24.09.2019

Степень двойки с натуральным показателем. Степень числа с натуральным показателем



В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

можно найти с помощью умножения. Например: 5+5+5+5+5+5=5х6. О таком выражении говорят, что сумму равных слагаемых свернули в произведение. И наоборот, если читать это равенство справа налево, получаем, что мы развернули сумму равных слагаемых. Аналогично можно сворачивать произведение нескольких равных множителей 5х5х5х5х5х5=5 6 .

То есть вместо умножения шести одинаковых множителей 5х5х5х5х5х5 пишут 5 6 и говорят «пять в шестой степени».

Выражение 5 6 - это степенью числа, где:

5 - основание степени;

6 - показатель степени.

Действия, с помощью которых произведение равных множителей сворачивают в степень, называют возведением в степень.

В общем виде степень с основанием "a" и показателем "n" записывается так

Возвести число a в степень n - значит найти произведение n множителей, каждый из которых равен а

Если основание степени «а» равно 1, то значение степени при любом натуральном n будет равно 1. Например, 1 5 =1, 1 256 =1

Если возвести число «а» возвести в первую степень , то получим само число a: a 1 = a

Если возвести любое число в нулевой степень , то в результате вычислений получим один. a 0 = 1

Особыми считают вторую и третью степень числа. Для них придумали названия: вторую степень называют квадратом числа , третью - кубом этого числа.

В степень можно возводить любое число - положительное, отрицательное или нуль. При этом не пользуются следующими правилами:

При нахождении степени положительного числа получается положительное число .

При вычислениях нуля в натуральной степени получаем ноль.

х m · х n = х m + n

например: 7 1.7 · 7 - 0.9 = 7 1.7+(- 0.9) = 7 1.7 - 0.9 = 7 0.8

Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем :

х m / х n = х m — n , где, m > n,

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.

(у m ) n = у m · n

например: (2 3) 2 = 2 3·2 = 2 6

(х · у) n = х n · у m ,

например:(2·3) 3 = 2 n · 3 m ,

При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби

(х / у) n = х n / у n

например: (2 / 5) 3 = (2 / 5) · (2 / 5) · (2 / 5) = 2 3 / 5 3 .

Последовательность выполнения расчетов при работе с выражениями содержащими степень.

При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.

Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.

Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.

Видеоурок 2: Степень с натуральным показателем и ее свойства

Лекция:


Степень с натуральным показателем


Под степенью некоторого числа "а" с некоторым показателем "n" понимают произведение числа "а" само на себя "n" раз.

Когда говорят о степени с натуральным показателем, это означает, что число "n" должно быть целым и не отрицательным.

а - основание степени, которое показывает, какое число следует умножать само на себя,

n - показатель степени - он говорит, сколько раз основание нужно умножить само на себя.


Например:

8 4 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число "8", показателем степени считается число "4", под значением степени понимается число "4096".

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание - ЭТО НЕ ВЕРНО!


Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом.


В качестве основания можно брать любые числа с числовой прямой.


Например,

(-0,1) 3 = (-0,1) * (-0,1) * (-0,1) = (-0,001).

Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень.

Сложение \ вычитание - математические действия первой ступени, умножение \ деление - действие второй ступени, возведение степени - это математическое действие третьей ступени, то есть одной из высших.

Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.


Например:

15 + 6 *2 2 = 39

В данном примере необходимо сначала возвести 2 в степень, то есть

затем полученный результат умножить на 6, то есть

Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие "стандартный вид числа" . Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.


Например , для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 10 6 м,

а масса Земли, например, записывается следующим образом:

Свойства степени

Для удобства решений примеров со степенями необходимо знать основные их свойства:


1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

a n * a m = a n+m

Например:

5 2 * 5 4 = 5 6 .

2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

a n / a m = a n-m

Например,

5 4 * 5 2 = 5 2 .

3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(a n) m = a n*m

Например,

4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b) m = a m * b m

Например,

(5 * 8) 2 = 5 2 * 8 2 .


5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b) m = a m / b m

6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а 1 = а

Например,

7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а 0 = 1

Например ,







© 2024
womanizers.ru - Журнал современной женщины