20.06.2019

Свойства мочевой кислоты биохимия. Мочевая кислота. Свойства, норма, диеты и факты о мочевой кислоте. Расшифровка анализа крови


Мочевая кислота -- бесцветные кристаллы, плохо растворимы в воде, этаноле, диэтиловом эфире, растворимы в растворах щелочей, горячей серной кислоте и глицерине.

Мочевая кислота была открыта Карлом Шееле (1776) в составе мочевых камней и названа им каменной кислотой -- acide lithique, затем она была найдена им в моче. Название мочевой кислоты дано Фуркруа, её элементарный состав установлен Либихом.

Является двухосновной кислотой (pK1 = 5.75, pK2 = 10.3), образует кислые и средние соли -- ураты.

В водных растворах мочевая кислота существует в двух формах: лактамной (7,9-дигидро-1H-пурин-2,6,8(3H)-трион) и лактимной (2,6,8-тригидроксипурин) с преобладанием лактамной:

Легко алкилируется сначала по положению N-9, затем по N-3 и N-1, под действием POCl3 образует 2,6,8-трихлорпурин.

Азотной кислотой мочевая кислота окисляется до аллоксана, под действием перманганата калия в нейтральной и щелочной среде либо перекиси водорода из мочевой кислоты образуются сначала аллантоин, затем гидантоин и парабановая кислота.

Первым мочевую кислоту удалось синтезировать Горбачёвскому в 1882 году при нагревании гликоколя (амидоуксусной кислоты) с мочевиной до 200--230 °С.

NH2-CH2-COOH + 3CO(NH2)2 = C5H4N4O3+ 3NH3 + 2H2O

Однако такая реакция протекает весьма сложно, и выход продукта ничтожен. Синтез мочевой кислоты возможен при взаимодействии хлоруксусной и трихлормолочной кислот с мочевиной. Наиболее ясным по механизму является синтез Беренда и Роозена (1888 г.), при котором изодиалуровая кислота конденсируется с мочевиной. Мочевую кислоту можно выделить из гуано, где её содержится до 25 %. Для этого гуано необходимо нагреть с серной кислотой (1 ч), затем разбавить водой (12-15 ч), отфильтровать, растворить в слабом растворе едкого калия, отфильтровать, осадить соляной кислотой.

Метод синтеза заключается в конденсации мочевины с цианоуксусным эфиром и дальнейшей изомеризации продукта в урамил (аминобарбитуровую кислоту), дальнейшей конденсации урамила с изоцианатами, изотиоцианатами или цианатом калия.

У человека и приматов -- конечный продукт обмена пуринов образующийся в результате ферментативного окисления ксантина под действием ксантиноксидазы; у остальных млекопитающих мочевая кислота превращается в аллантоин. Небольшие количества мочевой кислоты содержатся в тканях (мозг, печень, кровь), а также в моче и поте млекопитающих и человека. При некоторых нарушениях обмена веществ происходит накопление мочевой кислоты и её кислых солей (уратов) в организме (камни в почках и мочевом пузыре, подагрические отложения, гиперурикемия). У птиц, ряда пресмыкающихся и большинства наземных насекомых мочевая кислота -- конечный продукт не только пуринового, но и белкового обмена. Система биосинтеза мочевой кислоты (а не мочевины, как у большинства позвоночных) в качестве механизма связывания в организме более токсичного продукта азотистого обмена -- аммиака -- развилась у этих животных в связи с характерным для них ограниченным водным балансом (мочевая кислота выводится из организма с минимальным количеством воды или даже в твёрдом виде). Высохшие экскременты птиц (гуано) содержат до 25 % мочевой кислоты. Обнаружена она и в ряде растений. Повышенное содержание мочевой кислоты в организме (крови) человека -- гиперурикемия. При гиперурикемии возможны точечные (похожи на укусы комара) проявления аллергии. Отложения кристаллов урата натрия (соль мочевой кислоты) в суставах называется подагрой.

