18.07.2019

Симпато адреналовая система ее функциональная организация. Симпатико-адреналовая система — универсальная система приспособления организма. Прямые эффекты катехоламинов


Катехоламины - гормоны мозгового вещества надпочечников, представлены адреналином и норадреналином , которые секретируются в отношении 6:1.

Основными метаболическими эффектами. адреналина являются: усиление расщепления гликогена в печени и мышцах (гликогенолиз) за счет активации фосфорилазы, подавление синтеза гликогена, подавление потребления глюкозы тканями, гипергликемия, усиление потребления кислорода тканями и окислительных процессов в них, активация распада и мобилизация жира и его окисление.

Функциональные эффекты катехоламинов. зависят от преобладания в тканях одного из типов адренорецепторов (альфа или бета). Для адреналина основные функциональные эффекты проявляются в виде: учащения и усиления сердечных сокращений, улучшении проведения возбуждения в сердце, сужения сосудов кожи и органов брюшной полости; повышения теплообразования в тканях, ослабления сокращений желудка и кишечника, расслаблении бронхиальной мускулатуры, расширении зрачков, уменьшении клубочковой фильтрации и образования мочи, стимуляции секреции ренина почкой. Таким образом, адреналин вызывает улучшение взаимодействия организма с внешней средой, повышает работоспособность в чрезвычайных условиях. Адреналин является гормоном срочной (аварийной) адаптации.

Выделение катехоламинов регулируется нервной системой через симпатические волокна, проходящие в составе чревного нерва. Нервные центры, регулирующие секреторную функцию хромаффинной ткани, расположены в гипоталамусе.

Эндокринная функция поджелудочной железы. Механизмы действия ее гормонов на углеводный, жировой, белковый обмен. Регуляция содержания глюкозы в печени, мышечной ткани, нервных клетках. Сахарный диабет. Гиперинсулинемия.

Сахаро-регулирующими гормонами, т.е. влияющими на содержание сахара в крови и углеводный обмен, являются многие гормоны желез внутренней секреции. Но наиболее выраженные и мощные эффекты оказывают гормоны островков Лангерганса поджелудочной железы - инсулин и глюкагон . Первый из них может быть назван гипогликемическим, так как снижает уровень сахара в крови, а второй - гипергликемическим.

Инсулин оказывает мощное влияние на все виды обмена веществ. Действие его на углеводный обмен в основном проявляется следующими эффектами: он повышает проницаемость клеточных мембран в мышцах и жировой ткани для глюкозы, активирует и увеличивает содержание ферментов в клетках, усиливает утилизацию глюкозы клетками, активирует процессы фосфорилирования, подавляет распад и стимулирует синтеза гликогена, угнетает глюконеогенез, активирует гликолиз.



Основные эффекты инсулина на белковый обмен: повышение проницаемости мембран для аминокислот, усиление синтеза необходимых для образования белков

нуклеиновых кислот, прежде всего иРНК, активация в печени синтеза аминокислот, активация синтеза и подавление распада белков.

Основные эффекты инсулина на жировой обмен: стимуляция синтеза свободных жирных кислот из глюкозы, стимуляция синтеза триглицеридов, подавление распада жира, активация окисления кетоновых тел в печени.

Глюкагон вызывает следующие основные эффекты: активирует гликогенолиз в печени и мышцах, вызывает гипергликемию, активирует глюконеогенез, липолиз и подавление синтеза жира, повышает синтез кетоновых тел в печени, стимулирует катаболизм белков в печени, увеличивает синтез мочевины.

Основным регулятором секреции инсулина является D-глюкоза притекающей крови, активирующая в бета клетках специфический пул цАМФ и через этот посредник приводящая к стимуляции выброса инсулина из секреторных гранул. Усиливает ответ бета клеток на действие глюкозы гормон кишечника- желудочный ингибиторный пептид (ЖИП). Через неспецифический, независимый от глюкозы пул цАМФ стимулируют секрецию инсулина и ионы СА++. В регуляции секреции инсулина определенную роль играет и нервная система, в частности, блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и катехоламины через альфа-адренорецепторы подавляют секрецию инсулина и стимулируют секрецию глюкагона.

Специфическим ингибитором продукции инсулина является гормон дельта- клеток островков Лангерганса - соматостатин . Этот гормон образуется также и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную реакцию бета клеток на глюкозный стимул.



Секреция глюкагона стимулируется при снижении уровня глюкозы в крови, под влиянием гормонов ЖКТ (ЖИП, гастрин, секретин, панкреозимин- холецистокинин) и при уменьшении содержания ионов СА++, а угнетается - инсулином, соматостатином, глюкозой и кальцием.

Абсолютный или относительный по отношению к глюкагону недостаток инсулина проявляется в виде сахарного диабета.. При этом заболевании происходят глубокие расстройства обмена веществ и, если инсулиновую активность не восстанавливать искусственно извне, может наступить гибель. Для сахарного диабета характерны гипогликемия, глюкозурия, полиурия, жажда, постоянное чувство голода, кетонемия, ацидоз, слабость иммунитета, недостаточность кровообращения и многие другие нарушения. Крайне тяжелым проявлением сахарного диабета является диабетическая кома.

Симпатоадреналовая система - функциональное взаимодействие структур симпатичной нервной системы и мозгового вещества надпочечников. Является важным компонентом системы нейрогуморальной регуляции процессов в организме. Ее активация запускает каскад адаптационных изменений обмена веществ, которые способствуют мобилизации энергетических ресурсов организма. Способствует приспосабливанию организма к изменчивым условиям. Частая и длительная активация системы приводит к развитию патологических адаптаций кровеносной системы, эндокринной и нервной систем. Симпатическая нервная система иннервирует периферические органы и представлена специфическими структурами в центральной нервной системе. В состав адреналовой системы входить мозговое вещество надпочечников и скопления хромаффинных клеток за их пределами.
Объединение этих 2-х систем основывается, во первых, на общем происхождении. Клетки обоих систем в эмбриогенезе образуются с клеток нервного гребня. Во вторых, обе системы синтезируют и выделяют катехоламины. Для надпочечников характерно выделения адреналина и норадреналина, для симпатичной нервной системы - норадреналина. Существует связь между активностью симпатической системы и секрецией адреналина надпочечниками, но изменения происходят в разной степени. Сильная активация симпатоадреналовой системы ведет к повышению уровня выделения адреналина, что усиливает активация симпатической нервной системы. Преганглионарные симпатические волокна в свою очередь оканчиваются непосредственно на клетках мозгового вещества надпочечников, что стимулирует секрецию адреналина. Может быть и независимая робота этих систем. Процессы синтеза, депонирования и секреции катехоламинов связаны, так что можно говорить о существовании саморегулирующей системы нейрогуморального контроля.


