20.09.2019

Технологии будущего в медицине. Как технологии изменят медицину. Как будет проводиться диагностика заболеваний в будущем


На завершившемся в Сочи XIX Всемирном фестивале молодежи и студентов особое внимание уделили здравоохранению

Российские делегаты и гости фестиваля, прибывшие из 150 стран, смогли принять участие в дискуссионно-образовательной программе «Экология и здоровье», организованной Минздравом России совместно с Всероссийским общественным движением «Волонтеры-медики» при участии Всемирной организации здравоохранения. Это событие еще раз показало, что молодежная тема, тема подготовки нового поколения врачей, грамотных, целеустремленных, способных работать в медицине завтрашнего дня, - прочно заняла свое место в фокусе внимания руководителей отечественного здравоохранения.

Сегодня между различными профессиональными сферами развернулась настоящая борьба за молодых людей, выбирающих свой жизненный путь. Здравоохранение, сфера ИТ, различные инженерные и гуманитарные направления пытаются привлечь к себе внимание старших школьников и их родителей. Все понимают: энергия, талант и творчество нового поколения - залог прогресса уже в самом ближайшем будущем.

Аргументы отечественной медицины в этом споре очень весомы и не остаются без должной оценки в обществе. Прежде всего - это обновленная и проходящая сегодня через серьезные трансформации система профессионального медицинского образования. В последние годы в ней произошло несколько революционных событий. Например, были внедрены новые - третьего поколения - стандарты обучения будущих врачей. Они принципиально ориентированы на практику и предусматривают возможность регулярной модернизации программы для включения в нее новых методик и медицинских технологий диагностики и лечения. В прошлом году обучение по новым стандартам первыми завершили стоматологи и фармацевты, в этом году - студенты всех медицинских специальностей.

Затем всех выпускников медвузов, прошедших обучение по новым программам, ждала впервые появившаяся в нашей стране система допуска врачей и фармацевтов к профессиональной деятельности - аккредитация. Первичная аккредитация выпускников проводится уже второй год. Она включает в себя теоретический экзамен и практические испытания. Причем оценивают квалификацию выпускников не только их собственные преподаватели, но и практикующие врачи и руководители медицинских учреждений - их будущие работодатели. Таким образом, медицинское образование и реальная врачебная практика получают постоянно действующий механизм обратной связи. В Минздраве называют это одним из самых главных шагов к саморегуляции профессионального сообщества. Выпускники, прошедшие первичную аккредитацию, получают допуск к работе на должностях «стартового уровня» даже без интернатуры.

Еще одно важное нововведение - новый порядок поступления в ординатуру, разработанный совместно с вузовским сообществом и утвержденный приказом Минздрава. Если раньше вопрос о том, брать студента в ординатуру или нет, решал ректорат конкретного вуза, то теперь процесс будет осуществляться на основании единых для всей страны условий, что сделает процедуру более прозрачной и беспристрастной. Если говорить конкретно, то в качестве вступительного экзамена студенты теперь проходят теоретическую часть аккредитационного испытания, что исключает предвзятость (база вопросов для аккредитации едина и размещена в Интернете, а принимает экзамен та же многосторонняя независимая комиссия). Кроме того, при поступлении в ординатуру принимаются во внимание баллы за достижения во время учебы, которые также рассчитываются по единой системе (например, за получение стипендий и грантов, красный диплом и пр.). Унификация дает возможность выпускнику поступить в ординатуру любого медицинского вуза России по единым правилам.

С завершением обучения в вузе образование врачей теперь не заканчивается - в стране начала работу система непрерывного медицинского образования, использующая современные информационные технологии, возможности удаленного обучения и стажировок в ведущих клиниках и институтах. Постепенно в эту систему будет включен весь врачебный корпус страны, а полученные в ней знания необходимо будет подтверждать в ходе регулярных - раз в пять лет - реаккредитаций.

Что же касается студентов, то для них образовательный процесс, ограниченный стенами аудиторий, - хоть и важнейшая, но еще не достаточная составляющая полноценного профессионального образования. Очень важна атмосфера, в которую погружаются будущие врачи на все время своего обучения. Для создания творческой, вдохновляющей на достижения атмосферы необходимо, чтобы молодые люди могли общаться между собой на профессиональные темы, обмениваться идеями, расширять кругозор, чтобы они имели доступ к профессионалам отрасли... Поэтому в стране сегодня существует множество мероприятий, которые становятся площадками для такого общения между студентами, молодыми специалистами, корифеями врачебного дела и научными светилами. Например, начиная с 2012 года проходит ежегодный Форум студентов медицинских и фармацевтических вузов. Два года назад на нем был принят этический кодекс студентов медицинских и фармацевтических учебных заведений, который был распространен во всех высших образовательных медучреждениях страны.

