13.04.2019

Каким образом различные вещества попадают в клетку. Механизм проникновения косметических средств в кожу


Размещение объявлений - бесплатно и регистрация не требуется. Но есть премодерация объявлений.

Механизм проникновения косметических средств в кожу

Более того, в состав косметики входит множество дополнительных ингредиентов: эмульгаторы, загустители, гелеобразующие агенты, стабилизаторы и консерванты. Каждый из них выполняет свою функцию, влияющую на общее действие продукта. При этом крайне важно определить свойства всех компонентов и активных элементов, чтобы исключить их несовместимость.

Как часто нам приходится слышать, что тот или другой косметический продукт богат активными компонентами, превосходно проникающими в кожу. Но мы даже и не задумываемся, что основное задание подобных ингредиентов не просто пройти через эпидермис , а воздействовать на его определённый слой. Это касается и поверхности кожи, так называемого рогового слоя, в который всё же не всем веществам необходимо проникать. Следовательно, чтобы определить эффективность препарата, нужно учитывать его полный состав, а не отдельные элементы.

Суть активных компонентов в том, что они должны попасть в конкретное место, пусть даже это и поверхность рогового слоя. Поэтому необходимо отдавать должное и средствам, доставляющим их туда, другими словами, носителям, к которым относятся и липосомы. К примеру, инкапсулированный ретинол, проникая в кожу, меньше раздражает её, чем его свободный аналог. Более того, в состав косметики входит множество дополнительных ингредиентов: эмульгаторы, загустители, гелеобразующие агенты, стабилизаторы и консерванты. Каждый из них выполняет свою функцию, влияющую на общее действие продукта. При этом крайне важно определить свойства всех компонентов и активных элементов, чтобы исключить их несовместимость.

Нет сомнений в том, что составляющие косметических продуктов проникают в кожу. Проблема заключается в том, как определить насколько сильно они могут или должны углубляться, чтобы оказать действие на определённый участок кожи, и (или) остаются ли они при этом косметическими, а не лекарственными препаратами. Не менее важный вопрос заключается и в том, как сохранить целостность активных ингредиентов до того, как они попадут в место своего назначения. Перед химиками-косметологами не раз стоял вопрос: какой именно процент таких веществ достигает своей цели?

Использование ингибиторов тирозина (меланина) против гиперпигментации - яркий пример того, насколько важна концепция проникновения веществ для определения эффективности продукта. В частности, активный компонент должен преодолеть липидный барьер рогового слоя кожи, клеточную структуру эпидермиса, проникнуть в меланоциты и лишь потом – в меланосомы . При этом вещество должно сохранить свои химические качества и целостность, дабы вызвать нужную реакцию, которая и приведёт к подавлению преобразования тирозина в меланин. И даже это не очень сложное задание. Возьмите, например, солнцезащитные средства, которым, напротив, нужно оставаться на поверхности кожи, чтобы выполнять свою функцию.

Из этого следует, что эффективность косметического продукта – это действие не только его активных компонентов, но и всех других веществ, входящих в его состав. При этом каждый из ингредиентов должен способствовать тому, чтобы активные вещества добрались до своего места назначения, не потеряв своей эффективности.

Чтобы определить степень эффективности продукта, следует ответить на вопросы:

Как проникают продукты?
- насколько проникновение важно для косметического препарата?
- важно ли проникание активных компонентов косметического средства для лечения конкретных типов кожи или её состояний?

Чтобы дать на них полноценный ответ, следует учитывать, почему, как и какие именно параметры влияют на проникновение косметических препаратов.

Что такое проникновение продукта?

Под проникновением продукта подразумевают движение субстанций или химических веществ через кожу. Роговой слой образует барьер, благодаря чему кожные покровы принято считать полунепроницаемой мембраной. Это говорит о том, что через неповреждённый эпидермис микроорганизмы не могут проникать в отличие от различных химических средств. Кожа избирательно предоставляет молекулярный проход. Несмотря на это, значительное количество химических веществ при местном нанесении в виде косметики или лосьонов поглощается кожей (в пределах 60%). Большинству агентов, проникающих в кожу, следует преодолеть межклеточную липидную матрицу, ведь липиды образует практически непрерывный барьер в роговом слое. Его особенности зависят от возраста, анатомии и даже времени года. При сухой коже или в ходе некоторых болезней роговой слой настолько истончается, что активные компоненты проникают гораздо легче и быстрее.

Для многих покупателей, эффективность продукта определяется возможностями проникновения его ингредиентов. В действительности она напрямую зависит от ряда факторов, в том числе количества и качества активных компонентов в составе косметики, веществ-носителей, доставляющих активные ингредиенты к их цели, объёма последних, необходимого для их оптимального функционирования и достижения желаемого результата. Активный компонент считается действенным в том случае, когда достигает нужного места в подходящей концентрации, при этом его влияние на другие участки минимально.

Для косметических средств не менее важно, чтобы их ингредиенты не проникали в дерму, а оттуда в кровь через систему капилляров. Попадание продукта через кожу в кровеносную систему переводит его из категории косметики в лекарства.

Существует два вида доставки ингредиентов – кожная и трансэпидермальная. В первом случае – вещество действует в роговом слое, живом эпидермисе или дерме. Во втором – вне дермы, зачастую влияя на кровеносную систему. Как правило, косметические продукты ограничиваются кожной доставкой, в то время, как трансэпидермальная – свойственна медикаментам. Таким образом, косметика должна проникать в кожу, а не через неё. Поэтому один из ключевых моментов в разработке подобных препаратов в том, чтобы предотвратить трансэпидермальное проникновение компонентов и их активное действие в определённом слое кожи.

