и других растений путем экстракции их водой или водными растворами этанола. Индивидуальные соединения выделяют с помощью адсорбционно-хроматографических методов или методом противоточного распределения.

Применяют для синтеза стероидных гормонов, для получения антиатеросклеротических и венотонизирующих препаратов. Многие настойки содержат сапонины, обладающие мочегонным и отхаркивающим действием.

Технология производства стероидных сапонинов

Первые новогаленовые препараты, содержащие стероидные сапонины, стали вырабатываться из диоскореи.

Диоспонин (Diosponinum). Сухой очищенный экстракт из корней и корневищ диоскореи кавказской, содержит сумму водорастворимых стероидных сапонинов.

Сырье экстрагируют 8% этиловым спиртом в батарее по принципу противоточной мацерации.

Извлечение упаривают под вакуумом до 1/10 объема вытяжки.

К кубовому остатку добавляют алюмокалиевые квасцы для осаждения смолистых веществ.

После фильтрации вытяжку направляют вадсорбционную колонку с окисью алюминия. Реадсорбцию проводят обессоленной водой.

Вытяжку дополнительно очищают жидкостной экстракцией хлороформом .

После этого следует экстракция суммы сапонинов селективным экстрагентом – хлороформно-спиртовой смесью.

После удаления под вакуумом экстрагента получают препарат в виде порошка.

Применяется как гипохолестеринемическое средство при атеросклерозе.

Выпускается в таблетках по 0,1 г.

Препараты на основе сапонинов

Полиспонин – сухой экстракт из диоскореи ниппонской с содержанием суммы сапонинов не менее 17% . Форма выпуска – таблетки по 0,1 г. Назначение то же, что и диоспонина.

Трибуспонин – таблетки по 0,1г, содержащие сумму стероидных сапонинов из травы якорцев стелющихся. Показания к применению те же, что и для диоспонина и полиспонина.

Слизистые водорастворимые полисахариды

К этой группе полисахаридов относятся углеводы, образующие густые слизистые растворы. В состав слизей входят пентозаны и гексозаны. От крахмала они отличаются отсутствием характерных зерен и реакции с раствором йода, от пектиновых веществ – отсутствием полигалактуроновых кислот и желирующей способностью, от камедей – осаждаемостью нейтральным раствором свинца ацетата.

В химическом отношении слизи трудно отличить от камедей. Основным отличием является значительное преобладание пентозанов (их количество может доходить до 90%) над гексозанами.

Водорастворимые полисахариды водорослей представлены в основном в виде солей альгиновой кислоты.

Из физических свойств для слизей характерна полная растворимость в воде, в то время как для ряда камедей свойственно только набухание.

По характеру образования слизей сырье различают следующим образом:

    сырье с интерцеллюлярной слизью (льняное семя, блошное семя и др.);

    сырье с внутриклеточной слизью (клубни ятрышника, корень и листья алтея, листья подорожника, листья мать-и-мачехи и др.);

Выделяют слизистые водорастворимые полисахариды методами дробной мацерации в сочетании с кипячением и противоточной экстракцией в батарее перколяторов, очистку проводят, как правило, этанолом с последующей фильтрацией и сушкой.

Химические вещества сапонины (также гликозиды, сапонизиды или гетерозиды) - это производные тритерпеноидов и стероидов. Они обладают поверхностной и гемолитической активностью, а также токсичны для хладнокровных видов животных. Сапонины делятся на тритерпеновые и стероидные. Они содержатся в стеблях, листьях, цветах, корнях и плодах растений. Эти вещества состоят из углеводов и агликона.

Описание и характеристика

Любой сапонин, свойства которого имеют несколько характерных черт, отличается заметным воздействием на биологические организмы. Это вещество вызывает гемолиз эритроцитов и образует холестерин (из-за этого оболочка эритроцитов теряет свою полупроницаемость). Действие сапонинов приводит к попаданию в кровь гемоглобина. Вследствие такого эффекта у холоднокровных животных нарушается работа жабр.

Многие организмы погибают от яда, который выделяют сапонины. Что это такое? Данные соединения представляют собой аморфные или кристаллические гигроскопические вещества желтоватого оттенка (или бесцветные). Для сапонинов характерна высокая температура плавления и разложения. Они способны понижать поверхностное натяжение, из-за чего при встряхивании их водные растворы образуют обильную устойчивую пену. В хлороформе, бензоле и диэтиловом эфире сипонины нерастворимы. Иначе дело обстоит с водой, этанолом и метанолом. В этих гидрофильных растворителях сапонины растворимы в случае высокого содержания моносохаридов в их молекулах.

Примеры сапонина в природе

Далеко не одно семейство растений содержит сапонины. Всего ученые насчитывают около 40 подобных видовых групп. Клетки таких растений содержат растворенные сапонины. Что это такое? Чаще всего это часть химического состава подземных растений. Тритерпеновые сапонины характерны для гвоздичных, аралиевых, бобовых, синюховых, истодовых, конскокаштановых, розоцветных и т. д. Это такие распространенные растения, как солодка, женьшень или, например, аралия.