В прошлом году в рамках Всероссийского молодежного образовательного форума «Территория смыслов» впервые проводилась смена для молодых ученых и преподавателей в сфере здравоохранения. Перед участниками выступили министр Вероника Скворцова и другие руководители отрасли. Участники форума разработали свою программу и план развития здравоохранения России, продумали механизмы его модернизации на муниципальном, региональном и федеральном уровнях. Победителем конкурса проектов стала разработка интернет-портала и мобильного приложения, содержащих справочную информацию, полезную молодым врачам в начале их профессиональной деятельности.

На Всемирном фестивале молодежи и студентов в рамках дискуссионно-образовательной программы «Экология и здоровье» обсуждались глобальные вопросы здравоохранения и медицинской этики, лекции читали известные представители научного сообщества и организаторы медицины. Делегатам рассказали о возможностях сферы охраны здоровья - от арктической до космической медицины, от оказания медицинской помощи в местах военных действий до амбулаторных отделений поликлиник. На симуляционных тренингах участники фестиваля «примеряли роль» директоров клиник или членов делегаций ВОЗ и, например, пытались остановить надвигающуюся эпидемию. Да что там - у них была возможность даже прочесть чужие мысли с помощью компьютера! Конкурс молодежных проектов был посвящен наиболее актуальным вопросам современного здравоохранения: от работы с «большими данными» до подготовки профессионалов для медицины завтрашнего дня. «Этот фестиваль не только помогает в налаживании международных связей, обмене знаниями и технологиями, - считает Вероника Скворцова, - но и способствует укреплению престижа профессии медицинского работника, демонстрирует молодежи, что медицина - не только ответственное занятие, но и очень увлекательное».

Программа «Экология и здоровье» разрабатывалась с участием Всероссийского общественного движения «Волонтеры-медики», которое было создано при поддержке Минздрава и сейчас стремительно растет. Сегодня, по данным Совета студентов медицинских и фармацевтических вузов при Минздраве России, в медицинских вузах страны активно действуют более 12,5 тысячи волонтеров, которые помогают не менее чем 1,2 млн пациентов. Только за последний год количество студентов, принимающих участие в волонтерских проектах, выросло на треть. В 2016 году было проведено 185 волонтерских мероприятий в детских домах, 550 - в школах, 175 - в образовательных организациях высшего и среднего образования, 555 - в домах престарелых, реабилитационных центрах и больницах, более 100 - в торговых центрах и на городских площадках. Волонтеры выполняют не только чисто медицинскую функцию, - но еще и социальную, культурную, спортивную, педагогическую, санитарно-просветительскую, даже экологическую. Например, волонтеры - очень активные доноры. В этом году около 7 тысяч студентов участвовали в сотне акций, посвященных Дню донора, и сдали в общей сложности 800 литров крови. Кроме того, волонтеры активно помогают врачам больниц и работникам «скорой», дежурят на массовых мероприятиях, чтобы в случае чего оказать зрителям первую помощь, информируют население о болезнях и факторах риска, привлекают внимание к социально значимым проблемам здравоохранения. Еще волонтеры из различных вузов встречаются и общаются как между собой, так и с представителями НКО, госучреждений, бизнес-структур. Ежегодно проходит Всероссийский съезд движения «Волонтеры-медики». Лучшие 250 волонтеров-медиков со всей страны прошли сертифицированный курс обучения в Государственном научно-исследовательском центре профилактической медицины Минздрава России. В этом году на базе РНИМУ им. Н.И. Пирогова был создан Федеральный центр поддержки добровольчества в сфере охраны здоровья. Его основная цель - помощь волонтерским движениям и методическая поддержка, продвижение добровольческих инициатив, а также объединение их ресурсов для крупных проектов в сфере охраны здоровья.

Стремительно модернизируемое и настраиваемое на использование самых передовых технологий медицинское образование, заинтересованное отношение молодых людей к освоению своей профессии, их активное участие в волонтерских проектах и медицинских форумах, возросший интерес к профессии врача в обществе - все это вселяет обоснованную надежду не только на будущее медицины в нашей стране, но и на укрепление здоровья всего общества. И не только в сугубо медицинском смысле.

Процесс развития медицины с каждым годом ускоряется, и 2017 год полон технологий, открывающих новые перспективы лечения людей. «Футурист» составил подборку наиболее актуальных и значимых из них.

Робототехника и автоматизация постепенно преображают то, как врачи выполняют и хирургические операции, и терапевтическое лечение. Новые системы используют достижения программного обеспечения, миниатюризации и робототехники, позволяя проводить минимально инвазивные операции на самых деликатных частях анатомии человека. С каждым годом роботы выполняют все более сложные задачи с невозможной для людей точностью.

Новая хирургическая система da Vinci X

Успешно внедренные модели роботов-хирургов da Vinci продолжают совершенствовать. Новый представитель линейки предоставит хирургам и больницам доступ к передовым технологиям роботизированной хирургии по более низкой цене. Intuitive Surgical, компания-производитель робота, мировой лидер в области роботизированной минимально-инвазивной хирургии, объявила, что ее новая хирургическая система da Vinci X уже получила сертификат соответствия стандартам (CE Mark) в Европе.