Мочевая кислота -- исходный продукт для промышленного синтеза кофеина. Синтез мурексида.

Мочевая кислота - это конечный продукт метаболизма пуринов, дальше пурины не распадаются.

Пурины необходимы организму для синтеза нуклеиновых кислот - ДНК и РНК, энергетических молекул АТФ и коферментов.

Источники мочевой кислоты:

  • -- из пуринов пищи
  • -- из распавшихся клеток организма - в результате естественной старости или заболевания
  • -- мочевую кислоту могут синтезировать практически все клетки человеческого тела

Каждый день с продуктами питания (печень, мясо, рыба рис, горох) человек потребляет пурины. В клетках печени и слизистой оболочки кишечника присутствует фермент - ксантиноксидаза, превращающий пурины в мочевую кислоту. Не смотря на то, что мочевая кислота является конечным продуктом обмена, ее нельзя назвать «лишней» в организме. Она необходима для защиты клеток от кислых радикалов, поскольку умеет их связывать.

Общий «запас» мочевой кислоты в организме - 1 грамм, каждый день выделяется 1,5 грамма, из которых 40% пищевого происхождения.

Выведение мочевой кислоты на 75-80% обеспечивают почки, оставшиеся 20-25% -- желудочно-кишечный тракт, где ее частично потребляют кишечные бактерии.

Соли мочевой кислоты называются уратами, являя собой союз мочевой кислоты с натрием (90%) или калием (10%). Мочевая кислота мало растворима в воде, а организм на 60% состоит из воды.

Ураты выпадают в осадок при закислении среды и снижении температуры. Именно поэтому главными болевыми точками при подагре -- болезни высокого уровня мочевой кислоты -- являются отдаленные суставы (большой палец ноги), «косточки» на стопах, уши, локти. Начало болей провоцируется охлаждением.

Повышение кислотности внутренней среды организма бывает и у спортсменов и при сахаром диабете при лактатацидозе, что диктует необходимость контроля мочевой кислоты.

Уровень мочевой кислоты определяют в крови и моче. В поту ее концентрация совсем ничтожна и анализировать общедоступными методиками ее невозможно.

Усиленное образование мочевой кислоты непосредственно в почках бывает при злоупотреблении алкоголем и в печени - как результат обмена некоторых сахаров.

Мочевая кислота в крови - урикемия, а в моче - урикозурия. Повышение мочевой кислоты в крови - гиперурикемия, снижение - гипоурикемия.

По уровню мочевой кислоты в крови диагноз подагры не ставят, нужны симптомы и изменения на рентген-снимках. Если мочевой кислоты в крови больше нормы, а симптомов нет - ставится диагноз «Безсимптомная гиперурикемия». Но, без анализа мочевой кислоты в крови диагноз подагры нельзя считать полностью правомочным.

Нормы мочевой кислоты в крови (в мкмоль/л)

новорожденные -140-340

дети до 15 лет -- 140-340

мужчины до 65 лет -- 220-420

женщины до 65 лет -- 40-340

после 65 лет - до 500

МОЧЕВАЯ КИСЛОТА - 2,6,8-триоксипурин; у человека является конечным продуктом пуринового обмена. Нарушение обмена М. к. является причиной или сопровождает такие заболевания, как подагра, артриты, спондилез, уратные и мочекислые нефропатии, мочекаменная болезнь, ожирение, сахарный диабет, гипертоническая болезнь и др. Значительные количества солей М. к. - уратов (см.) выделяются при заболеваниях, связанных с повышенным распадом клеток и тканей, напр, при лейкозах. Отложения мочекислых соединений (прежде всего мононатриевого урата) в тканях могут вызывать в них локальные воспалительные и дистрофические изменения (см. Подагра). Нарушения обмена М. к. бывают наследственными (первичными) и приобретенными (вторичными). Недостаточность гипоксантин - фосфорибозилтрансферазы (КФ 2.4.2.8) и ряда других ферментов в сочетании с повышенной активностью глутатионредуктазы (КФ 1.6.4.2) является причиной врожденной идиопатической семейной гиперурикемии, обусловленной повышенным синтезом М. к. Наследственная недостаточность фермента гипоксантин: гуанин-фосфорибозилтрансферазы является причиной тяжелого неврол, синдрома у детей (синдром Леша - Найхана), развитие к-рого также связано с гиперурикемией вследствие повышенного образования мочевой кислоты.