Стероидные сапонины входят в состав растений, принадлежащих к семействам лилейных, норичниковых, агавовых, диоскорейных и т. д. К данной группе относятся сарсапариль, наперстянки и диоскореи.

Интересно, что представители растительного мира выделяют сапонины для собственной защиты от патогенов. Так, гликозиды стимулируют скорость их роста, устойчивость к стрессу и улучшают всхожесть. Посредством сапонина изменяется состав каротиноидных пигментов, участвующих в фотосинтезе. Вещество может вырабатываться в листьях, откуда оно транспортируется по остальному растению. Полезное соединение копится в специальных клетках стеблей и эпидермиса. В конце концов оно попадает в корневище, отвечающее за вегетативное размножение. Сапонины вырабатываются с увеличенной скоростью в случае повреждения тканей растения.

Гидролиз и содержание моносахаридов

Биологические сапонины в растениях гидролизуются кислотами. Они могут образовывать молекулярные комплексы с липидами, стеринами, белками и фенольными соединениями. Сапонины (точнее, их углеводная часть) содержат от 1 до 11 моносахаридов. В зависимости от этого количества вещество относится к определенному типу: олигозидам, пентозидам, триозидам, биозидам, монозидам.

Чаще всего в них содержатся такие вещества, как D-ксилоза, D-глюкоза, D-галактоза, L-арабиноза, L-рамноза и т. д. Подобные элементы и включают в себя сапонины. Что это такое? Моносахариды - органические соединения, формирующие углеродные цепочки, которые могут быть разветвленными или линейными. Стероидные виды сапонинов состоят из 1-5 таких элементов, тогда как тритерпеновые могут их насчитывать 10 и даже больше.

Экстрагирование сапонинов

Получение сапонинов из исходного природного сырья осуществляется в несколько этапов. Сначала происходит экстрагирование (перевод компонентов из твердого тела в жидкость с помощью растворителя). Затем полученное вещество очищается и разделяется.

Для экстрагирования используются полярные растворители - этанол и метанол с различной концентрацией. Также применяется раствор натрия хлорида. В некоторых случаях перед экстракцией сырье обрабатывается эфиром и углеродами. Без этой процедуры невозможно разрушение сложнорастворимых комплексов, включающих сапонины, белки, стерины и фенольные соединения.

Очистка

Способ очистки полученных сапонинов зависит от их структуры. Например, полярные виды плохо растворяются в метиловом и а при охлаждении или добавлении этанола образуют характерный осадок. Иначе дело обстоит с гликозидами. Они выпадают в осадок после разбавления водой спиртовых экстрактов, а также плохо растворяются в самой воде. Для очистки тритерпеновых сапонинов необходима щелочь. Также на них действует ацетон, диэтиловый эфир, этилацетат, изоамиловый и

Другие методы очистки основаны на свойстве сапонинов создавать вместе с ацетатом свинца или гидроксидом бария нерастворимые в воде соли. После получения таких комплексов их разлагают. Подобные методы необходимы для того, чтобы образовывались наиболее чистые сапонины. наиболее качественные и лишенные примесей компоненты с однородным составом.

Хроматографическое разделение

Любые растительные вещества (например, флавоноиды, сапонины и т. д.) требуют тщательной обработки. При их очистке, помимо уже описанных методов, сегодня часто применяется хроматографическое разделение. В этом случае используются такие растворители, как уксусная кислота, н-бутанол, хлороформ, водный аммиак, н-пропиловый спирт, метанол и т. д.

Вслед за предварительным хроматографическим разделением начинается обработка кислотными реагентами - фосфорно-молибденовой кислотой, пятихлористой сурьмой и т. п. В результате сапонины образуют полиены - сопряженные ненасыщенные соединения. Они могут быть окрашены в красно-фиолетовый или розовый цвет (в зависимости от структуры вещества).

Применение

Сапонины используются с самыми разными целями. К примеру, их добавляют в пенообразующий агент в огнетушителях (в силу того, что эти вещества образуют обильную пену). Также сапонины включают в состав суспензий и эмульсий, тем самым стабилизируя эти Вещества данной группы отличаются эмульгирующими свойствами, что делает их полезным компонентом мыла.

Сапонины применяются при приготовлении некоторых напитков (например, пива), а также кондитерских изделий (халвы). Они производятся в качестве диетических и пищевых добавок. Также их используют в медицинских средствах (седативных, тонизирующих, отхаркивающих, вакцинах и т. д.). Несмотря на терапевтическую пользу, сапонины из-за своей токсичности требуют осторожности при употреблении.

Использование в фармакологии

Сапонины солодки с давних времен известны своим антиаллергическим и противовоспалительным действием. Препараты на их основе могут представлять собой порошок, сироп или экстракт. Солодковый корень - основа пилюль. Он добавляется для улучшения вкуса микстур и препаратов. Солодки используют в случае вирусных инфекций кожи и половых органов, а также при лишае.

Самой полезной с точки зрения фармакологии частью сапонинов считается глицирретиновая и глицирризиновая кислоты. На их основе производятся препараты, помогающие в борьбе с бронхиальной астмой. Другой полезный компонент - флавоноид. Эти соединения входят в состав флакарбина и ликиритона, обладающих противоязвенным, антисекреторным, спазмолитическим и противовоспалительным действием. Данные препараты употребляются при язве желудка и двенадцатиперстной кишки или гастрите.