4 вопрос

Все гормоны имеют несколько важных свойств, которые отличают их от других биологически активных веществ:

1. Гормоны вырабатываются в клетках эндокринных желез и секретируются в кровь.

2. Все гормоны являются чрезвычайно активными веществами, они вырабатываются в малых дозировках (0,001-0,01 моль/л), но оказывают выраженный и быстрый биологический эффект.

3. Гормоны специфически воздействуют на органы и ткани посредством рецепторов. Они подходят к рецептору как ключ к замку, а потому воздействуют только на восприимчивые клетки и ткани.

4. Гормоны отличаются тем, что имеют определенный ритм секреции, например, гормоны коры надпочечников имеют суточный ритм секреции, а иногда ритм является месячным (половые гормоны у женщин) или интенсивность секреции изменяется в течение более продолжительного периода времени (сезонные ритмы).

5 вопрос

По химическому строению гормоны делят на:

1) пептидные и белковые гормоны, 2) гормоны – производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды – гормоноподоб-ные вещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тироли-берин, соматолиберин, соматостатин, гормон роста, кортикотропин, тире-отропин и др. – см. далее) , а также гормоны поджелудочной железы (инсулин, глюкагон) . Гормоны – производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные) . Гормоны 1-й и 2-й групп хорошо растворимы в воде.

Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды) , половыми гормонами (эстрогены и андрогены) , а также гормональной формой витамина D.

Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой) , представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают свое действие на клетки, находящиеся вблизи их места синтеза.

Для того, чтобы научиться сознательно управлять этим процессом необходимо понять общие механизмы приспособления организма к экстремальным факторам окружающей среды, в т.ч. и к физическим перегрузкам.

В процессе эволюции человеческий организм подвергался постоянному воздействию огромного количества неблагоприятных факторов окружающей среды. Голод, холод, жара, ионизирующая радиация, ультрафиолетовое излучение, ранения, отравления, постоянные нервно-психические и физические перегрузки — вот далеко не полный перечень того, с чем постоянно приходилось сталкиваться человеческому организму в процессе эволюции.

Естественно, что организм не мог предугадать, с каким именно неблагоприятным внешнем фактором он столкнется завтра. Поэтому в течение многих тысячелетий длительной эволюции ему пришлось выработать совершенно уникальную универсальную защитно-приспособительную систему, способную (компенсировать неблагоприятные воздействия внешнейсреды) защищитить его от большинства неблагоприятных факторов.

Такая защитная система сложилась и закрепилась генетически. Физиологи называют ее «Симпатико-адреналовой системой», или сокращенно «САС».

Рассмотрим кратко строение и механизм действия симпатико-адреналовой системы.

В сущности САС является условным понятием, объединяющим несколько отдельных структур организма, ответственных за адаптацию. САС, таким образом, состоит из нескольких звеньев.

Первое звено САС — это уже известные нам структуры ЦНС, которые вырабатывают катехоламины. Выброс катехоламинов из депо нервных клеток — это самое первое, что происходит с организмом в «трудной» (неблагоприятной) для него ситуации. Это своего рода звено «быстрого реагирования».

Вторым звеном САС является симпатическая нервная система. Симпатическая нервная система — это часть нервной системы, связывающая (инервирующая) все внешние и внутренние органы от кожи до сердца. Она представлена особыми нервными «веточками», связь между которыми осуществляется с помощью гормона норадреналина. Поэтому выброс катехоламинов вторично активизирует симпатическую нервную систему.

Основное назначение симпатической нервной системы — это мобилизация всех наличных энергетических, пластических и прочих резервов на борьбу с неблапгоприятным фактором. Активизация симпатической нервной системы резко стимулирует окислительно-восстановительные реакции, распад гликогеновых запасов и утилизацию жиров. При экстремальных физических нагрузках именно симпатическая нервная система обеспечивает энергию, необходимую для мышечного сокращения. Если мышца даже до предела утомлена, то электрическая стимуляция симпатических веточек, иннервирующих мышцу, восстанавливает ее работоспособность. Именно симпатический отдел вегетативной нервной системы обеспечивает утилизацию молочной кислоты в печени, что позволяет организму бороться с утомлением.

Помимо повышения энергетического потенциала как такового, симпатическая нервная система перераспределяет энергетические ресурсы между различными органами. К примеру, при необходимости происходит перераспределение крови между условным «ядром» и «оболочкой» тела. Сосуды головного мозга, сердца, печени и поек расширяются, в результате чего кровь притекает к более жизненно важным органам за счет оттока от менее важных. Организм как бы готов временно пожертвовать нормальным функционированием части своих внутренних органов, чтобы сохранить самое главное — жизнь. Это один из ключевых приспособительных механизмов, закрепившийся в процессе эволюции человека.

Третье звено САС — это мозговое вещество надпочечников, где вырабатывается адреналин. Адреналин — вещество уникальное. Второго такого в организме нет. Он (адреналин) относится одновременно к двум классам соединений. Во-первых, он является гормоном надпочечников и, во-вторых, катехоламином. Вырабатывается адреналин как в надпочечниках (основное количество), так и в центральной нервной системе. Подобно первым двум звеньям симпатико-адреналовой системы, адреналин мобилизует энергетические ресурсы организма и, что самое главное, оказывает стабилизирующее влияние на клеточные мембраны.

Под влиянием адреналина повышается проницаемость клеточных мембран для глюкозы и повышается их энергетический потенциал. Митохондрии (силовые станции клетки) утилизируют энергетические субстраты1 в повышенном количестве и вырабатывают больше энергии. Одновременно с повышением проницаемости мембран для глюкозы происходит снижение их проницаемости для токсических веществ. Мембраны клеток приобретают повышенную устойчивость к ядам, электромагнитному излучению, ионизирующей радиации и т.п.

Под влиянием адреналина, таким образом, происходит быстрая физиологическая и структурная перестройка клеточных мембран, существенно повышающая жизнеспособность клеток. Адреналин способен подавить даже внедрение в ткани злокачественной опухоли.