М. к. может быть представлена в двух формах: лактамной, характерной для свободной к-ты, и лактимной, являющейся результатом енолизации, происходящей при образовании солей:

М. к. была открыта Шееле (G. W. Scheele) в 1776 г. в составе мочи. В большом количестве М. к. содержится в экскрементах птиц, змей и в составе мочевых камней. Она является постоянной составной частью мочи млекопитающих животных и человека, у к-рых в небольших количествах содержится также в органах, тканях и крови.

Синтетически М. к. была получена путем нагревания мочевины (см.) с амидом трихлормолочной к-ты. Структурная формула М. к. была окончательно установлена разнообразными синтезами, из к-рых следует отметить конденсацию изодиалуровой к-ты с мочевиной и реакцию 5-нитроурацила в щелочном р-ре с дитионитом натрия. Образующаяся при этом сульфаминовая к-та сплавляется при 190-200° с мочевиной.

Чистая М. к. представляет собой легкий белый порошок, кристаллизующийся в виде микроскопических табличек ромбической формы. В холодной воде одна часть М. к. растворяется в 39 480 частях воды, в кипящей - одна часть М. к. в 1600 частях воды; М. к. легко растворяется в едких щелочах, образуя с ними как двухосновная к-та средние соли; в спирте и эфире М. к. нерастворима. Средние соли М. к. и щелочных металлов хорошо растворимы в воде, кислые соли растворимы в воде значительно хуже. Для получения М. к. из мочи к последней прибавляют соляную к-ту. При стоянии М. к. выпадает в виде кристаллического осадка, окрашенного в темно-бурый цвет. Для осаждения М. к. из р-ров применяются пикриновая к-та, фосфовольфрамовая к-та, соли серебра, закиси меди и другие осадителя. При нагревании М. к. обугливается, не плавясь; продуктами разложения ее при этом являются синильная к-та, циануровая к-та, мочевина и аммиак.

Наиболее распространенная качественная проба на М. к. основана на ее окислении азотной к-той, это так наз. мурексидная проба. При смачивании нашатырным спиртом остатка, получаемого при нагревании М. к. с азотной к-той, развивается пурпурное окрашивание, к-рое зависит от образования аммиачной соли пурпурной к-ты. Характерной реакцией на М. к. является также окисление ее окисью меди, к-рая при этом восстанавливается в закись меди. Для количественного определения М. к. ее выделяют в виде аммиачной соли и титруют перманганатом калия. Широко применяются колориметрические методы определения М. к. В противоположность продуктам ее расщепления М. к. характеризуется интенсивным поглощением в УФ-части спектра с максимумом при 293 нм. Это свойство М. к. также используется для количественного ее определения.

Источниками выводимой из организма М. к. являются как пищевые, так и эндогенные амино- и оксипурины. У человека М. к. образуется гл. обр. в печени в результате распада нуклеотидов, дезаминирования аминопуринов и окисления образовавшихся оксипуринов - гипоксантина (см.) и ксантина (см.) при участии фермента ксантиноксидазы (см.). У большинства млекопитающих под влиянием фермента уриказы (КФ 1.7.З.З.), к-рого нет в тканях человека и антропоидов, М. к. окисляется в аллантоин.

При нарушении обмена М. к., выражающемся в ее повышенном образовании в организме или в значительном поступлении М. к. в организм извне, сама к-та и ее соли образуют кристаллические осадки. Выпадению этих соединений в осадок способствуют их повышенная по сравнению с нормой концентрация в тканевых жидкостях, а также уменьшение величины pH по сравнению с физиол, нормой, температурные сдвиги, нарушение кровоснабжения и т. п.