Полезное действие женьшеня известно на Востоке уже несколько тысячелетий, где это растение стало популярным лекарственным средством и символично называется «корнем жизни». В Китае и Корее его используют в приготовлении пищи. оказывают тонизирующее и стимулирующее действие, их употребляют в качестве адаптогена. Средства на основе этих реагентов используются при лечении надпочечников. Концентрация сапонинов в женьшене достигает максимума при достижении растением шестилетнего возраста.

Влияние на человеческий организм

Как и алкалоиды, сапонины оказывают воздействие на человеческое здоровье. При попадании в полость рта или на слизистые оболочки носа и глаз они вызывают раздражение. Начинается усиленная секреция желез, что помогает избавиться от мокроты и помогает бронхам. Однако концентрация сапонинов для человеческого организма может быть и чрезмерной. В таком случае происходит раздражение кишечника и желудка. Токсичное воздействие данных веществ приводит к рвоте, тошноте, головокружению и диарее.

Сапонины полезны в качестве веществ, благодаря которым другие лекарственные средства быстрее всасываются в человеческий организм. Их действие зависит от конкретного растения. Помимо уже упомянутых эффектов, они могут оказать противоязвенный, легкий слабительный, адаптогенный, кортикотропный и диуретический эффект.

Сырье

Одним из самых частых источников сырья для выделения сапонинов является аралия маньчжурская. Это небольшое и быстрорастущее дерево высотой от 3 до 6 метров. Оно отличается поверхностной корневой системой и внешне похоже на пальму. Растение распространено на Дальнем Востоке России, в том числе в Хабаровском крае, Приморском крае и Амурской области.

Сапонины находятся в корнях аралии. При их заготовке используются растения возрастом от 5 до 15 лет. Корни собирают осенью или весной перед распусканием листьев. Их выкапывают ломами и лопатами. Затем требуется сушка, чаще всего она проводится в специальных сушилках, температура в которых достигает 60 °С. Срок годности такого сырья составляет три года.

Сапонинами (от лат. Sapo - мыло) называют гликозиды растительного и животного происхождения, большая часть которых обнаруживает поверхностную, гемолитическую активностью и токсичность по отношению к холоднокровным животным.

Молекулы сапонинов, как и других гликозидов, состоят из сахарной части и агликона, который называют сапогенином. По типу агликона тритерпеновые сапонины разделяют на группы дамарана, циклоартана, лупан,а фриделана, урсана, олеанана и др. Гликозиды содержат один или два углеводные цепи линейной или разветвленной структуры.

Чаще всего углеводная цепь находится в положении С-3, но встречаются вещества, содержащие углеводный остаток по карбоксильной группе агликона.

В углеводной цепи может находиться от 1 до 11 моносахаридов D-глюкоза, D-галактоза, D-ксилоза, L-арабиноза, L-рибоза, D-фукозы, L-рамноза и Д-глюкуроновая кислота. В состав некоторых гликозидов входят остатки органических кислот, например ангеликовая, тиглиновая, коричная, уксусная и др.

Распространение и биологические функции в растениях

Сапонины обнаружены в 900 видах растений, относящихся к 90 семействам. Тетрацикличные тритерпеновые сапонины содержит ограниченная группа семейств - Araliaceae, Cucurbitaceae и некоторые др. Пентациклическая группа широко распространена в природе в растениях 40 семейств, в частности Fabaceae, Caryophyllaceae, Asteraceae, Araliaceae, Polygalaceae, Lamiaceae и тому подобное. Из высших споровых растений тритерпеновые сапонины содержат некоторые виды папоротников. Очень редко сапонины всречаются в организме животных.

Наличие сапонинов обнаружено во всех частях растений, но накапливаются они преимущественно в корнях, корневищах, клубнях, плодах, значительно меньше в коре и наземной части.

В растениях сапонины находятся в свободном состоянии или в сочетании с другими веществами. Чаще всего их бывает несколько, причем один или два доминируют по количественному содержанию. При изучении сапонинов в растениях были обнаружены некоторые особенности в их накоплении.

Несмотря на широкое распространение тритерпеновых сапонинов в природе и древнее использования человеком, изучены они недостаточно вследствие сложности химической и стереохимической строения. Их исследовало много зарубежных и отечественных ученых (Л. Ружичка с соавторами, С. Черникова, А. Хорлин, Ю. Оводом, Г. Еляков и др.).

Существует три точки зрения на роль сапонинов в жизни растений: сапонины -промежточное звено между низкомолекулярными и полимерными веществами, содержащими углерод; они - резервные вещества (содержат много сахаров); защищают растение (их поедают насекомые).

Тритерпеновые сапонины влияют на проницаемость растительных клеток, что связано с их поверхностной активностью. Незначительные концентрации сапонинов ускоряют, а концентрированные - замедляют прорастание семян, рост и развитие растений.




© 2024
womanizers.ru - Журнал современной женщины