Внешние факторы окружающей среды.

Все три звена симпатикоадреналовой системы обладают значительной взаимозаменяемостью. При ослаблении одного звена компенсаторно увеличивается активность других звеньев — природа как бы подстраховалась на случай возможных потерь или выпадения отдельных функций организма.

Несмотря на такую взаимозаменяемостью, каждое из этих звеньев, тем не менее, имеет свою «специализацию».
На структуру клеточных мембран воздействуют как катехоламины, так и симпатическая нервная система и адреналин, однако влияние адреналина преобладает. Энергизирующим и энергомобилизующим действием обладают все три звена САС, но ведущая роль принадлежит симпатической нервной системе.

Вся симпатико-адреналовая система в целом подавляет воспаление и аллергию в организме, однако ведущая роль все же принадлежит симпатическому отделу.

Активизация высшей нервной деятельности на борьбу с экстремальной ситуацией, скорость мышления и двигательной реакции, правильность принятия решений зависят в основном от активизации системы катехоламинов.

Еще раз подчеркнем, что на какое бы звено САС не действовал экстремальный фактор: на центральную нервную систему, отдельный участок тела или внутренний орган, на обмен веществ или температурный режим, в любом случае происходит активизация всей симпатико-адреналовой системы в целом.

Как же работает САС в условиях дозированных нагрузок в процессе тренировок?

Мягкая, физиологическая стимуляция САС вызывает умеренный дефицит энергии в тех структурах организма, которые подвергаются наибольшей нагрузке, ведь основная задача САС — это мобилизация энергетических запасов клеток и систем. Ответная реакция организма на такой умеренный энергетический дефицит — это гипертрофия рабочих структур. Усиление белкового синтеза в рабочих структурах призвано предотвратить энергетическое истощение.

В процессе наращивания мышечной массы ключевая роль симпатико-адреналовой системы проявляется особенно наглядно. Необходимым условием мышечного роста является выраженное тренировочное утомление. Именно активизация симпатико-адреналовой системы в процессе мышечного усилия позволяет добиться мобилизации энергетических ресурсов мышцы и умеренного физиологического «опустошения» ее энергетического фонда.

Продукты распада АТФ и другие сигналы энергетического истощения воздействуют на рецепторы клеточного ядра, вызывая активизацию генетического аппарата клетки. Активизируются гены, ответственные за синтез белка в мышцах и начинается усиление белкового синтеза в мышечных волокнах. Происходит гипертрофия мышц и увеличивается мышечная масса.

Чем активнее симпатико-адреналовая система, тем выше в крови уровень соматотропного гормона и тем больше чувствительность клеток к андрогенам (мужским половым гормонам). Чем интенсивнее протекает тренировка, тем сильнее возбуждение САС и сильнее посттренировочный выброс в кровь соматотропного гормона и андрогенов.

Уходят в прошлое многочасовые круговые тренировки. На смену им приходят кратковременные тренировки исключительно высокой интенсивностью, но более частые по времени, чем длительные круговые.

Особенно хотим подчеркнуть, что без «пусковой роли» САС запустить цепочку вышеперечисленных процессов практически невозможно.
В чем по-вашему заключается роль разминки перед тренировкой? Обычно говорится и пишется, что разминка необходима для «разогревания» мышц и связок. Несомненно, что это так, но в только «наполовину». Для разогревания мышц и связок хорошо подходит горячая ванна, а разминка необходима в основном для возбуждения симпатико-адреналовой системы.

Повышение температуры тела, испарина, учащение пульса и ощущение жара в теле — все это признаки возбуждения САС. Без такой подготовки нечего и думать о полноценном включении органов и систем организма в тренировку. Перед соревновательными выступлениями разминка проводится особенно тщательно, а контрольные измерения пульса говорят о количестве выброшенного в кровь адреналина.

Со спортсменами высокого класса работают специально обученные психотерапевты, которые обучают их специальным формулам самовнушения мобилизующего типа. Немногие знают, что по сути эти формулы (приемы) призваны не расслабить, успокоить спортсмена, а, наоборот, активизировать, быстрее включить его организм на борьбу с соревновательными нагрузками. С помощью специальных формул возбуждающего самовнушения спортсмены добиваются активизации симпатико-адреналовой системы до строго определенных уровней. Оптимальность возбуждения для каждого отдельного спортсмена определяется в ходе предшествующих соревнований. Некоторым спортсменам с помощью одного лишь самовнушения удается «разогреть» себя так, что им никакой допинг уже не нужен.

Иногда спортсмены сознательно вызывают у себя чувство страха, чтобы добиться максимального выброса в кровь адреналина, от которого, в основном, зависит выносливость. Пловцы на дистанции представляют как за ними гонится огромная акула, бегуны представляют себе, что они бегают от разъяренного тигра и т.д. Не один рекорд мира был установлен с помощью такой психотерапии.

Возвращаясь к роли физических упражнений в тренировке САС, важно отметить, что чрезмерные, запредельные нагрузки могут вызвать выраженное истощение симпатико-адреналовой системы. Ее активность будет падает и работоспособность неизбежно снижаться. В спортивной практике такое состояние часто возникает при перетренированности, а также при соревновательном переутомлении.

Конечно, существует огромное число фармакологических препаратов, активизирующих симпатико-адреналовую систему, однако предпочтение следует отдавать мягким физиологическим стимуляторам. Это прежде всего правильно спланированные тренировки. Короткие высокоинтенсивные занятия длительностью не более 1 часа — это наиболее оптимальный вариант для стимуляции симпатико-адреналовой системы. Хорошим показателем служит появление после их окончания мягкой эйфории. Это естественно, так каквсе нейромедиаторы симпатико-адреналовой системы повышают настроение.

Для формирования сильной, тренированной симпатико-адреналовой системы спортсмену крайне необходимо правильное питание. Прежде всего необходимо обеспечить достаточное поступление в организм легкоусваиваемого полноценного белка. Запомните, чем больше Ваш организм получает полноценного белка, тем больше он получит фенилаланина и тем стабильнее и активнее будет работать симпатико-адреналовая система.

Учитывая, что переваривающая способность желудочно-кишечного тракта ограничена целесообразно использовать специальные спортивные продукты питания, содержащие легкоусвояемые полноценные белки. Прежде всего это яичный протеин. За ним по степени важности следуют сывороточный, молочный, рыбный, мясной и соевый.