На данный момент учёные работают над двумя главными заданиями. Первое заключается в том, чтобы активный компонент гарантировано достигал нужного места, не теряя при этом своих свойств. Второе предусматривает создание механизма, с помощью которого тот же компонент утратит своё влияние, если и когда выйдет из зоны своего действия.

Вместе с тем химики-косметологи часто сталкиваются с решением следующих вопросов:

– какой объём вещества остаётся на коже?
– сколько его поступает в заданное место?
– как много средства может пройти через кожу и достичь кровеносной системы?
– каково оптимальное соотношение особенностей косметического препарата?

Не стоит забывать и о том, что определение эффективности продукта по его возможностям к проникновению может быть ошибочным. К примеру, продукты, осветляющие кожу, должны проникать в эпидермис, достигая его базального слоя, чтобы ингибировать фермент тирозиназы, необходимый для выработки меланина. В то же время, такие препараты могут оставаться только на поверхности рогового слоя, а осветляющий эффект достигается посредством накопления пигмента. В обоих случаях косметические средства эффективны, но их возможности проникновения отличаются.

Возьмём, к примеру, поглотители ультрафиолетовых лучей. Они должны оставаться на поверхности кожи, чтобы защищать её. Как только эти вещества проникают в кожу, то становятся менее эффективными. В то же время антиоксидантам и другим химическим соединениям, обладающим омолаживающими свойствами, необходимо попасть в эпидермис или даже в дерму. Таким образом, результат их действия напрямую зависит от того, попали ли они в цель или нет.

По-разному работают и увлажняющие препараты. Те, что обладают окклюзионными качествами, остаются на поверхности кожи. Другим нужно проникать в её поверхностные слои, дабы сохранить влагу именно там. Из этого следует, что необходимость в проникновении косметики и её продуктивность определяется функциями её ингредиентов.

Принципы проникновения веществ

Существует два основных канала проникновения – внеклеточный и межклеточный. При местном применении косметики впитывающим органом выступает кожа, в которой выделяют множество целевых точек действия. Среди них: сальные поры, протоки потовых желез, роговой слой, живой эпидермис, дермоэпидермальное соединение.

Скорость проникновения активных компонентов зависит от размера молекул, носителя, общего состояния кожи. Барьерная функция эпидермиса во многом зависит от того, повреждён роговой слой или нет. Его удаление или изменение в результате пилинга , отшелушивания, нанесение альфагидроксикислот или препарата содержащего ретинол (витамин А), сухость кожи, дерматологические заболевания (экзема или псориаз) способствуют большему проникновению косметического продукта.

Кроме того, на прохождение рогового слоя влияет размер их молекул и склонность к метаболическому взаимодействию с биохимией кожи, клеточными рецепторами. Если скорость проникновение небольшая, то концентрация продукта будет увеличиваться. Этому способствует то, что роговой слой выступает в качестве резервуара. Таким образом, ткани, расположенные под ним, будут находиться под воздействием активного вещества в течение определённого времени. Благодаря этому, роговой слой представляет собой и естественный барьер кожи, и своеобразный резервуар, позволяющий продлить воздействие косметического препарата после нанесения его на кожу. Однако стоит учитывать, что разного рода заболевания могут изменить скорость местного поглощения. К примеру, сахарный диабет изменяет структуру кожи, влияет на её свойства. Более того, кожа на разных участках тела по-разному пропускает химические вещества. В частности, лицо и волосистая часть головы поглощает препараты в 5, а то и 10 раз лучше.

Способы проникновения активных компонентов

Роговой слой, с его сильно связанными между собой клетками, является серьёзным препятствием для проникновения продукта. Ещё одним барьером выступает базальная мембрана или дермоэпидермальное соединение. Неудивительно, что возникает вопрос, если одна из основных функций кожи защищать организм от внедрения посторонних веществ, то как же ингредиентам косметики удаётся преодолевать эту преграду. Ответ прост – кожа их поглощает с помощью сальных пор, проток потовых желез, межклеточных каналов. Кроме того, большая часть косметики, предназначенной для местного нанесения, не проникает в слой эпидермиса из-за одной или нескольких причин, приведённых ниже:

Размер молекул (слишком большой);
удержание или связывание вещества на поверхности кожи посредством других ингредиентов, входящих в состав продукта;
испарение (если вещество летучее);
адгезия (сцепление) с клетками рогового слоя, которая исчезает в процессе шелушения или отслоения.

Как же проникают составляющие косметики:

Через клетки эпидермиса или клеточный цемент;
посредством образования резервуара, когда вещество накапливается в роговом слое (или подкожной жировой клетчатке), а затем медленно высвобождается и впитывается в ткани;
в процессе естественного обмена веществ в коже;
переходят в дерму и остаются там;
переходят в дерму, всасываются в систему кровообращения капилляров (это напоминает действие лекарств, яркие примеры – внедрение никотина и эстрогена).

Безусловно, понять, почему и как проникают активные вещества важно, но следует также учитывать условия, которые могут влиять на эти процессы.