«За последний 21 год Intuitive Surgical стала первопроходцем в области роботизированной хирургии, и мы продолжаем лидировать в разработке и выводе на рынок инновационных технологий, ориентированных на результат», - сказал доктор Гари Гутарт ( Gary Guthart), генеральный директор Intuitive Surgical. - «Наши хирурги, больницы и клиенты по всему миру рассказали, что операции с использованием роботизированных технологий имеют огромное значение для их пациентов, подчеркивая важность предоставления выбора с клинической, технологической и стоимостной точек зрения».

Роботизированные системы da Vinci разработаны, чтобы помочь хирургам осуществлять минимально инвазивную хирургию. Однако они не запрограммированы на самостоятельное проведение хирургических операций. Все процедуры выполняются хирургом, который контролирует систему, Da Vinci же обеспечивает 3D-изображение высокой четкости, роботизированную и компьютерную помощь.

Робот-хирург, способный провести операцию на мозг в 50 раз быстрее человека

Хирургия головного мозга требует крайней точности, один промах может повлечь гибель пациента. Даже у представителей одной из самых квалифицированных профессий в мире человеческий фактор может стать причиной смертельной ошибки. Исследователи Университета штата Юта надеются сократить влияние человеческого фактора: они полагают, что их операционный хирург способен выполнять сложные операции на мозге, сократив время, необходимое для разрезания черепа, с двух часов до двух с половиной минут. Таким образом, робот сократит время, необходимое для сложной процедуры, в 50 раз.

Аппарат двигается вокруг уязвимых участков черепа по данным, получаемым при сканировании компьютерной томографией и передаваемым в программное обеспечение робота. Компьютерная томография показывает программисту расположение нервов или вен, которых должен избегать робот.

Помимо очевидных преимуществ механизма машины, она также в долгосрочной перспективе может сэкономить деньги за счет более короткого времени операции. Дополнительным плюсом является уменьшение времени пребывания пациента под наркозом, что также делает процедуру более безопасной.

Терапевтические наноматериалы

Наноматериалы - это устройства, которые настолько малы, что их можно измерить только в молекулярном масштабе. Эти микроскопические машины бывают разных форм и могут быть изготовлены из различных материалов, от золота до синтетических полимеров, в зависимости от их предполагаемых функций. Фактически, более 50 лекарств на основе наночастиц уже одобрены Управлением по контролю за продуктами и лекарствами, такими как Abraxane от рака молочной железы и Doxil от рака яичников. В настоящее время эти аппараты используются для выборочной доставки токсичной химиотерапии непосредственно в раковые опухоли, что способствует снижению доз, необходимых для их уничтожения, и риска серьезных побочных эффектов для пациента. В будущем нанотерапевтические средства могут быть разработаны для уничтожения самих раковых клеток.

Ради этой цели исследователи разработали новую платформу неинвазивного метода визуализации действия наночастиц на рак у мышей (в реальном времени), что поможет исследователям улучшить их до тестирования на людях.

«Это важный шаг вперед в этой области», - заявил главный исследователь Александр Стег (Alexander Stegh). - «В нанотехнологической области отсутствует тщательная оптимизация, которую мы наблюдаем при разработке обычных лекарств, и мы хотели бы изменить это. Система, которую мы здесь разработали, действительно позволяет нам поддерживать эти усилия».

Команда Стега использовала новую платформу для тестирования терапевтических наноматериалов, которые они разрабатывали, - сферических нуклеиновых кислот (SNAs). Они могут убить неизлечимый в настоящее время тип рака мозга, нацеливаясь на определенный ген. Система визуализации помогла установить, что наночастицы оказывают наибольший эффект между 24 и 48 часами после введения, и, следовательно, определить наилучшее время для введения дополнительной химиотерапии.

Искусственный интеллект

Еще одна малозаметная технологическая новинка в медицине включает использование искусственного интеллекта (ИИ). IBM Watson, суперкомпьютер компании IBM, уже продемонстрировала острый диагностический взгляд, а машинное обучение и программы глубокого обучения были использованы для прогнозирования всего, начиная с предположительного момента смерти пациента до следующей крупной вспышки заболевания.

Можно ожидать, что применение ИИ в медицине будет только расти. Особенно в этом году, когда необходимость отбирать и ассимилировать огромное количество медицинских данных - на индивидуальной или крупномасштабной, общественной основе - станет критической. Между тем страх, что потенциально несовершенные программы машинного обучения вытеснят человеческие ресурсы, также станет более реальным.