Еще более целесообразно применение чистых кристаллических амнокислот, но их надо принимать в больших дозах, порядка несколько десятков граммов в день, иначе эффекта не будет. Идеальным вариантом является прием чистого фенилаланина на фоне полноценного белкового питания, однако этот препарат пока еще не очень распространен.

Активность симпатико-адреналовой системы в самом важном, резервном звене можно повысить с помощью ноотропных препаратов, адаптогенов, пчелиного маточного молочка. Не следует забывать и о таких физиологических стимуляторах симпатико-адреналовой системы, как бег, обливание холодной водой, сауна, углеводная разгрузка-загрузка и т.д.

Еще раз хочется подчеркнуть, что даже физиологическая стимуляция САС не должна быть чрезмерной, иначе срабатывает закон перехода количества в качество и может развиться сильный стресс. При сильном стрессе количество клюкокортикоидов в крови настолько велико, что начинает проявляться их сильное катаболическое действие. Здесь уже ни о каком наборе мышечной массы не может быть и речи. Наоборот, начинаются усиленный распад белка и, как следствие, потеря ранее набранной массы.

Справедливости ради следует отметить, что усиленный катаболизм развивается лишь при достаточно сильном стрессе. При стрессе умеренной силы заметного катаболизма не отмечается и при этом значительно повышается выносливость. Задача тренированного периода поэтому заключается в том, чтобы вызвать в организме стресс умеренной силы для максимального достижения результата и в то же время не переборщить. В противном случае велика вероятность истощения нервной системы, что несовместимо со спортом.

Чрезмерная стимуляция САС даже сама по себе, без развития стресса, может вызвать различные нарушения обмена веществ в организме. Самое распространенное нарушение при передозировке лекарственных стимуляторов САС — это развитие энергетического дефицита. Мы уже говорили о том, что умеренная стимуляция САС «опустошает» энергетические запасы клеток, способствуя тем самым развитию анаболизма. При чрезмерной стимуляции САС опустошение энергетических резервов переходит в их истощение. Разобщаются окисление и фасфорилирование. Энергия, полученная от окисления пищевых факторов, не запасается в виде АТФ, а рассеивается в виде тепла. Возникает сильный термогенный эффект.
Так, например, при передозировке амфетаминов, адреналина, тиреоидных гормонов спортсмену становится настолько жарко, что ему хочется раздеться даже в холодную погоду. Сила и работоспособность (выносливость) при этом, естественно, снижаются. Подобная же ситуация возникает при передозировке кофеина.

Этого не бывает при передозировках адаптогенов и ноотропных препаратов. Такие ноотропные средства, как ноотропил, оксибутират натрия, пикамлон и фенибут, не только повышают работоспособность, но и препятствуют развитию стресса. Это делает их особенно ценными, особенно если учесть их умеренный анаболизирующий эффект.

Чрезмерная и частая стимуляция САС приводит к ее истощению (истощение нервной системы). Даже содержание глюкокортикоидных гормонов падает ниже нормы. Снижается содержание в организме половых гормонов и гормонов щитовидной железы. Развивается множество хронических заболеваний, в том числе и воспалительного характера. Человек начинает часто простужаться, в общем, трещит по всем швам. Выйти из такого состояния очень трудно, поэтому лучше всего себя до него не доводить. При малейших признаках переутомления тренировки необходимо приостановить заняться восстановительной терапией. После любых значительных соревнований обязательно должен быть предусмотрен особый период, включающий в себя полноценный отдых в комплексе с восстановительным лечением. В этом залог спортивного долголетия.

1 Энергетический субстрат — любое веществао, которое может быть использовано в качестве энергии. Это в первую очередь углеводы, органические кислоты, аминокислоты, жирные кислоты, спирты, альдегиды и т.д.

Симпатоадреналовая система

Последний представляет собой мозгового вещества надпочечников и вненадпочечниковой хромаффинной ткани; обладает выраженным кардиотоническим, прессорным гипергликемическим и пирогенным действием, вызывает сужение сосудов кожи и почек, расширяет коронарные сосуды, сосуды скелетных мышц, гладкой мускулатуры бронхов, желудочно-кишечного тракта и т.д.

Физиологическая роль С. с. для организма велика. Ее высокая эффективность и стабильность функционирования обеспечиваются как распространенностью структур, разнообразными биохимическими механизмами регуляции синтеза, секреции и инактивации катехоламинов, так и системой адренергических рецепторов на эффекторных клетках. Удаление мозгового слоя обоих надпочечников (при сохранении части коркового вещества) не представляет угрозы для жизни. С. с. наблюдается лишь в агональном состоянии

Библиогр.: Авакян О.М. , Л., 1977; Он же., Фармакологическая регуляция функции адренорецепторов. М., 1988; Нейротрансмиттерные системы, под ред. Н. Дж. Легга, . с англ., М., 1982; Эверли Дж. С. и Розенфельд Р. . Природа и пер. с англ., М., 1985.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Симпатоадреналовая система" в других словарях:

    - (лат. mediator посредник: синоним нейромедиаторы) биологически активные вещества, секретируемые нервными окончаниями и обусловливающие передачу нервных импульсов в синапсах. В качестве М. могут выступать самые различные вещества. Всего… … Медицинская энциклопедия

    - (лат post после + castratio оскопление; синоним кастрационный синдром) симптомокомплекс, развивающийся после прекращения эндокринной функции яичек у мужчин и яичников у женщин в репродуктивном периоде и характеризующийся специфическими обменно… … Медицинская энциклопедия

    I Хромаффинома (chromaffinoma; синоним феохромоцитома) гормонально активная опухоль, происходящая из зрелых клеток хромаффинной ткани и вырабатывающая катехоламины: секреторные гранулы клеток окрашиваются красителями, содержащими соли хрома. X.… … Медицинская энциклопедия

    I Адреналин см. Симпатоадреналовая система. II Адреналин (adrenalinum; анат. adrenalis надпочечниковый, относящийся к надпочечнику; син. эпинефрин) гормон мозгового вещества надпочечников и вненадпочечниковой хромаффинной ткани; активирует… … Медицинская энциклопедия - I Фенилкетонурия (phenyiketonuria; фенилаланин + кетоны + греч. uron моча; синоним: фенилпировиноградная олигофрения, болезнь Феллинга) наследственная болезнь, обусловленная нарушением обмена фенилаланина; проявляется отставанием в физическом… … Медицинская энциклопедия