Факторы, влияющие на проникновение продукта

Главное условие, влияющее на скорость и качество поглощения вещества кожей, здоровое состояние рогового слоя. На втором месте – увлажнение кожных покровов. Не удивительно, что наиболее распространённым методом улучшения проникновения косметики является окклюзия (захват жидкости в роговом слое), позволяющая предотвратить испарение влаги с поверхности кожи, что только способствует её увлажнению. По этому принципу действуют маски для лица. Окружающая среда с относительной влажностью в 80% также приводит к значительному увлажнению эпидермиса. Следует отметить, что кожа хорошо поглощает воду, но не всегда может её удержать в нужном количестве. В результате чрезмерного увлажнения роговой слой становится более мягким (как, к примеру, при длительном приёме ванны), его барьерная функция ослабевает, что приводит к обезвоживанию и увеличивает потерю влаги.

Один из основных способов проникания химических веществ в роговой слой – через липидосодержащие межклеточные пространства. Поэтому липидный состав этого слоя кожи тоже влияет на проникновение активных компонентов. Учитывая способность к смешиванию масла с маслом, химические ингредиенты с носителями на масляной основе будут проникать лучше, чем их аналоги на водной. Тем не менее липофильным (на масляной основе) химическим веществам труднее даётся непрерывное проникание из-за того, что нижние слои эпидермиса отличаются большим содержанием воды, чем роговой слой, поэтому считаются липофобными. Как известно, масло и вода практически не смешиваются. Следовательно, носители, с которыми сливаются ингредиенты продукта для более удобного нанесения и регулирования концентрации, также играют важную роль в определении скорости проникновения.

В некоторых случаях химическая абсорбция ограничивается не барьерной функцией кожи, а свойствами самого носителя. Например, продукты, в которых активные вещества должны оставаться на поверхности эпидермиса (солнцезащитные и увлажняющие средства) более эффективны, если сделаны на масляной основе. С другой стороны, прохождение гидрофильными (на водной основе) активными веществами межклеточного пространства, содержащего липиды, требует либо ряда косметических манипуляций, направленных на увлажнение рогового слоя, либо привлечения липосом в качестве носителей.

Основные сложности, связанные с проникновением активных веществ – с какой скоростью продвигаются ингредиенты и глубина, которую они достигают. Было разработано несколько способов, позволяющих контролировать эти параметры. Они предполагают использование особенных носителей (липосом), естественных инкапсулирующих материалов, а также других систем. В любом случае какую бы технику ни выбрал производитель, главное его задание обеспечить проникновение активных веществ к необходимой зоне с максимальной возможным эффектом и без побочных реакций в виде раздражения или кожной абсорбции.

Тестирование продукта

Существуют разнообразные методики тестов, для определения действия активного компонента в коже и его расположения после местного применения. Подобные испытания проходят как в лабораторных, так и в естественных условиях, зачастую с использованием сложных компьютерных программ. Для лабораторных тестов кожу культивируют в стеклянных пробирках, где клетки размножаются около 20 или более раз. Нередко применяют образцы кожи пациентов, перенёсших пластическую или любую другую операцию, в ходе которой и был изъят кусочек эпидермиса. Такие испытания обладают большими преимуществами с точки зрения времени, стоимости и этических соображений - особенно если они могут быть токсичными.

В естественных условиях косметика тестируется на животных и людях. Результаты тестов отличаются более конкретными данными, максимально соответствующими действительности, что особенно ценно в том случае, когда под сомнением находится системный эффект продукта, другими словами, как препарат может повлиять на организм в целом. Применяемые методики зависят от того, что учёные пытаются доказать. К примеру, чтобы установить уровень увлажняющих и восстанавливающих свойств средства для сухой кожи, эксперты привлекают добровольцев, которые должны будут в течение нескольких дней использовать для кожи обычные мылосодержащие препараты без дополнительного увлажнения. После этого проводится тестирование сухости эпидермиса. Затем исследователи дают увлажняющие продукты одной группе испытуемых и плацебо другой. Через определённые промежутки времени проверяется уровень увлажнения кожи среди всех групп, чтобы определить скорость насыщения её влагой.

В ходе тестирования солнцезащитных препаратов основной задачей тестов становится сохранение активных веществ на поверхности рогового слоя с обеспечением их максимальной эффективности и предотвращением побочных токсичных действий. В этом случае применяют соскоб липкой лентой, анализ крови и мочи. В результате таких испытаний некоторые вещества обнаруживали в плазме крови и моче. Исключение составили солнцезащитные препараты на минеральной основе.

Когда тестируются продукты, которые должны оставаться на поверхности кожи или в роговом слое, учёные сперва применяют препарат, а затем берут образцы кожи с помощью липкой ленты или посредством скарификационной пробы. Скорость проникновения продукта и клеточных изменений на разных уровнях пенетрации затем изучается с помощью компьютерных моделей. По этому же принципу исследуют системный эффект продуктов. Компьютерные программы позволяют не только понять, как глубоко проникает средство, но и какие изменения клеточной структуры оно может вызвать. Особое внимание уделяют тому, какие последствия проникновения продукта в кожу, исследуются кровь, моча и другие биологические жидкости. Некоторые вещества могут присутствовать в организме в столь низкой концентрации, что обнаружить их можно только с очень чувствительным оборудованием.

Учитывая то, какими функциями обладает кожа, продукты (в частности, конкретные компоненты, входящие в их состав) при соответствующих условиях проникают посредством поглощения, абсорбции. Но не всегда проникновение продукта определяет его эффективность. В некоторых случаях оно может быть нежелательным или даже вредным.