Количество М. к. в суточной моче человека в норме равно 0,4-1 г и не превышает 2 г; обычно оно составляет ок. 1,8% общего азота мочи. Содержание М. к. в сыворотке крови здоровых людей колеблется от 2 до 5 - 6 мг/100 мл.

В клинико-биохим. лабораториях содержание М. к. в сыворотке крови и моче определяют обычно микро-методом, основанным на колориметрическом определении интенсивности синей окраски, развившейся при добавлении реактива Фол ин а (см. Лаури метод) к безбелковому фильтрату сыворотки крови или мочи.

У новорожденных содержание М. к. в крови сразу после рождения составляет в среднем 5,4 мг/100 мл, достигая к концу первых суток жизни 5,8 мг/100 мл и понижаясь к третьим суткам до 4,3 мг/100 мл. Высокая концентрация М. к. в крови новорожденных в первые сутки жизни объясняется физиол, гемолизом эритроцитов, резким снижением числа лейкоцитов, а также катаболическими процессами, характерными в норме для этого возрастного периода. Начиная со 2-го года жизни и до 7 лет концентрация М. к. в крови детей равна 2,0-2,8 мг/100 мл, что объясняется интенсивностью анаболических процессов, протекающих в детском организме. По мере созревания и совершенствования систем и органов организма ребенка содержание М. к. приходит к величинам, характерным для взрослых: у девушек - 5,5 мг/100 мл, у юношей - 6 мг/100 мл.

У здоровых новорожденных усиленный катаболизм нуклеопротеидов (в результате родового стресса) и ограниченные способности канальцевого аппарата почек создают условия для возникновения в ночках так наз. мочекислого инфаркта (см.) почек - острого поражения ткани почек кристаллами М. к. и уратов, гл. обр. мочекислого аммония и мочекислого натрия. Поражение ткани почек кристаллами М. к. и уратов наблюдают иногда и у детей старшего возраста, леченных лекарственными средствами, обладающими цитостатическим действием. Выведение М. к. с мочой (см. Уратурия) у детей, особенно грудных, превышает количество М. к., выводимой с мочой у взрослых, концентрация М. к. в детской моче достигает 1 мг на 1 мл мочи.

У детей старшего возраста, так же как и у взрослых, клин, синдромы, обусловленные повышенным образованием и содержанием М. к. в крови (гиперурикемия) и в моче (гиперуратурия), объединены под общим названием урикопатии (см. Мочекислый диатез). У ратные нефропатии у детей раннего возраста клинически проявляются лейкоцитурией, затем появляется гематурия, а у детей старше 10 лет, длительное время страдающих уратной нефропатией, нарастает протеинурия, и заболевание начинает напоминать по течению хрон, нефрит.

Наследственная идиопатическая семейная гиперурикемия и синдром Леша - Найхана обусловлены повышенным синтезом М. к. в результате врожденной недостаточности фермента гипоксантин: гуанин-фосфорибозилтрансферазы. В крови при этом обнаруживается повышенное количество глутамина, глицина и аспарагиновой к-ты не только у больного ребенка, но и у родственников, по линии к-рых он унаследовал данную патологию.

Вторичная гиперурикемия чаще всего обусловлена повышенным образованием нуклеиновых к-т при заболеваниях крови, после рентгенотерапии, при снижении функции почек.

Диагностика нарушений обмена М. к. включает в себя определение в крови и моче концентрации М. к., пуриновых оснований (см.), аминокислот, углеводов, липидов и активности ксантиноксидазы.