    - (синоним болезнь Бувре) приступообразное увеличение частоты сердечных сокращений при сохранении их правильного ритма, обусловленное патологической циркуляцией возбуждения по миокарду или активацией в нем патологических очагов высокого автоматизма … Медицинская энциклопедия

    I Трофика (греч. trophē питание) совокупность процессов клеточного питания, обеспечивающих сохранение структуры и функции ткани или органа. Основная масса тканей позвоночных животных наделена непрямой вегетативной иннервацией, при которой… … Медицинская энциклопедия


Активация симпато-адреналовой системы

Воздействие стрессора на организм вызывает формирование очага возбуждения в коре больших полушарий головного мозга, импульсы из которого направляются в вегетативные (симпатические) центры гипоталамуса , а оттуда – в симпатические центры спинного мозга . Аксоны нейронов этих центров идут в составе симпатических волокон к клеткам мозгового вещества надпочечников , формируя на их поверхности холинэргические синапсы. Выход ацетилхолина в синаптическую щель и взаимодействие его с Н-холинорецепторами клеток мозгового вещества надпочечников стимулирует выброс ими адреналина. Курение вызывает повышение концентрации никотина в крови, никотин стимулирует Н-холинорецепторы клеток мозгового вещества надпочечников, что сопровождается выбросом адреналина.

Эффекты катехоламинов

· Усиление сердечной деятельности , опосредованнное возвуждением b-адренорецепторов сердца.

· Расширение сосудов сердца и мозга , опосредованнное возвуждением b-адренорецепторов.

· Выброс эритроцитов из депо – обусловлен сокращением капсулы селезенки, содержащей a-адренорецепторы.

· Лейкоцитоз – «встряхивание» маргинальных лейкоцитов.

· Сужение сосудов внутренних органов , опосредованнное возвуждением a-адренорецепторов.

· Расширение бронхов , опосредованнное возвуждением b-адренорецепторов бронхов.

· Угнетение перистальтики ЖКТ .

· Расширение зрачка .

· Уменьшение потоотделения .

· Катаболический эффект адреналина обусловлен активацией аденилатциклазы с образованием цАМФ, который активирует протеинкиназы. Активная форма одной из протеинкиназ способствует фосфорилированию (активации) триглицеридлипазы и расщеплению жиров . Образование активной формы другой протеинкиназы необходимо для активации киназы фосфорилазы b , которая катализирует превращение неактивной фосфорилазы b в активную фосфорилазу а . В присутствии последнего фермента происходит распад гликогена . Кроме этого при участии цАМФ активируется протеинкиназа, необходимая для фосфорилирования гликогенсинтетазы, то есть перевода ее в малоактивную или неактивную форму (торможение синтеза гликогена ). Таким образом, адреналин через активацию аденилатциклазы способствует распаду жиров, гликогена и торможению синтеза гликогена.

Активация гипоталамо-гипофизарно-надпочечниковой системы

Возбуждение участка коры головного мозга под действием стрессора вызывает стимуляцию гипофизотропной зоны медиальной зоны гипоталамуса (эндокринные центры) и высвобождение гипоталамических рилизинг-факторов , которые оказывают стимулирующее действие на аденогипофиз . Результатом этого является образование и выделение тропных гормонов гипофиза , одним из которых является адренокортикотропный гормон (АКТГ). Органом-мишенью этого гормона является корковое вещество надпочечников , в пучковой зоне которого вырабатываются глюкокортикоиды , а в сетчатой зоне – андрогены. Андрогены вызывают стимуляцию синтеза белка; увеличение полового члена и яичек; ответственны за половое поведение и агрессивность.

Другим тропным гормоном гипофиза является соматотропный гормон (СТГ)к эффектам которого относятся:

· стимуляция синтеза и секреции инсулиноподобного фактора роста в печени и др. органах и тканях,

· стимуляция липолиза в жировой ткани,

· стимуляция продукции глюкозы в печени.

Третьим тропным гормоном гипофиза является тиреотропный гормон (ТТГ), который стимулирует синтез тиреоидных гормонов в щитовидной железе . Тиреоидные гормоны ответственны за стимуляцию синтеза белка во всех клетках тела, повышение активности ферментов, участвующих в расщеплении углеводов, разобщении окисления и фосфорилирования (увеличения теплопродукции)

Эффекты глюкокортикоидов

· Индукция синтеза ферментов – глюкокортикоиды (ГК) проникают через мембрану в цитоплазму клеток, где связываются в комплекс с рецептором (R). Комплекс ГК-R проникает в ядро, где увеличивает синтез РНК-полимеразы, что приводит к ускорению транскрипции мРНК, способствуя образованию белков-ферментов глюконеогенеза .

· Мобилизация белковых ресурсов клетки - глюкокортикоиды освобождают свободные аминокислоты из мышечной, лимфоидной и соединительной ткани и почек.

· Пермиссивное (разрешающее) действие - особенно четко проявляется в отношении катехоламинов. Катаболический эффект адреналина обусловлен активацией аденилатциклазы с образованием цАМФ, который затем активирует протеинкиназы. Распад цАМФ вызывает фосфодиэстераза , которую ингибируют глюкокортикоиды, тем самым, усиливая эффекты катехоламинов. Кроме того, глюкокортикоиды блокируют ферменты: моноаминоксидазу (МАО), содержащуюся в адренергических окончаниях, и катехол-О-метилтрансферазу (КОМТ), локализующуюся в цитоплазме эффекторных клеток. Эти ферменты вызывают инактивацию катехоламинов.

· Увеличение концентрации глюкозы в крови - усиление глюконеогенеза + торможение синтеза белка + пермиссивное действие глюкокортикоидов на эффект (катаболический) адреналина + снижение проницаемости клеточных мембран для глюкозы.

· Мобилизация энергетического ресурса клеток - катаболическое действие + активация синтеза ферментов глюкогенеза + торможение синтеза белка, пермиссивное действие глюкокортикоидов на эффект (катаболический) адреналина.

· Тормозится воспалительние - глюкокортикоиды стабилизируют мембраны лизосом и блокируют синтез фосфолипаз, препятствуя тем самым выбросу протеолитических ферментов (альтерации) + нормализация повышенной проницаемости сосудов, что препятствует экссудации и выделению медиаторов воспаления + глюкокортикоиды угнетают фагоцитоз.