Достижения косметической химии позволили лучше понять

  • Распределение микроорганизмов на царства в зависимости от структуры их клеточной организации
  • 2.2. Типы клеточной организации микроорганизмов
  • 2.3. Строение прокариотической (бактериальной) клетки
  • 2.4 Строение эукариотической клетки
  • Вопросы для самопроверки
  • Литература
  • 3.1. Основные и новые формы бактерий
  • 3.2. Спорообразование бактерий
  • 3.3. Движение бактерий
  • 3.4. Размножение бактерий
  • 3.5. Классификация прокариот
  • Тема 4 эукариоты (грибы и дрожжи)
  • 4.1. Микроскопические грибы, их особенности
  • 4.2. Размножение грибов
  • 1. Вегетативное размножение
  • 3. Половое размножение
  • 4.3. Классификация грибов. Характеристика наиболее важных представителей различных классов
  • 1. Класс фикомицетов
  • 2. Класс аскомицетов
  • 3. Класс базидиомицетов
  • 4. Класс дейтеромицетов
  • 4.4. Дрожжи. Их формы, размеры. Размножение дрожжей. Принципы классификации дрожжей
  • Вопросы для самопроверки
  • Литература
  • Тема 5 вирусы и фаги
  • 5.1. Отличительные признаки вирусов. Строение, размеры, формы, химический состав вирусов и фагов. Классификация вирусов
  • 5.2. Репродукция вирусов. Развитие вирулентного и умеренного фагов. Понятие о лизогенной культуре
  • 5.3. Распространение и роль вирусов и фагов в природе, в пищевой промышленности.
  • Тема 6 питание микроорганизмов
  • 6.1. Способы питания микроорганизмов
  • 6.2. Химический состав микробной клетки
  • 6.3. Механизмы поступления питательных веществ в клетку
  • 6.4. Пищевые потребности и типы питания микроорганизмов
  • Тема 7 конструктивный и энергетический обмен
  • 7.1. Понятие о конструктивном и энергетическом обмене
  • 7.2. Энергетический метаболизм, его сущность. Макроэргические соединения. Типы фосфорилирования.
  • 7.3. Энергетический метаболизм хемоорганогетеротрофов, использу­ющих процессы брожения.
  • 7.4. Энергетический метаболизм хемоорганогетеротрофов, использующих процесс дыхания.
  • 7.5. Энергетический метаболизм хемолитоавтотрофов. Понятие об анаэробном дыхании
  • Тема 8 культивирование и рост микроорганизмов
  • 8.1. Понятие о чистых и накопительных культурах микроорганизмов
  • 8.2. Способы культивирования микроорганизмов
  • 8.3. Закономерности роста статической и непрерывной культуры
  • Вопросы для самопроверки
  • Тема 9 влияние факторов внешней среды на микроорганизмы
  • 9.1. Взаимосвязь между микроорганизмами и средой. Классификация факторов воздействия на микроорганизмы
  • 9.2. Влияние физических факторов на микроорганизмы
  • 9.3. Влияние физико-химических факторов на микроорганизмы
  • 9.4. Влияние химических факторов на микроорганизмы
  • 9.5. Взаимоотношения между микроорганизмами. Влияние антибиотиков на микроорганизмы
  • 9.6. Использование факторов внешней среды для регулирования жизнедеятельности микроорганизмов при хранении пищевых продуктов
  • Вопросы для самопроверки
  • Тема 10 генетика микроорганизмов
  • 10.1. Генетика как наука. Понятие о наследственности и изменчивости.
  • 10.2. Генотип и фенотип микроорганизмов
  • 10.3. Формы изменчивости микроорганизмов
  • 10.4. Практическое значение изменчивости микроорганизмов
  • Тема 11 биохимические процессы вызываемые микроорганизмами
  • 11.1. Спиртовое брожение. Химизм, условия проведения процесса. Возбудители. Практическое использование спиртового брожения
  • 11.2. Молочнокислое брожение: гомо- и гетероферментативное. Химизм процесса. Характеристика молочнокислых бактерий. Практическое значение молочнокислого брожения
  • 11.3. Пропионовокислое брожение. Химизм процесса, возбудители. Практическое использование пропионовокислого брожения
  • 11.4. Маслянокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов
  • 11.5. Уксуснокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов
  • 11.6. Окисление жиров и высших жирных кислот микроорганизмами. Микроорганизмы - возбудители порчи жиров
  • 11.7. Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности
  • 11.8. Разложение клетчатки и пектиновых веществ микроорганизмами
  • Вопросы для самопроверки
  • Тема 12 Пищевые заболевания
  • 12.1 Характеристика пищевых заболеваний. Отличия пищевых инфекций от пищевых отравлений.
  • Сравнительная характеристика пищевых заболеваний
  • 12.2. Патогенные и условно – патогенные микроорганизмы. Их основные свойства. Химический состав и свойства микробных токсинов.
  • 12.4 Понятие об иммунитете. Виды иммунитета. Вакцины и сыворотки
  • 12.5. Пищевые отравления: токсикоинфекции и интоксикации. Характеристика возбудителей пищевых отравлений
  • 12.6. Понятие о санитарно – показательных микроорганизмах. Бактерии группы кишечнойя палочки и их значение при санитарной оценке пищевых продуктов.
  • Вопросы для самопроверки
  • Литература
  • Тема 13 распространение микроорганизмов в природе
  • 13.1. Биосфера и распространение микроорганизмов в природе
  • 13.2. Микрофлора почвы. Ее роль в инфицировании пищевых продуктов. Санитарная оценка почвы
  • 13.3. Микрофлора воздуха. Оценка качества воздуха по микробиоло­гическим показателям. Методы очистки и дезинфекции воздуха
  • 13.4. Микрофлора воды. Санитарная оценка воды по микробиологическим показателям. Способы очистки и дезинфекции воды
  • Литература
  • Список рекомендуемой литературы
  • Содержание
  • 6.3. Механизмы поступления питательных веществ в клетку