Редактирование генов

Революционная технология редактирования генов CRISPR/Cas-9 стала уникальным прорывом в области биологии. Она предлагает преобразование ее из медленной, неточной науки в нечто, близкое к физическим наукам. Будущее технологии редактирования генов открыто самым невероятным догадкам, несмотря на легальные запреты во многих странах и этические вопросы, связанные с этим.

Более широкое использование технологии на людях уже неизбежно. Возможно, именно 2017 год, станет годом, когда это случится в первый раз. Наиболее вероятны широкие испытания редактирования генов в борьбе с раковыми заболеваниями, или использование CRISPR для искоренения патогенных человеческих ДНК-вирусов, таких как ВИЧ или герпес.

Но ожидаются также пассивные меры, такие как простое изучение прогресса болезни Альцгеймера и других нейродегенеративных заболеваний или даже немедицинских сельскохозяйственных и промышленных применений этой технологии. Осознание механизмов действия последовательностей ДНК позволит ученым решать проблемы во всех областях биологии, от лечения болезней человека, до понимания того, почему исчезают некоторые виды живых существ.

Контроль инсулин-продуцирующих клеток на смартфоне

Для людей с диабетом инъекции инсулина являются неотъемлемой частью жизни. Однако новое устройство, созданное китайскими исследователями и проверенное на мышах, может избавить их от необходимости постоянных уколов. Команда имплантировала клетки, продуцирующие инсулин, мышам с диабетом, а затем использовала приложение на смартфоне для «включения» этих клеток. Через два часа устройство, которое его создатели называют HydrogeLED, стабилизировало уровень сахара в крови у мышей. Гидрогелевая капсула размером с монету. Она вживляется под кожу животным и состоит из инсулин-продуцирующих клеток и светодиодных ламп. Клетки вырабатывают инсулин только тогда, когда включены светодиоды.

Уровень сахара в крови можно контролировать с помощью отдельного Bluetooth-глюкометра, который подает сигнал в приложение, когда он поднимается слишком высоко. Затем приложение включает светодиоды, вызывая выработку инсулина. Пользователь может вручную контролировать яркость светодиодов и продолжительность их работы, таким образом регулируя, сколько инсулина попадает в кровь.

Однако пока использование приложения на людях невозможно в связи с некоторыми проблемами. Мыши, на которых проверялась работы устройства, заключены в катушку электромагнитного поля, которая очень похожа на интеллектуальный домашний хаб - таким образом приложение может взаимодействовать с сервером. Светодиоды питаются от самого электромагнитного поля, а значит, вся система не сможет работать вне катушки. Кроме того, на данный момент уровень сахара в крови все еще проверяется с помощью иглы.

В будущих версиях HydrogeLED эти проблемы будут решены. Автор исследования Хайфэн Е планирует запустить 24-часовой мониторинг уровня сахара в крови встроенным глюкометром, который при необходимости сможет автоматически запускать светодиоды.

Словно паук из пластика и стали робот нависает над верхней частью туловища пациента: длинные иглы проникают сквозь кожу и через них вводятся камеры, зажимы и скальпели. С их помощью на экране монитора хирург может удалить простату, прооперировать сердечные клапаны или отсечь фаллопиеву трубу. Даже раны он может зашить с помощью специального джойстика и ножных педалей.

Интерфейс «человек-машина»

Сцена из рекламного ролика производителя медицинских роботов кажется захватывающей и устрашающей. Но к этому пора бы уже привыкнуть. Подобные устройства уже около 15 лет применяются в операционных - только в Германии, по данным производителя, их установлено более 60 штук. Поэтому больший интерес представляет другой участник процесса: врач-хирург. На видео ему достаётся лишь второстепенная роль. И даже если пока он управляет набором инструментов на мониторе с помощью специальных манипуляторов и ножных педалей, послание в целом ясно: и операционные залы не обходятся без автоматизации. Рано или поздно машина заменит человека, которой ей сейчас управляет.

Разумеется, уже довольно давно существуют прототипы, которые могут выполнять определенные хирургические действия без вмешательства человека. Они используют фотоснимки и рентгенограммы, ультразвук и множество других сенсорных данных, чтобы на основании трёхмерной функциональной модели пациента разрабатывать и реализовывать стратегии операций. Первые исследовательские группы уже работают над разработкой нанороботов, которые перемещаются по кровеносной системе, охотятся на раковые клетки или поддерживают иммунную систему.

В последние годы медицина показала поразительное количество подобных сенсационных достижений. Тем не менее, самые большие успехи ещё впереди. Ведь процессы, начавшиеся 200 лет назад как ответ на вызовы промышленной революции, достигли своего расцвета в информационном веке. После того, как медицина объявила человека «ремонтируемым устройством», благодаря новейшим технологиям человек становится информацией и тем самым - частью алгоритмической революции. Если техника и медицина станут единым целым, это может расширить границы человеческого существования. Медицина, если угодно, обещает нам светлое будущее.