· Снижение иммунитета - торможение синтеза антител (распад белков, репрессия транскрипции) + угнетение фагоцитоза.

9. – Врожденные и наследственные болезни. Мультифакториальные болезни. Генокопии и фенокопии. Классификация врожденных заболеваний в зависимости от срока возникновения. Методы изучения наследственных болезней.

Врожденные заболевания – заболевания, возникающие внутриутробно (пренатально), в период родов (интернатально) и существующие к моменту рождения.

Врожденные заболевания могут быть наследственными и ненаследственными, причем более распространены ненаследственные врожденные заболевания.

Наследственные заболевания – обязательно сопровождаются поражением генетического аппарата, передаются по наследству.

Большая часть наследственных заболеваний проявляется сразу после рождения и является врожденной патологией.

Таким образом, не все врожденные заболевания наследственные и есть часть наследственных болезней, не являющихся врожденными.

Фенокопия – ненаследственное изменение фенотипа организма, вызванное факторами окружающей среды и копирующее проявление какого-либо известного наследственного изменения (заболевания). Причиной фенокопии служит нарушение обычного хода индивидуального развития без изменения генотипа.

Генокопия - возникновение внешне сходных фенотипических признаков (заболеваний) под воздействием генов, расположенных в различных участках хромосомы или в различных хромосомах, т.е. заболевание предопределяется разными генами. Например, слепота может быть связана с генетическим поражением и сетчатки и хрусталика, которые контролируются различными генами. Существует несколько генокопий синдрома Дауна.

Врожденная патология, вызванная нарушениями развития плода, наблюдается у приблизительно 2% новорожденных и является наиболее частой причиной неонатальной смертности и заболеваемости. При большинстве аномалий не обнаруживается никаких хромосомных нарушений, и они не являются наследственными.

Среди наследственных болезней выделяют болезни с наследственной предрасположенностью (мультифакториальные) . Наследственная предрасположенность подразумевает, что болезнь не детерминируется жестко генетическим аппаратом, но по наследству передаются некие свойства и особенности организма, его органов и систем, которые предрасполагают к возникновению определенных болезней (атеросклероз, гипертоническая болезнь, сахарный диабет, опухоли и др.). В основе мультифакториальных болезней лежит полигенное наследование, когда многие пары генов суммируют свое влияние (аддитивное действие)

Тератогенные факторы (или тератогены) - факторы, вызывающие пороки развития (от греч. teratos - уродство).

Врожденные заболевания подразделяются в зависимости от срока возникновения .

1) период прогенеза соответствует созреванию гамет (яйцеклеток и сперматозоидов) до оплодотворения (в этот период возможно возникновение патологии гамет – гаметопатии );

2) период киматогенеза (от греч. kyema - зародыш) соответствует периоду от оплодотворения до родов. С периодом киматогенеза совпадает период киматопатии . В нем различают три периода:

  • бластогенез - период от оплодотворения до 15 дня беременности. В этот период идет дробление яйца, заканчивается образованием эмбриобласта и трофобласта (в этот период возможно возникновение бластопатии );
  • эмбриогенез - период с 16 дня до 75 дня беременности, идет основной органогенез и образуется амнион и хорион (в этот период возможно возникновение эмбриоопатии );
  • фетогенез - период с 76 дня по 280 день беременности, происходит дифференцировка и созревание тканей плода, образование плаценты, а также рождение плода (в этот период возможно возникновение фетопатии ). Фетогенез в свою очередь делится на

· ранний фетальный период (76-180 день беременности) - возможно возникновение болезней раннего фетогенеза ;

· поздний фетальный период (181-280 день беременности) - возможно возникновение болезней позднего фетогенеза .

I. Методы изучения наследственных болезней.

Клинико-генеалогический метод заключается в со­ставлении родословной записи с последующим анализом проявления признака, характерного для конкретной на­следственной болезни на протяжении возможно больше­го числа поколений родственников пациента.

Признаками наследственных болезней, установлен­ных с помощью «родословных», являются:

1) обнару­жение болезни «по вертикали»: из поколения в поколе­ние беспрерывно (при доминантном типе наследования) или с некоторыми перерывами (при рецессивном типе наследования);

2) менделевские соотношения между числом больных и здоровых сибсов (3:1; 1:1; 1:0);

3) большая частота заболевания среди родственников, чем среди неродственников.

Близнецовый метод состоит в сопоставлении внутрипарной конкордантности (идентичности) одно- и двуяйцевых близнецов, живущих в разных и в одинаковых усло­виях, по анализируемому патологическому признаку.

В среднем на каждые 100 одноплодных родов прихо­дятся одни близнецовые (многоплодные); при этом однояйцевые близнецы рождаются реже, чем двуяйцевые, примерно в 3-4 раза.

О наследственной природе патологии свидетельству­ет высокая конкордантность по анализируемому признаку однояйцевых близнецов, живущих в разных услови­ях, и, наоборот, низкая конкордантность двуяйцевых близнецов, особенно живущих в одинаковых условиях. Напротив, высокая конкордантность по какому-либо па­тологическому признаку одно- и двуяйцевых близнецов, живущих в одинаковой среде, явно говорит против на­следственного происхождения данной патологии и, на­оборот, подтверждает решающее значение в ее развитии экзогенных (внешних) факторов.

Популяционно-статистический метод заключается в составлении родословных среди большой группы насе­ления, в пределах области или целой страны, в исследо­вании генетических изолятов . Изолят - это группа людей, от 500 человек до нескольких тысяч, живущая изолированно от всего остального населения страны. Ге­нетический изолят характеризуется тем, что браки за­ключаются только в его пределах, с высокой частотой эндогамных браков. Это ведет в конце концов к генной изоляции от остального народа страны. В результате происходит передача аномальных рецессивных генов из гетерозиготных в гомозиготные пары, что сопровожда­ется увеличением числа наследственных болезней.

Цитологический метод - установление генетического пола при исследовании клеток на наличие телец Барра . Когда в клетке присутствует две Х хромосомы (как у нормальной женщины), одна из них (тельце Барра) инактивируется и конденсируется на ядерной мембране. Отсутствие тельца Барра свидетельствует о наличии только одной Х хромосомы (у нормального мужчины (XY) и при синдроме Шершевского-Тернера (ХО)). Тельца Барра наиболее легко определяются в мазках многослойного эпителия, которые получают путем соскабливания буккальной слизистой оболочки.