    Основным препятствием для транспорта веществ в клетку является цитоплазматическая мембрана (ЦПМ), которая обладает избирательной проницаемостью. ЦПМ регулирует не только поступление веществ в клетку, но и выход из нее воды, разнообразных продуктов обмена и ионов, что обеспечивает нормальную жизнедеятельность клетки.

    Существует несколько механизмов транспорта питательных веществ в клетку: простая диффузия, облегченная диффузия и активный транспорт.

    Простая диффузия - проникновение молекул вещества в клетку без помощи каких либо переносчиков. Движущей силой этого процесса служит градиент концентрации вещества, т. е. различия в его концентрации по обе стороны ЦПМ - во внешней среде и в клетке. Молекулы воды, некоторых газов (молекулярного кислорода, азота, водорода), некоторые ионы, концентрация которых во внешней среде выше, чем в клетке, перемещаются через ЦПМ путем пассивной диффузии. Пассивный перенос протекает до тех пор, пока концентрация веществ по обе стороны цитоплазматической мембраны не выравняется. Поступающая вода прижимает цитоплазму и ЦПМ к клеточной стенке и в клетке создается внутреннее давление на клеточную стенку, называемое тургором. Простая диффузия происходит без затраты энергии. Скорость такого процесса незначительна.

    Подавляющее большинство веществ может проникнуть внутрь клетки только при участии переносчиков - специфических белков, называемых пермеазами и локализованных на цитоплазматической мембране. Пермеазы захватывают молекулы растворенных веществ и переносят их к внутренней поверхность клетки. С помощью белков-переносчиков осуществляется перенос растворенных веществ путем облегченной диффузии и активного транспорта.

    Облегченная диффузия происходит по градиенту концентрации с помощью белков-переносчиков. Как и пассивная диффузия она протекает без затраты энергии. Скорость ее зависит концентрации веществ в растворе. Предполагают, что путем облегченной диффузии осуществляется также выход продуктов обмена из клетки. Путем облегченной диффузии в клетку проникают моносахара, аминокислоты.

    Активный транспорт - растворенные вещества переносятся независимо от градиента концентраций. Этот вид транспорта веществ нуждается в затратах энергии (АТФ). При активном транспорте скорость поступления веществ в клетку достигает максимума даже при малой концентрации его в питательной среде. Большинство веществ проникает в клетку микроорганизмов в результате активного транспорта.

    Прокариоты и эукариоты различаются по механизмам транспорта. У прокариот избирательное поступление питательных веществ осуществляется главным образом путем активного транспорта, а у эукариот - путем облегченной диффузии, а реже путем активного транспорта. Выход продуктов из клетки чаще всего осуществляется путем облегченной диффузии.

    6.4. Пищевые потребности и типы питания микроорганизмов

    Разнообразные вещества, в которых нуждаются микроорганизмы и которые потребляются для синтеза основных органических веществ клетки, роста, размножения и для получения энергии называются питательными веществами, а среда, содержащая питательные вещества называется питательной средой.

    Потребности микроорганизмов в питательных веществах разнообразны, но независимо от потребностей в питательной среде должны содержаться все необходимые элементы, которые имеются в клетках микроорганизмов, причем соотношение органогенных элементов должно примерно соответствовать этому соотношению в клетке.

    Источниками водорода и кислорода является вода, молекулярный водород и кислород, а также химические вещества, содержащие эти элементы. Источниками макроэлементов являются минеральные соли (калий фосфорнокислый, магний сернокислый, железо хлорное и др.).

    Источниками углерода и азота могут быть как органические, так и неорганические соединения.

    В соответствии с принятой классификацией микроорганизмов по типу питания их разделяют на группы в зависимости источника углерода, источника энергии и источника электронов (природы окисляемого субстрата).

    В зависимости отисточника углерода микроорганизмы делятся на:

    * автотрофы (сами себя питающие), которые используют углерод из неорганических соединений (углекислого газа и карбонатов);

    * гетеротрофы (питаются за счет других) - используют углерод из органических соединений.

    В зависимости отисточника энергии различают:

    * фототрофы - микроорганизмы,которые в качестве источника энергии используют энергию солнечногосвета;

    * хемотрофы - энергетическим материалом для этих микроорганизмов являются разнообразные органические и неорганические вещества.

    В зависимости отисточника электронов (природы окисляемого

    субстрата микроорганизмы делятся на:

    * литотрофы - окисляют неорганические вещества и за счет этого получают энергию;

    * ораганотрофы - получают энергию путем окисления органических веществ.

    Среди микроорганизмов чаще всего встречаются микроорганизмы, имеющие следующие типы питания:

    Фотолитоавтротрофия - тип питания, характерный для микробов, использующих энергию света и энергию окисления неорганических соединений для синтеза веществ клетки из диоксида углерода.