Индивидуальные человеческие «запчасти»


Браслет Ava собирает данные о менструальном цикле женщины, чтобы на их основании определить дни, благоприятные для зачатия

Совместное развитие высоких технологий и медицины можно свести к пяти основным процессам: алгоритмическая диагностика и профилактика заболеваний, автоматизация медицинских услуг, миниатюризация и мобилизация лабораторий, индивидуализация медицины и массовое индивидуальное производство человеческих органов.

Объединяет все эти разработки то, что они становятся возможными благодаря достижениям в области алгоритмических данных и обработки сигналов, стабильному, быстрому и повсеместному подключению к Интернету, а также огромным успехам в сфере компьютеризированных медицинских исследований. Однако эти, не только медицинские вехи, не имели бы никакого значения без нового представления о человеке в цифровой форме, а именно - концепции организма как комплексной, принципиально поддающейся управлению системе.

Следствия этой новейшей разработки, как описывает медицинский футурист и писатель Берталан Меско, являются весьма практичными: инструменты диагностики становятся всё точнее и всё чаще пациенты применяют их вместо врачей. Лечение всё чаще может быть направлено на ситуации отдельных пациентов, иногда даже на уровне ДНК. В конце концов, всё больше крупных операций и большинство мелких «планируются» компьютерами и выполняются роботами.

Компоненты для них, а также персонализированные лекарства изготавливаются в лабораториях. В целом изменяются традиционные отношения между пациентом, врачом, лабораторией и машиной: медицина становится индивидуальной, более точной и более сложной. Этот принцип осуществляется вплоть до общественного уровня, где огромные массивы данных о состоянии здоровья большого числа индивидов объединяются в своего рода модель медицинского прогноза для всего населения.

Тренд № 1: алгоритмы лучше лечат

Искусственный интеллект распознаёт рак кожи
Система профилактики рака кожи с применением смартфона действует благодаря распознаванию изображений. Она обнаруживает хаотическое разрастание тканей на фото родимого пятна.

Человеческое тело слишком сложно, чтобы понимать его как целое. Гораздо легче определить неполадки в системе, например, с помощью алгоритмов для распознавания образов. Нарушение сердечного ритма, хаотический рост клеток кожи или изменение голоса могут свидетельствовать о возникшей проблеме. Путём обучения машины в медицине можно отличить норму от отклонения. Это обещает успех, прежде всего, в мобильной профилактике болезней благодаря самим пациентам.

Так, в настоящее время разрабатывается несколько приложений, которые с помощью алгоритмов распознавания изображений могут идентифицировать проблемные родимые пятна, и они уже выполняют это точнее, чем когда-либо мог делать человек. Для этого не требуется даже очень хорошая камера или дорогой смартфон.

Этот метод является универсальным, независимо от того, используются ли визуальные данные, тоны сердца, особенности речи или абстрактные наборы данных. Путём сбора данных алгоритм учится отличать желательные образцы от нежелательных и затем с поразительной точностью находит их в новых данных.

Благодаря тому, что этот подход настолько хорошо зарекомендовал себя, он в настоящее время также испытывается для раннего определения болезни Паркинсона и шизофрении на основании коротких записей речи. Тем не менее, он также может применяться для анализа существующих массивов данных с целью поиска ранее неизвестных закономерностей, независимо от того, идёт ли речь об нераспознанных симптомах, скрытых взаимодействиях или даже мошенничестве с рецептами.

Впрочем, у алгоритмов уже появляются противники: поскольку алгоритмы находят связи, не улавливаемые ни одним человеком, они становятся непонятными (см. блок Проблема «черного ящика»).

Тренд № 2: роботы-хирурги и наномедицина


Робот-«оригами», созданный в Массачусетском институте, разворачивается в желудке или кишечнике; управление и перемещение осуществляется с помощью внешнего магнитного поля

Компьютеры уже довольно давно оказывают помощь при планировании хирургических вмешательств, а запрограммированные роботы, такие, как хирургическая система da Vinci, ассистируют людям-хирургам, обеспечивая выверенное перемещение инструментов. Их потенциал увеличивается вместе с точностью конфигурации их моделей пациентов.

Благодаря новым методам распознавания изображений они теперь настолько точны и современны, что роботы могут проводить операции частично или полностью автоматически. Так, например, робот Smart Tissue Autonomous Robot (STAR) под наблюдением сшивает мягкие ткани с миллиметровой точностью. Свои выходные данные он получает от системы флуоресценции и передачи изображений в 3D, а также датчика давления.

В будущем медицинские наноботы будут выглядеть следующим образом: действующие подобно рою устройства размером с клетку, которые самостоятельно выполняют «профилактические работы» в организме, например, помогают при наращивании костей или отмечают клетки опухоли для иммунной системы. При этом наномедицина будет использовать механизмы тела: наноботы плывут в жидкостях организма к своей цели, как мини-«бродяги» прикрепляются к аутогенным клеткам или располагаются и формируют ткань вокруг органов, нуждающихся в помощи.