Библиография: ЗбарекиЙ Б. И., Иванов И. И. и Mардашев С. Р. Биологическая химия, с. 419 и др., Л., 1972; П и х л а к Э. Г. Подагра, М., 1970; G e г t 1 e г М. М., Garn S. М. a. Levine S. А. Serum uric acid in relation to age and physique in health and in coronary heart disease, Ann. intern. Med., v. 34, p. 1421, 1951; G r e i 1 i n g H. u. a. Bioche-mische Untersuchungen iiber die Ursache der Harnsaureablagerung im Bindegewebe der Gicht, Z. Rheumaforsch., Bd 21, p. 50, 1962; Me Murray W. C. Essentials of human metabolism, p. 248 a. o., N.Y. a.o., 1977; Rapoport S. M. Medizinische Biochemie, S. 97 u. a., B., 1977.

С. E. Северин; В. П. Лебедев (пед.).

Этот лабораторный показатель – не просто числа в бланке анализа. Повышение уровня содержания мочевой кислоты является одним из главных факторов риска последующего развития подагры, формирования почечных камней, развития почечной недостаточности.

Лечение выше перечисленных болезней достаточно сложное и далеко не всегда успешное. Коррекция образа жизни, рациона, водного режима – все это успешно снижает уровень содержания этого соединения в организме. Именно эти общие моменты действуют значительно эффективнее, чем специфические препараты, назначаемые на более поздних сроках болезни.

Биохимия мочевой кислоты

Мочевая кислота – это конечный продукт обмена пуриновых соединений. Пуриновые основания (аденин и гуанин) являются необходимой составляющей множества компонентов белкового обмена. При распаде этих белковых соединений образуется мочевая кислота. В естественных условиях она выделяется из организма с мочой. Если отмечается избыток этого органического соединения, то в различных участках мочевыделительного тракта формируются различных размеров камни.

Кроме мочевыделительных путей, в процесс вовлекаются крупные и мелкие суставы. Мочевая кислота содержится в тканях организма в виде натриевых солей практически постоянно в предельно допустимой концентрации. Если возникает избыток этого органического соединения (даже незначительный), на поверхности суставных тканей (хрящи, кости, связочный аппарат) легко образуется слой кристаллов мочевой кислоты.

В дальнейшем, если отсутствует необходимое лечение, эти кристаллы трансформируются в тофусы – плотные шипы, которые причиняют сильнейшую боль при малейшем движении.

Уменьшить размеры тофусов и количество крупных камней в мочевыделительном тракте практически невозможно, соответственно, помочь человеку на поздних стадиях заболевания очень тяжело. Определенные препараты могут только незначительно облегчить состояние больного человека. Становится понятным, что наилучший выход из ситуации – снизить уровень содержания мочевой кислоты в тканях человека с помощью коррекции образа жизни.

Физическая активность

Занятия спортом или банальная пробежка в парке не может оказать какого-то определенного влияния на уровень этого соединения в организме. Однако, нарушение пуринового обмена – это один из признаков метаболического синдрома, глубокого нарушения всех видов обмена веществ.

Категорически противопоказано полное голодание! Целенаправленное снижение веса путем уменьшения ежедневных порций, снижения количества калорийных продуктов (фаст-фуд, все сладкие продукты) будет способствовать более сбалансированному обмену веществ.

Сочетание ожирения и подагры взаимно усиливает клинические проявления обоих заболеваний. Необходимо снизить вес, избегая «резких движений» – полностью голодных дней, отсутствия белковых продуктов (тогда начнет разрушаться собственный белок в тканях организма), соковой диеты.

Диетическое питание

Это главная составляющая успешного влияния на уровень мочевой кислоты, а также последующего его сокращения. Рекомендации, касающиеся диетического питания в этой ситуации, достаточно щадящие. Практически подразумевается не героический отказ от ряда продуктов, а уменьшенное содержание потенциально вредных за счет увеличения наиболее полезных составляющих. Обязательный момент – ежедневная значительная водная нагрузка.

Питание должно быть дробным, категорически противопоказано питание обильными порциями 1-2 раза в день. Необходимо привыкнуть к регулярному приему пищи (лучше в определенные часы), между приемами пищи можно перекусывать фруктами или овощами (но не чай со сладостями).