    Фотоорганогетеротрофия - такой тип питания микроорганизмов, когда для получения энергии, необходимой для синтеза веществ клетки из диоксида углерода, помимо световой энергии используется энергия окисления органических соединений.

    Хемолитоавтотрофия - типпитания, при котором микроорганизмы получают энергию за счет окислениянеорганических соединений, а источником углерода являются неорганические соединения.

    фотоавтотрофы → фотолитоавтотрофы

    фотоорганоавтотрофы

    фототрофы фотогетеротрофы→ фотолитогетеротрофы

    фотоорганогетеротрофы

    микроорганизмы

    Хемоорганогетеротрофия - тип питания микроорганизмов, получающих энергию и углерод из органических соединений. Микроорганизмы, встречающиеся в пищевых продуктах, имеют именно такой тип питания.

    Кроме углерода важнейшим элементом питательной среды является азот. Автотрофы обычно используют азот из минеральных соединений, а гетеротрофы кроме неорганических соединений азота используют аммонийные соли органических кислот, аминокислоты, пептоны и другие соединения. Некоторые гетеротрофы усваивают атмосферный азот (азотфиксаторы).

    Существуют микроорганизмы, которые сами не способны синтезировать то или иное органическое вещество (например, аминокислоты, витамины). Такие микроорганизмы называют ауксотрофными по данному веществу. Вещества, которые добавляют для ускорения роста и обменных процессов называют ростовыми веществами.

    Вопросы для самопроверки

    1. Какие способы питания живых существ Вы знаете?

    2. Что такое «внеклеточное пищеварение»?

    3. Какие существуют механизмы поступления питательных веществ в клетку?

    4. Чем отличается простая диффузия от облегченной?

    5. В чем существенное отличие пассивной и облегченной диффузии от активного транспорта?

    6. Какова роль пермеаз в переносе растворенных веществ в клетку?

    7. Каков механизм поступления в клетку воды, газов?

    8. Каким путем попадают в клетку простые сахара и аминокислоты?

    9. Как прокариоты и эукариоты различаются по механизмам транспорта веществ?

    10. Что такое «органогенные элементы»?

    11. Что такое макроэлементы?

    12 . Каковы потребности микроорганизмов в питательных веществах?

    13 . Как классифицируют микроорганизмы зависимости от источника углерода и энергии?

    14. Что такое «хемоорганогетеротрофы»?

    16 . Какие типы питания Вы знаете?

    17 . Что такое «азотфикисирующие микроорганизмы»?

    18. Что такое «ауксотрофные микроорганизмы»?

    Литература

      Чурбанова И.Н. Микробиология. - М.: Высшая школа, 1987.

      Мудрецова-Висс К.А. Микробиология. - М.: Экономика, 1985.- 255 с.

      Мишустин Е.Н., Емцев В.Т. Микробиология. - М.: Агропромиздат, 1987, 350с.

      Вербина Н.М., Каптерева Ю.В. Микробиология пищевых производств.- М.: Агропромиздат, 1988.- 256 с.

    "Введение в общую биологию и экологию. 9 класс". А.А. Каменский (гдз)

    Характеристика клетки. Клеточная мембрана

    Вопрос 1. Каковы функции наружной мембраны клетки?
    Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь. Функции плазматической мембраны:
    1. Отграничивающая. Плазматические мембраны образуют замкнутые системы, нигде не прерываясь, т.е. они ни имеют свободных концов, таким образом, они отделяют внутреннее содержимое от окружающей среды. Например, оболочка клетки защищает содержимое цитоплазмы от физических и химических повреждений.
    2. Транспортная – одна из важнейших функций связана со способностью мембраны пропускать в клетку или из нее различные вещества, это необходимо для поддержания постоянства ее состава, т.е. гомеостаза (греч. homos – подобный и stasis – состояние).
    3. Контактная. В составе тканей и органов между клетками образуются сложные специальные структуры – межклеточные контакты.
    4. Плазматическая мембрана многих клеток может образовывать специальные структуры (микроворсинки, реснички, жгутики).
    5. На плазматической мембране создается разность электрических потенциалов. Например, гликопротеины эритроцитов млекопитающих создают отрицательный заряд на их поверхности, это препятствует их агглютинации (склеиванию).
    6. Рецепторная. Обеспечивается молекулами интегральных белков, имеющих снаружи полисахаридные концы. В мембранах имеется большое число рецепторов - специальных белков, роль которых заключается в передаче сигналов извне внутрь клетки. Гликопротеины участвуют в распознавании отдельных факторов внешней среды и в ответной реакции клеток на эти факторы. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам, которые подходят друг к другу как отдельные элементы цельной структуры (стереохимическая связь по типу «ключ к замку») – это этап, предшествующий оплодотворению.
    7. Плазматическая мембрана может участвовать в синтезе и катализе. Мембрана является основой для точного размещения ферментов. В слое гликокаликса могут осаждаться гидролитические ферменты, которые расщепляют различные биополимеры и органические молекулы, осуществляя примембранное или внеклеточное расщепление. Так идет внеклеточное расщепление у гетеротрофных бактерий и грибов. У млекопитающих, например, в кишечном эпителии, в зоне щеточной каемки всасывающего эпителия, обнаруживается большое количество разнообразных ферментов (амилаза, липаза, различные протеиназы, экзогидролазы и др.), т.е. осуществляется пристеночное пищеварение.