Тренд № 3: Из приёмной - в гостиную

Роботы-сиделки оказывают помощь при уходе за пожилыми и больными людьми; их человекоподобный внешний вид создаёт доверительную атмосферу

Основой для медицины будущего представляются новые объёмы данных, в которые также вносят свою долю и сами пациенты, благодаря новым инструментам диагностики и своей инициативе к самостоятельным измерениям. В этом случае смартфон может внезапно сообщить: лучше сходи к врачу, твоё сердце вытворяет странные вещи! Традиционные места медицинского приёма и в самом деле меняются: диагностика производится рядом с пациентом или незаметно по его профилю данных в вычислительном центре.

Кроме того, существует также целый комплекс биодатчиков и мини-лабораторий, которые могут выполнять сложные исследования без профессиональных знаний своих пользователей. Так, например, пациенты с маниакально-депрессивным психозом, к примеру, должны измерять содержание лития в крови с помощью хемосенсоров, а мужчины, желающие иметь детей, - качество спермы.

В виде проглоченной нанопроволоки подобные микро-лаборатории могли бы исследовать весь кишечник на биомаркеры раковых опухолей и, при их наличии, отправить уведомление на смартфон (и согласовать дату посещения проктолога). Благодаря объединению устройств в единую сеть медицинский персонал может управлять всё большим числом операций дистанционно, в том числе с помощью хирургических роботов. Подобные массивы данных смещают фокус с лечения на профилактику. Но они влекут за собой новые требования к защите данных и риски конфиденциальности.


Из 3D-принтера появляются на свет не только «запчасти» для людей, но и «обновления»: более прочные, более эластичные

Проблема «черного ящика»

На машинное обучение возлагаются большие медицинские надежды: с помощью этого метода в массивах данных с высокой степенью надёжности могут определяться известные образцы, например, нетипичное разрастание тканей, изменения речи или неблагоприятные особенности. Однако этот метод рискован! Распознавание образцов, в отличие от традиционных методов, едва ли является убедительным для людей.

Статистически верные, но совершенно бессмысленные взаимосвязи возникают вследствие искаженных данных подготовки алгоритма или большого разнообразия данных. Таким образом, дело доходит до фатальных ошибочных диагнозов, причины которых остаются необъяснимыми. Поэтому исследователи данных (например, Рич Каруана) предостерегают от слепой уверенности в алгоритмических «черных ящиках». Вместо этого необходимо выбирать традиционные методы, даже если они являются менее точными. И ещё: компании оберегают «чёрные ящики» от независимого контроля и тем самым монополизируют знания. Здоровье не должно становиться тайной.

Тренд № 4: биологические имплантаты из 3D-принтера

Пластиковые протезы из 3D-принтера - это только начало: не только печатные оригиналы становятся более сложными и бионическими (например, модель ноги козы, смоделированная командой исследователей). Материалы также становятся более интеллектуальными: новые протезы экономят энергию, передают сигналы обратной связи усилий в нервную систему и даже могут перемещаться с помощью мускульных импульсов.

3D-печать также увеличивает производство биоматериалов. Так, некоторые исследовательские группы представили методы изготовления полностью совместимой человеческой кожи: с помощью одного из них кожу «печатают» непосредственно на рану, которая ранее была измерена с помощью лазера. Другие послойно наносят в кюветы кожные структуры, которые в дальнейшем могут свободно использоваться. Преимущества аддитивной печати: с помощью подобных методов могут также создаваться сложные 3D-структуры из различных материалов, например, целые органы.

Тренд № 5: Индивидуальное лечение


По массе
Сети фастфуда используют высокие технологии для того, чтобы тайком сделать свою еду более полезной. Это могло бы помочь людям, мало заботящимся о здоровье, питаться лучше

Эти четыре разработки встречаются в супер-тенденции персонализированной медицины: вместо диагностики и терапии, направленных на помощь как можно большему числу людей, развиваются методы индивидуального лечения и производятся медикаменты для отдельных пациентов.

Например, при лечении рака лёгких это уже осуществляется с помощью т. н. «таблеточной терапии»: при этом с помощью генетического исследования определяется, существует ли определённая мутация клеток в опухоли, а затем на неё воздействуют специально подобранными медикаментами с меньшим числом побочных эффектов.

Персонализированная медицина пока находится в начале своего пути. Однако на горизонте уже ждёт генетика. В конечном итоге, благодаря новейшему методу редактирования генома CRISPR/Cas, который отличается низкими затратами и пригодностью для использования в массовом порядке, будет применяться индивидуальное вмешательство в генетический материал пациентов и возбудителей болезней.

Актуальная тема дискуссии: фармацевтическая промышленность находится в лихорадочном поиске новых биомаркеров, в том числе молекулярных следов данных или даже таких, из которых могут развиваться опасные болезни, протекающие без симптомов.