Биохимический и иммунологический методы заклю­чаются в исследовании биохимических признаков, заве­домо специфичных для определенных наследственных болезней. Так, например, для диагностики фенилпировиноградной олигофрении в моче определяют фенилпировиноградную кислоту; для диагностики серповидно-клеточной анемии (S-гемоглобиноза) исследуют наличие в крови S-гемоглобина; для выявления иммунодефицитных состояний определяют содержание различных анти­тел и популяций лимфоцитов.

Дерматоглифический метод – выявление наследственных болезней по рисунку ладоней.

Рис. 4.3. Схематическое изображение ладони здорового ребенка (слева) и ребенка того же возраста с болезнью Дауна.

Цитогенетический метод состоит в микроскопичес­ком исследовании структуры и числа хромосом клеток (лейкоцитов, эпителия и др.). Изменение структуры и числа хромосом (хромосомные аберрации) является признаком наследственной природы болезни.

Рис. 4.4. Схематическое изображение хромосом человека (идиограмма гаплоидного набора.

Рис. 4.5. Метафазная пластинка при простой окраске.

Молекулярно-генетический . Реализуется с помощью блот-гибритизации по Саузерну (введение флюоресцентной метки – ДНК-зонд) и амплификации (увеличении числа копий) участков ДНК при помощи ПЦР (полимеразной цепной реакции).

ПЦР осуществляется последовательными циклами. В каждом цикле происходят следующие события:

  • двухспиральная ДНК при нагревании раз­деляется на составляющие одноцепочечные цепи и в таком состоянии может служить матрицей для репликации;
  • далее одноцепочечные нити ДНК инкубиру­ют в присутствии ДНК-полимеразы и раствора, содержащего смесь всех четырех нуклеотидов, а также специфические последовательности ДНК (праймеры), что приводит к синтезу копий двух молекул ДНК.

Затем процедуры повторяются сначала, и про­исходит копирование как старых, так и новых одноцепочечных цепей с образованием третьей и чет­вертой копий молекулы ДНК, затем все четыре снова копируются, и образуется уже восемь моле­кул ДНК, и т.д. число растет в геометрической прогрессии. В результате 20-30 циклов нарабатывается эффектив­ное количество ДНК. Отдельный цикл занимает около 5 мин., а для бесклеточного молекулярного клонирования фрагмента ДНК требуется всего несколько часов.

Метод ПЦР отличается очень высокой чувстви­тельностью: он позволяет обнаружить в пробе все­го одну присутствующую в ней молекулу ДНК. Тот же способ пригоден и для анализа следовых последовательностей РНК, для этого РНК перево­дят в последовательности комплементарной ДНК (кДНК), используя обратную транскриптазу. Ме­тод получил широкое использование в пренатальной диагностике наследственных болезней, выяв­лении вирусных инфекций, а также в судебной медицине.

10. – Мутагены. Классификация мутаций. Генные и хромосомные болезни.

Мутация – скачкообразное изменение признака вследствие количественных или качественных изменений генотипа.

Мутагены – факторы, вызывающие мутации.

Мутации бывают:

· соматические (потенциальное развитие опухолей) не передаются по наследству и, следовательно, не относятся к наследственным заболеваниям, хотя и поражают генетический аппарат клетки;

· гаметические (передаются по наследству).

§ Летальные – сопровождаются гибелью организма внутриутробно, или сразу после рождения.

§ Сублетальные – гибель до полового созревания.

§ Гипогенитальные – сочетаются с бесплодием.

По характеру изменения генотипа в соответствии с тремя уровнями организации генетического материала (гены – хромосомы – геном) различают мутации – генные, хромосомные, геномные и цитоплазматические.

I. Генные мутации связаны с изменением структуры отдельных генов (участков ДНК, кодирующих синтез одного белка, одного признака).

· Моногенная – мутация в одном гене с изменением одного признака (например, альбинизм, короткопалость); моногенные мутации обуславливают истинные наследственные заболевания.

· Полигенные – одновременные мутации в различных генах различных хромосом, обуславливающие однонаправленные изменения в организме, которые определяют предрасположенность к некоторым заболеваниям (например, атеросклероз, гипертоническая болезнь, сахарный диабет II типа); наследуется не сама болезнь, а предрасположенность к ней, реализующаяся при воздействии определенных внешних факторов. Заболевание развивается как под влиянием мутаций, так и под влиянием факторов среды, т. е. является мультифакториальным . Даже для одного и того же заболевания относительное значение наследственности и среды у разных лиц может быть неодинаковым.

· Точковая – повреждение одного нуклеотида в гене, т. е. замена одной аминокислоты в белке на другую (например, ферментопатии, серповидно-клеточная анемия, глухонемота).

II. Хромосомные мутации - структурные перестройки в отдельных хромосомах: делеции, дупликации, инверсии, транслокации.

· Делеция - это потеря части хромосомы в результате ее разрыва. Большинство делеций летальны в результате потери огромной части генетического материала. Делеция короткого плеча 4 хромосомы приводит к развитию синдрома Вольфа; делеция короткого плеча 5 хромосомы - синдрома кошачьего крика (сri du chat) - мяуканье и звуки подобные кошачьему крику типичны для этой патологии, часто наблюдается отставание в умственном развитии и пороки сердца.

· Транслокация - это перенос отдельного сегмента одной хромосомы в другую хромосому. При сбаласнсированной транслокации весь генетический материал сохраняется и остается фунционально способным, поэтому фенотипических проявлений нет. У таких людей могут формироваться аномальные гаметы.

· Дупликация – удвоение участка хромосомы.

· Инверсии – поворот участка хромосомы на 180 0 .

Рис. 4.6. Схематическое изображение различных видов хромосомных мутаций.

III. Геномные мутации - изменения числа хромосом в наборе, не сопровождаемые изменением их структуры. Число хромосом при этом меняется некратно – формируется анеуплоидный набор хромосом. Кратное изменение числа хромосом (полиплоидия ) несовместимо с жизнью.

1. Моносомии – уменьшение количества хромосом.