    Вопрос 2. Какими способами различные вещества могут проникать внутрь клетки?
    Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами. Во-первых, через тончайшие каналы, Образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция. Это так называемый Пассивный транспорт идет без затрат энергии путем диффузии, осмоса и облегченной диффузии. Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Крупные молекулы биополимеров поступают через мембрану благодаря фагоцитозу, явлению, впервые описанному И.И. Мечниковым. Процесс захвата и поглощения капелек жидкости происходит путем пиноцитоза. Путем фагоцитоза и пиноцитоза обычно в клетку проникают пищевые частицы.

    Вопрос 3. Чем пиноцитоз отличается от фагоцитоза?
    Фагоцитоз (греч. рhagos – пожирать, cytos – вместилище) – это захват и поглощение клеткой крупных частиц (иногда целых клеток и их частиц). При этом плазматическая мембрана образует выросты, окружает частицы и в виде вакуолей перемещает их внутрь клетки. Этот процесс связан с затратами мембраны и энергии АТФ.
    Пиноцитоз(греч. pino – пить) – поглощение капелек жидкости с растворенными в ней веществами. Осуществляется за счет образования впячиваний на мембране и формирования пузырьков, окруженных мембраной, и перемещения их внутрь. Этот процесс также связан с затратами мембраны и энергии АТФ. Всасывающая функция эпителия кишечника обеспечивается путем пиноцитоза.
    Таким образом, при фагоцитозе клетка поглощает твёрдые частички пищи, а при пиноцитозе – капельки жидкости. Если клетка перестает синтезировать АТФ, то процессы пино- и фагоцитоза полностью прекращаются.

    Вопрос 4. Почему у растительных клеток нет фагоцитоза?
    При фагоцитозе в том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. У растительной клетки поверх клеточной мембраны имеется плотная непластичная оболочка из клетчатки, что препятствует фагоцитозу.

    Вопрос 1. Каковы функции наружной мембраны клетки?

    Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь.

    Наружная клеточная мембрана выполняет защитную функцию, отделяя клетку от внешней среды, препятствует повреждению ее содержимого.

    Кроме того, наружная клеточная мембрана обеспечивает транспорт веществ внутрь клетки и из нее, позволяет клеткам взаимодействовать между собой.

    Вопрос 2. Какими способами различные вещества могут проникать внутрь клетки?

    Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами.

    Во-первых, через тончайшие каналы, образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция.

    Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Таким путем обычно проникают пищевые частицы.

    Вопрос 3. Чем пиноцитоз отличается от фагоцитоза?

    При пиноцитозе выпячивание наружной мембраны захватывает капельки жидкости, а при фагоцитозе - твердые частицы.

    Вопрос 4. Почему у растительных клеток нет фагоцитоза?

    При фагоцитозе в том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. У растительной клетки поверх клеточной мембраны имеется плотная непластичная оболочка из клетчатки, что препятствует фагоцитозу.

    Как скачать бесплатное сочинение? . И ссылка на это сочинение; Общие сведения о клетках. Клеточная мембрана уже в твоих закладках.
    Дополнительные сочинения по данной теме


      Тест по биологии в 7 классе по теме «Клетка животных» составлен по учебнику В. М. Костантинов, В. Г. Бабенко, В. С. Кучменко Тест составила: Емельянова Галина Кирилловна, учитель биологии МБОУ СОШ № 2 п. Гигант Сальского района Ростовской области Соотнесите название органоида клетки животных с их функциями. А Б В Г Д 4 3 1 4 2 А, В, Г, Е Цитология – это наука о клетке, ее строении,
      Вопрос 1. Каковы отличия в строении эукариотической и прокариотической клеток? У прокариот нет настоящего оформленного ядра (греч. karyon - ядро). Их ДНК представляет собой одну кольцевую молекулу, свободно располагающуюся в цитоплазме и не окруженную мембраной. У прокариотических клеток отсутствуют пластиды, митохондрии, эндоплазматическая сеть, аппарат Гольджи, Лизосомы. Рибосомы есть как у прокариот, так и у эукариот (у ядерных - более крупные). Жгутик прокариотической клетки тоньше и работает по иному принципу, чем жгутик
      Вопрос 1. Каковы функции ядра клетки? В ядре содержится вся информация о процессах жизнедеятельности, росте и развитии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а следовательно, все процессы обмена веществ и энергии, протекающие в клетке. Вопрос 2. Какие организмы относятся к прокариотам? Прокариоты - это организмы, клетки которых не имеют оформленного ядра. К ним относят бактерии, синезеленые водоросли (цианобактерии)
      Вопрос 1. Чем образованы стенки эндоплазматической сети и комплекса Гольджи? Стенки эндоплазматической сети и комплекса Гольджи образованы однослойной мембраной. Вопрос 2. Назовите функции эндоплазматической сети. Эндоплазматическая сеть (ЭПС) образует транспортную систему клетки. На гладкой ЭПС осуществляется синтез жиров и углеводов. На шероховатой (гранулярной) ЭПС происходит синтез белков за счет работы рибосом, прикрепленных к мембранам ЭПС. Вопрос 3. Какую функцию выполняют рибосомы? Основная функция рибосом - синтез белка. Вопрос 4. Почему большинство рибосом расположены на каналах эндоплазматической
      МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Орешковская основная общеобразовательная школа П. Орешково Луховицкого Район Московской Области Конспект урока по биологии В 9 классе «Строение ядра. Хромосомный набор клетки.» учитель биологии Афанасьева Татьяна Викторовна п. Орешково 2015 г. Тема урока: ЯДРО КЛЕТКИ. ХРОМОСОМНЫЙ НАБОР КЛЕТКИ. ЗАДАЧИ УРОКА: 1. сформировать понятие и строении и функциях клеточного ядра. 2. представление о ядрышке и роли его в клетке. 3. Познакомить с хромосомным набором клетки. Оборудование: мультимедийная презентация «Строение ядра»; карточки: «Сравнение процессов пиноцитоза и фагоцитоза», «Работа с определениями»; учебник
      Тест: «Прокариотическая клетка» 1. Назовите структурный компонент клетки, который имеется и у прокариот, и у эукариот: А) лизосома; Г) эндоплазматическая сеть; Б) аппарат Гольджи; Д) митохондрии. В) наружная плазматическая мембрана; 2. Назовите систематическую группу организмов, представители которой не имеют наружной плазматической мембраны: А) прокариоты; В) эукариоты. Б) вирусы; 3. Определите признак, по которому все ниже перечисленные организмы, кроме одного, объединены в одну группу. Укажите «лишний» среди них организм: А) дизентерийная амеба; Г) холерный вибрион; Б) спирохета; Д) стафилококк. В) кишечная палочка; 4.
    • Популярные эссе