Будущее для всех

Соединённые
проводами
Космонавты на борту
МКС постоянно соби-
рают собственные
медицинские данные
и испытывают опера-
ции с использовани-
ем электронных ме-
тодов для оказания
первой помощи в
космосе

Современная медицина всегда была и историей технического успеха. В наши дни, когда всё больше стираются границы между биологией и технологиями, это могло бы означать новый порядок вещей для человека: считаются ли в этом случае болезнями пороки, ранее оцениваемые как природные? Если машины «заболевают», можете ли вы подхватить от них вирусы?

При этом не стоит забывать: величайшие открытия медицины никогда не привлекали всеобщее внимание. Искусство врачевания всегда расцветало именно в тот момент, когда могло принести наибольшую пользу человечеству, то есть тогда, когда оно становилось дешевле, проще, доступнее и универсальнее. И, возможно, это является одной из главных задач медицины будущего: обеспечить возможность исцеления всем, а не только избранным, с огромными затратами и невероятными методами.

Медицина будущего должна оцениваться по результату, а не по внешнему воздействию, поскольку её задачей является лечение болезней, а не празднование сногсшибательных успехов или упование технологическими новациями.

ФОТО: Universidad Carlos III de Madrid; Thomas Splettstoesser/wwwscistylecom/Wikipedia/CC BY-SA 4.0; dpa/Picture Alliance/AP Photos/Eric Risberg; Northwestern University; NASA; Fraunhofer IPA; Melanie Gonick/MIT

Очевидно, что общество движется вперёд семимильными шагами, что способствует развитию медицинских технологий. Если мы попытаемся заглянуть в ближайшее будущее, перед нами предстанет мир новых и продвинутых технологий, которые ещё вчера сложно было даже вообразить.

1. Конструктор ДНК

ДНК служит идеальным носителем, который способен содержать огромное количество информации. Структура ДНК постоянно развивается и изменяется, а её молекулы часто называют строительными блоками живых организмов.

Для исследователей Гарвардского университета эта фраза имеет гораздо больше смысла, чем для простого человека - учёные действительно используют ДНК в качестве строительных блоков для разработки различных структур и систем.

Используя этот метод, учёные закодировали в одной молекуле ДНК 284 страницы книги. Они смогли записать эту информацию благодаря переводу данных сначала в двоичный код, а затем переведя цифры от единицы до нуля в четверичную систему счисления ДНК - A, T, G и C. В результате оказалось, что эти данные могут быть легко считаны, хотя этот процесс пока занимает довольно много времени. Но это пока.

2. Приборы поддержания жизнедеятельности

Такие приборы, как кардиостимуляторы, регулирующие ритм сердца, использует около 700 000 человек в мире. Минусом является то, что они могут служить всего около семи лет, а после этого оборудование подлежит замене. Это не просто сложная, но и дорогостоящая хирургическая процедура. Учёные из университета штата Мичиган решили эту проблему раз и навсегда - они разработали совершенно новый кардиостимулятор, работающий за счёт сокращения сердечной мышцы.

После проведения экспериментов и тестов доктор Амин Карами заявил, что все они дали положительные результаты. По его словам, следующим этапом в испытании нового прибора должна стать имплантация аппарата в живое человеческое сердце. Если технология сработает и покажет положительный результат, она сможет произвести революцию не только в медицинской сфере, но и в промышленной. Этот механизм настолько чувствителен, что может производить электроэнергию при любой частоте пульса.

3. Лечение церебральных нарушений

Мозг - чувствительный орган, повреждение которого может иметь долгосрочные последствия. Для людей с черепно-мозговой травмой комплексная реабилитация, пожалуй - единственная надежда вернуться к нормальной жизни. Но теперь есть альтернативный метод.

Ваш язык связан с ЦНС посредством тысячи нервных окончаний, некоторые из которых ведут прямо к нейронам мозга. Портативные нейростимуляторы (PoNS) стимулируют определённые нервные области языка и посредством этого аппарата мозг получает сигналы для восстановления повреждённых зон. Пациенты, пользующиеся системой, показали значительное улучшение буквально через неделю.

Кроме черепно-мозговых травм система PoNS может быть использована для лечения таких заболеваний, как болезнь Паркинсона, алкоголизм, инсульт, рассеянный склероз и пр.

4. Напечатанные кости

При помощи 3D-принтера исследователи из университета штата Вашингтон создали искусственный материал, обладающий свойствами кости. Эта «модель» может быть пересажена в человеческое тело, пока срастается настоящая кость, а затем она расщепляется и выводится, не причиняя вреда организму.

Главной проблемой был выбор материала для создания кости. Спустя время учёные создали формулу, в которую вошёл цинк, кремний, фосфат и кальций. Смесь опробовали и пришли к выводу, что с добавлением стволовых клеток она будет работать гораздо эффективней.