· Синдром Шерешевского-Тернера (яичниковая дисгенезия) - моносомия половых хромосом, встречается довольно часто. Отсутствует одна Х-хромосома (45, ХО). В некоторых случаях вторая Х-хромосома присутствует, но в ней выявляются тяжелые нарушения (изохромосома, частичная делеция и др.). Потеря второй Х-хромосомы обычно приводит к гибели плода.

У выживших детей наблюдается лимфэдема шеи, которая присутствует и у взрослых, приводя к формированию толстой шеи. Часто наблюдаются врожденные аномалии сердца, низкий рост, ожирение и нарушения строения скелета. Интеллект не нарушен. В присутствии одной Х-хромосомы (и отсутствии Y-хромосомы) примитивные половые железы развиваются как яичники. Отсутствие второй Х-хромосомы приводит к нарушению развития яичников в пубертатном периоде. Яичники остаются маленькими и в них не обнаруживаются примордиальные фолликулы. Также нарушается синтез эстрогенов, что проявляется нарушением эндометриального цикла (аменоррея) и слабым развитием женских вторичных половых признаков. Диагноз может быть поставлен при отсутствии телец Барра в соскобах буккального эпителия у лиц, имеющих женский фенотип или при анализе кариотипа.

· При аутосомной моносомии теряется огромное количество генетического материала, поэтому она обычно летальна.

2. Триосомии – увеличение количества хромосом на одну.

· Синдром Кляйнфельтера (тестикулярная дисгенезия) - трисомия половых хромосом - встречается довольно часто. Проявляется наличием лишней Х-хромосомы (47, ХХY), реже больные с синдромом Кляйнфельтера могут иметь две и более лишних Х-хромосом (48, ХХХY или 49, ХХХХY). Формируется мужской фенотип.

До пубертатного периода никаких клинических проявлений не наблюдается. Лишняя Х-хромосома нарушает нормальное развитие яичек в пубертатном периоде неизвестным способом. Яички остаются маленькими и не продуцируют сперматозоиды, больные обычно бесплодны. Уровень тестостерона в крови низкий, что приводит к нарушению развития вторичных половых признаков. У больных имеется склонность к высокому росту (тестостерон ускоряет окостенение эпифизов) и евнухоидный внешний вид с высоким голосом, маленьким пенисом и ростом волос по женскому типу. Также иногда наблюдается гинекомастия. Иногда наблюдается снижение интеллекта. Диагноз синдрома Кляйнфельтера может быть установлен при нахождении телец Барра в соскобах буккального эпителия у лиц, имеющих мужской фенотип или при анализе кариотипа.

· Синдром ХХХ (“суперженщины”) - присутствие третьей Х-хромосомы у женщин. Большинство пациентов являются нормальными. У некоторых наблюдаются нарушения умственного развития, нарушения менструального цикла и снижение фертильности (плодовитости).

· Синдром ХYY - присутствие лишней Y-хромосомы у мужчин. Большинство пациентов нормальные.

У некоторых может наблюдаться агрессивность поведения и легкое отставание в умственном развитии.

· Синдром Дауна является наиболее частым аутосомным нарушением. Он возникает в результате наличия третьей 21 хромосомы, что приводит к развитию характерных клинических проявлений.

Дети имеют характерный косой разрез глаз с уплощенным профилем, кососмотрящие глаза, резко выраженные вертикальные кожные складки, прикрывающие медиальный угол глазной щели, так называемое сходство с лицами азиатов, раньше называемое “монголоидным”. Постоянным признаком является отставание в умственном развитии. 30% пациентов имеют врожденные пороки сердца. Также у этих больных повышена заболеваемость различными инфекциями, язвами двенадцатиперстной кишки и острой лейкемией. Мужчины с синдромом Дауна обычно бесплодны, а женщины могут рожать детей. Потомки матерей с синдромом Дауна могут быть нормальными, потому что лишняя 21 хромосома содержится не во всех гаметах.

Рис. 4.7. Дети с синдромом Дауна.

· Синдром Эдвардса - трисомия 18 хромосомы (47ХХ/ХY, +18) встречается редко.

Клинически он проявляется отставанием в физическом и умственном развитии, сопровождаемым характерными физическими недостатками, такими как “стопа рокера” и сжатые в кулаки руки с перекрещивающимися пальцами. В результате тяжелых поражений дети редко выживают более года.

· Синдром Патау - трисомия 13 хромосомы (47ХХ/ХY, +13) также встречается редко. Большинство детей умирает сразу после рождения.

Трисомия 13 хромосомы характеризуется нарушением развития подкорковых структур мозга (отсутствие обонятельных луковиц, слияние лобных долей и единственный желудочек головного мозга) и срединных структур лица (расщепление губы, расщепление твердого неба, дефекты носа, единственный глаз [циклоп]).

IV. Цитоплазматические (митохондриальные) мутации возникают в результате мутаций в плазмогенах, находящихся в ДНК-содержащих клеточных органеллах - митохондриях. Некоторые патологии, связанные приводящие к мужскому бесплодию, связаны с этим видом мутаций. Некоторые виды близнецовости могут быть обусловлены этими же причинами, при этом наследуются, как правило, только по женской линии.

В стандартной родословной используются простые условные обозначения и правила:

  1. Мужчины всегда изображаются в виде квадратов , женщины - в виде окружностей .
  2. Пациент, обратившийся к генетику для составления родословной - пробанд – обозначается стрелкой.
  3. Графически изображаемые связи между членами родословной бывают только трех видов: "мужья-жены", "дети-родители" и "братья-сестры".
  4. Супруги, братья и сестры (в т. ч. двоюродные и троюродные) всегда изображаются на одном горизонтальном уровне (т. е. в одном поколении). Разница в возрасте не играет никакой роли.
  5. Дети пробанда изображаются на горизонтальном уровне ниже пробанда, а его родители - на горизонтальном уровне выше пробанда. То же самое относится к детям и родителям всех братьев и сестер пробанда.
  6. Все поколения нумеруются сверху вниз римскими цифрами, а все индивидуумы в каждом поколении - слева направо арабскими цифрами. Это позволяет обозначить каждого человека личным идентификационным номером (например - III:15, что означает 15-й индивидуум в третьем поколении).

11. – Нарушение регионального кровообрашения. Механизмы артериальной и венозной гиперемии, ишемии и стаза.

Региональное кровообращение (периферическое, органное) – система, обеспечивающая циркуляцию крови в органах и тканях большого круга кровообращения.




© 2024
womanizers.ru - Журнал современной женщины