Запрещенные и разрешенные продукты

Как и в любом другом диетическом питании, существует ряд продуктов рекомендованных и нежелательных. Остановимся на них более подробно.

  1. Мясные, рыбные продукты не должны преобладать над другими составляющими, желательно, чтобы их содержание было минимальным, преобладали диетические сорта мяса (телятина, говядина), идеальны 1-2 вегетарианских дня в неделю.
  2. Рекомендуется исключить или значительно уменьшить содержание мясных субпродуктов (печень, почки, мозги), копчений, маринадов, консервов.
  3. Совершенно противопоказаны наваристые бульоны (из любых сортов мяса, особенно из жирных) – в них уровень пуринов наиболее высок.
  4. Животный белок должен быть заменен растительным, например, яйцами и молочными продуктами.
  5. Яйца могут быть использованы в качестве самостоятельного блюда (1-2 в день) или составляющей салатов.
  6. Молочные продукты разрешены любые, но с пониженной жирностью, именно они смещают рН в тканях организма в щелочную сторону и таким образом уменьшают содержание производных мочевой кислоты, они должны присутствовать в рационе практически ежедневно.
  7. Мучные, макаронные изделия, крупы разрешены без ограничений, прекрасно сочетаются с овощными, фруктовыми составляющими (запеканка, каша, суфле).
  8. Фрукты и овощи – это еще одна важная составляющая рациона больного с нарушением пуринового обмена, разрешены любые, в сыром виде, после кулинарной обработки, за исключением щавеля, грибов, бобовых культур.

Напитки, непосредственно выводящие это органическое соединение из тканей, могут быть любыми. Однако, не следует увлекаться крепким чаем, кофе. Преобладать должна обычная питьевая вода, минеральные столовые воды, компот, травяные отвары. Не следует злоупотреблять квасом и любыми спиртными напитками.

Травные сборы

Желательно, чтобы травы и их комбинацию подбирал специалист по фитотерапии. В любом случае травяные сборы, выводящие мочевую кислоту из тканей, требуют длительного (несколько недель) целенаправленного применения.

Наиболее часто травяные сборы включают:

  • листья мяты и крапивы;
  • трава фиалки трехцветной;
  • трава багульника и череды;
  • семена льна;
  • корень одуванчика и лопуха, а также сабельника;
  • цветки пижмы и бессмертника;
  • березовые почки;
  • плоды рябины.

Сочетание трав может быть подобрано индивидуально в зависимости от состояния здоровья и наличия других хронических заболеваний конкретного человека.

Медикаментозное лечение

Любые препараты должны назначаться к применению только доктором. Большинство из них требует лабораторного контроля показателей функции печени и почек, не всегда хорошо переносятся. Доктором могут быть рекомендованы следующие средства.

  1. Аллопуринол – нарушает непосредственный синтез мочевой кислоты, способствует растворению ее соединений в различных человеческих тканях. При длительном применении возможен эффект кумуляции, может вызвать угнетение кровяного ростка. Может быть назначен взрослым и детям.
  2. Лозартан (группа препаратов – антагонистов рецепторов ангиотензина 2-го типа) обладает преимущественно гипотензивным эффектом и умеренным уролитическим. Идеален для пациентов с сочетанием подагры с гипертонической болезнью.
  3. Фенофибрат применяется для коррекции липидного обмена, снижает концентрацию липопротеидов низкой плотности и триглицеридов, опосредованно нормализует пуриновый обмен.
  4. Уратоксидаза и Фебуксостат – препараты нового поколения, которые в настоящее время проходят завершающую стадию клинических испытаний, могут быть рекомендованы тем, кому противопоказан аллопуринол.

Целенаправленное внимание к собственному здоровью поможет вовремя нормализовать пуриновый обмен, предупредить развитие подагры и уратных камней в почках.