        8 Клас Тема 1. 1. Які мегоди дослідження використовуються в учбових закладах? а) довідниковий; б) експедиційний; вдрадиційний; г) аеро та

        Професійна підготовка майбутніх учителів історії перебуває у стані концептуального переосмислення. Місце соціально-гуманітарних дисциплін (у тому числі - історії) у системі

        На сцену під музичний супровід виходять учасники агітбригади. Учень 1. Хоч іноді, хоч раз в житті На самоті з природою

        Мой любимый день недели, как это ни странно, - четверг. В этот день я хожу со своими подругами в бассейн.

      Пассивная диффузия через мембрану клеток. Определяется градиентом концентрации веществ из области большей концентрации в область меньшей концентрации. Так всасываются липофильные (главным образом неполярные) вещества. Чем выше липофильность, тем лучше они всасываются.

      Фильтрация через водные поры мембран и через межклеточные промежутки. Движущей силой является гидростатическое и осмотическое давление. Так всасываются вода и гидрофильные молекулы.

      Облегченная диффузия через мембраны клеток с помощью переносчиков по градиенту концентрации и без затраты энергии. Так всасываются гидрофильные полярные лекарственные средства, глюкоза.

      Активный транспорт – осуществляется с помощью специальных транспортных систем (белков) и с затратой энергии. Особенность: избирательность к определенным соединениям (специфичность), насыщаемость транспортных систем, возможность транспорта лекарств против градиента концентрации. Переносные системы активного транспорта носят название насосы (K-Na-насос). Так всасываются полярные гидрофильные соединения, аминокислоты, сахара, витамины.

      Пиноцитоз (пино-пузырек) – поглощение внеклеточного материала мембраной клетки с образованием вакуоли (напоминает фагоцитоз). Так всасываются крупные молекулярные соединения и полипептиды.

    Основная часть лекарств всасывается в ЖКТ и может быть инактивирована ферментами желудка и кишечной стенки. На всасывание влияет прием пищи, которая задерживает опорожнение кишечника, снижает кислотность, пищеварительную активность ферментов, ограничивает соприкосновение ЛВ со стенкой желудка. Абсорбция регулируется специальным транспортером – Р-гликопротеином. Он препятствует абсорбции ЛВ и способствует их выведению в просвет кишечника.

    Всасывание лекарств у детей

    Всасывание начинается в желудке. У новорожденных всасывание лекарств из желудка достаточно интенсивно. Это связано с особенностью слизистой оболочки желудка, которая тонкая, нежная, содержит много кровеносных и лимфатических сосудов. Всасывание лекарств из ЖКТ обратно пропорционально степени их диссоциации, которая зависит от рН среды. рН в желудке на высоте пищеварения

    – при рождении –8;

    – у детей месячного возраста 5,8;

    – в возрасте 3 – 7 месяцев около 5;

    – 8 – 9 месяцев –4,5;

    – к 3 годам – 1,5-2,5, как у взрослых.

    У детей младшего возраста лучше всасываются основания.

    Основная часть ЛВ всасывается в кишечнике. рН в кишечнике ребенка 7,3 – 7,6, поэтому лучше всасываются основания. У детей большой размер пространств между клетками слизистой кишечника, поэтому через них легко проникают белки, полипептиды, антитела (из молока матери), ионы. Всасывание лекарств из кишечника происходит медленнее, чем у взрослых, и интенсивность вариабельна у разных детей. Моторика кишечника у новорожденных и грудных детей ускорена. На поверхности слизистой оболочки кишечника расположен слой связанной воды (его толщина находится в обратной зависимости от возраста ребенка) который препятствует всасыванию жирорастворимых веществ. Транспортные механизмы слизистой оболочки кишечника у детей первого года жизни еще плохо развиты, в связи с этим до полутора лет у детей медленно всасываются липидо- и водорастворимые ЛС.

    Процессы пассивного и активного транспорта созревают к 4-му месяцу жизни ребенка.




    © 2024
    womanizers.ru - Журнал современной женщины