Для исследования использовали принтер ProMetal 3D. Работает он почти так же, как обычный принтер. В него нужно просто засыпать смесь и распечатать нужную кость.

Основным преимуществом этой технологии является то, что теперь, при правильном сочетании составляющих биологического материала, можно получить любые ткани, даже настоящие органы, с помощью принтера.

5. Пыльца как способ вакцинации

Цветочная пыльца является одним из наиболее распространенных аллергенов в мире. Её структура настолько жёсткая и устойчивая к влаге, что попадая в организм, она без труда пробирается в пищеварительную систему человека. Когда-то же самое происходит при пероральной вакцинации, в организме усваивается далеко не всё количество введённого вещества, так как на него воздействуют соки пищеварительного тракта.

Учёные из Техасского университета решили изучить свойства цветочной пыльцы и разработать вакцину с её использованием. Глава исследования Харвиндер Гилл преодолел основной недостаток использования пыльцы - он удалил с её поверхности все аллергены. Эта технология может оставить далеко позади инъекционный метод вакцинации и стать поворотным событием в медицине.

6. Электронное нижнее бельё

Несмотря на то, что это звучит забавно, нижнее бельё может спасти тысячи жизней. У пациентов, лежащих в коме или без сознания на протяжении нескольких недель и месяцев, могут появиться пролежни - омертвелые ткани, возникающие в результате постоянного давления. Пролежни даже могут иметь смертельные последствия - примерно 60 000 человек ежегодно умирают от инфекций из-за них.

Канадский учёный Шон Дюкелоу смог разработать электронные трусы под названием «Smart-E-Pants». В белье находятся специальные устройства, которые каждые десять минут посылают электрический импульс, заставляя мышцы сокращаться. Эффект от приспособления такой же, как если бы пациент самостоятельно упражнялся. Посредством воздействия на мышцы, электронное нижнее бельё может навсегда решить эту проблему.

7. Клетки мозга из мочи

Китайские биологи из Института Биомедицины и Здоровья в Гуанчжоу, используя человеческую урину, смогли создать стволовые клетки. Основным преимуществом метода является то, что клетки, созданные из мочи, не провоцируют раковых заболеваний, в то время, как эмбриональные стволовые клетки, применяемые в медицине сегодня, к сожалению, имеют такой побочный эффект - после их пересадки нередко начинают развиваться опухоли. Трансплантация клеток на основе урины не приводила ни к каким нежелательным новообразованиям.

Исследователи считают, что этот метод более доступен и практичен для создания стволовых клеток. Нейроны, полученные из мочи, могут использоваться для лечения дегенеративных заболеваний нервной системы.

8. Гель, имитирующий живые клетки

Множество медицинских исследований посвящены попыткам воссоздания человеческих тканей на основе различных материалов. В будущем, при успешном развитии этой технологии, можно обеспечить здоровую жизнь всему человечеству: если, например, один из органов перестал функционировать, его можно вырастить в лабораторных условиях и заменить.

Сейчас учёные разрабатывают гель, имитирующий деятельность живых клеток. Материал формируется в пучки шириной 7,5 миллиардных частей метра, для сравнения, это примерно в четыре раза шире двойной спирали ДНК. Как известно, клетки имеют собственный тип скелета - цитоскелет, состоящий из белков. Синтетический гель заменяет повреждённые ткани в каркасе клетки, останавливая распространения инфекций и бактерий.

9. Магнитная левитация

Ткани искусственного лёгкого были выращены благодаря магнитной левитации. Несмотря на то, что это звучит фантастически, группа учёных под руководством Глуко Соуза в 2010-м году наглядно продемонстрировала, что это возможно. Исследователи поставили цель в лабораторных условиях создать бронхиолу. Для эксперимента использовались крохотные магниты, вводившиеся в клетки.

В результате были получены самые реалистичные синтетически-выращенные ткани лёгкого. Ткань, выращенная благодаря магнитной левитации, может стать прорывом в медицине. Сейчас работа над совершенствованием технологии продолжается.

10. Гель от кровотечений

Небольшая группа учёных потрясла мир науки инновационным открытием: Джо Ландолино и Исаак Миллер смогли создать гель, останавливающий кровотечения любой сложности. Гель работает, герметично закупоривая рану.

Гель от кровотечений создаёт легко усваиваемую синтетическую ткань, которая помогает клеткам срастись. В одном из экспериментов учёные использовали кусок свинины с подведённой трубкой с кровью. Они разрезали мясо, а когда из «раны» потекла жидкость, нанесли на разрез гель, и «кровотечение» прекратилось в течение нескольких секунд. В следующем тесте Ландолино применял гель на сонной артерии крысы. Эксперимент прошёл так же успешно.

Если эту разработку в скором будущем начнут использовать в хирургической медицине, она могла бы сохранить жизнь многим людям.




© 2024
womanizers.ru - Журнал современной женщины