Пурины распадаются с образованием мочевой кислоты

Наиболее активно катаболизм пуринов идет в печени, тонком кишечнике (пищевые пурины) и почках.

Реакции катаболизма пуринов

Реакции распада пуринов можно условно разделить на 5 стадий:

1. Дефосфорилирование АМФ и ГМФ – фермент 5′-нуклеотидаза.

2. Гидролитическое отщепление аминогрупы от С 6 в аденозине – фермент дезаминаза. Образуется инозин.

3. Удаление рибозы от инозина (с образованием гипоксантина) и гуанозина (с образованием гуанина) с ее одновременным фосфорилированием – фермент нуклеозидфосфорилаза.

4. Окисление С 2 пуринового кольца: гипоксантин при этом окисляется до ксантина (фермент ксантиноксидаза), гуанин дезаминируется до ксантина – фермент дезаминаза.

5. Окисление С 8 в ксантине с образованием мочевой кислоты – фермент ксантиноксидаза. Около 20% мочевой кислоты удаляется с желчью через кишечник, где она разрушается микрофлорой до CO 2 и воды. Остальная часть удаляется через почки.

Реакции катаболизма пуриновых нуклеотидов

Вы можете спросить или оставить свое мнение.

IV. НАРУШЕНИЯ ОБМЕНА ПУРИНОВЫХ НУКЛЕОТИДОВ

Ураты значительно более растворимы, чем мочевая кислота: так, в моче с рН 5,0, когда

Аллантоин Рис. 10-10. Превращение мочевой кислоты в аллантоин.

мочевая кислота не диссоциирована, ее растворимость в 10 раз меньше, чем в моче с рН 7,0, при котором основная часть мочевой кислоты представлена солями. Реакция мочи зависит от состава пищи, но, как правило, она слабокислая, поэтому большинство камней в мочевыводящей системе - кристаллы мочевой кислоты.

А. Гиперурикемия подагры

Когда в плазме крови концентрация мочевой кислоты превышает норму, то возникает гиперурикемия. Вследствие гиперурикемии может развиться подагра - заболевание, при котором кристаллы мочевой кислоты и уратов откладываются в суставных хрящах, синовиальной оболочке, подкожной клетчатке с образованием подагрических узлов, или тофусов. К характерным признакам подагры относят повторяющиеся приступы острого воспаления суставов (чаще всего мелких) - так называемого острого подагрического артрита. Заболевание может прогрессировать в хронический подагрический артрит.

Поскольку лейкоциты фагоцитируют кристаллы уратов, то причиной воспаления является разрушение лизосомальных мембран лейкоцитов кристаллами мочевой кислоты. Освободившиеся лизосомальные ферменты выходят в иитозоль и разрушают клетки, а продукты клеточного катаболизма вызывают воспаление.

Общий фонд сывороточных уратов в норме составляет

1,2 г у мужчин и 0,6 г у женщин. При подагре без образования тофусов (т.е. подагрических узлов, в которых накапливаются ураты натрия и мочевая кислота) количество уратов возрастает до 2-4 г, а у пациентов с тяжёлой формой болезни, сопровождающейся ростом тофусов, может достигать 30 г.

Подагра - распространённое заболевание, в разных странах ею страдают от 0,3 до 1,7% населения. А поскольку сывороточный фонд уратов у мужчин в 2 раза больше, чем у женщин, то они и болеют в 20 раз чаще, чем женщины.

Как правило, подагра генетически детерминирована и носит семейный характер. Она вызвана нарушениями в работе ФРДФ синтетазы или ферментов "запасного" пути: гипоксантин-гуанин- или аденинфосфорибозилтрансфераз.

К другим характерным проявлениям подагры относят нефропатию, при которой наблюдают образование уратных камней в мочевыводящих путях.

Полиморфные варианты ФРДФ синтетазы

Активность ФРДФ синтетазы, катализирующей образование ФРДФ, строго контролируется пуриновыми нуклеотидами. Мутации в гене ФРДФ синтетазы привели к появлению полиморфных вариантов фермента, которые характеризуются аномальным ответом на обычные регуляторные факторы: концентрацию рибозо-5-фосфата и пуриннуклеотидов. Как правило, наблюдается суперактивация фермента. Пуриновые нуклеотиды синтезируются со скоростью, почти независимой от нужд клетки. Это вызывает ингибирование запасных "путей спасения", усиление катаболизма избыточного количества нуклеотидов, повышение продукции мочевой кислоты, гиперурикемию и подагру (табл. 10-1).

Примерно у 40% больных одной из форм гликогеноза - болезнью Гирке (недостаточностью глюкозо-6-фосфатазы) сопутствующей патологией является подагра. Снижение способности печени секретировать глюкозу в кровь увеличивает использование глюкозо-6-фосфата в пентозофосфатном пути. Образуются большие количества рибозо-5-фосфата, которые могут стимулировать избыточный синтез, а следовательно, и катаболизм пуриновых нуклеотидов.

Б. Недостаточность ферментов "запасных путей" синтеза пуриновых нуклеотидов. Синдром Лёша-Нихена

В ряде случаев причиной гаперурикемии, избыточной экскреции пуринов с мочой и подагры являются нарушения в работе ферментов "пути спасения" пуриновых оснований (табл. 10-1). Гипоксантин-гуанин фосфорйбозилтранс-фераза катализирует реакцию превращения гуанина и гапоксантина в соответствующие нукле-отиды (рис. 10-7). Обнаружены полиморфные варианты гипоксантин-гуанинфосфорибозил-трансферазы со сниженной ферментативной активностью, что:

  • уменьшает повторное использование пуриновых оснований, и они превращаются в мочевую кислоту;
  • увеличивает синтез пуриновых нуклеотидов de novo из-за слабого использования ФРДФ в реакциях реутилизации и увеличения его концентрации в клетке. Адениловые и гуаниловые нуклеотиды образуются в количествах, превышающих потребности клеток, а это способствует усилению их катаболизма.

Синдром Лёша-Нихена - тяжёлая форма гиперурикемии, которая наследуется как рецессивный признак, сцепленный с Х-хромосомой, и проявляется только у мальчиков.

Болезнь вызвана полным отсутствием активности гипоксантин-гуанинфоефорибозилтранс-феразы и сопровождается гиперурикемией с содержанием мочевой кислоты от 9 до 12 мг/дл, что превышает растворимость уратов при нормальном рН плазмы. Экскреция мочевой кислоты у больных с синдромом Лёша-Нихена превышает 600 мг/сут и требует для выведения этого количества продукта не менее 2700 мл мочи.

У детей с данной патологией в раннем возрасте появляются тофусы, уратные камни в моче-выводящих путях и серьёзные неврологические отклонения, сопровождающиеся нарушением речи, церебральными параличами, снижением интеллекта, склонностью к нанесению себе увечий (укусы губ, языка, пальцев).

В первые месяцы жизни неврологические расстройства не обнаруживаются, но на пелёнках отмечают розовые и оранжевые пятна, вызванные присутствием в моче кристаллов мочевой кислоты. При отсутствии лечения больные погибают в возрасте до 10 лет из-за нарушения функции почек.

Полная потеря активности аденинфосфорибозилтрансферазы не столь драматична, как отсутствие

Таблица 10-1. Гиперурикемия, вызванная дефектами в работе ферментов обмена пуриннуклеотидов

Устойчивость к ретроингибированию

Снижение К m для рибозо-5-фосфата

гипоксантин-гуанинфосфорибозилгрансферазы, однако и в этом случае нарушение повторного использования аденина вызывает гиперурикемию и почечнокаменную болезнь, при которой наблюдается образование кристаллов 2,8-дигидроксиаденина.

В. Лечение гиперурикемии

Основным препаратом, используемым для лечения гиперурикемии, является аллопуринол - структурный аналог гипоксантина (рис. 10-11).

Рис. 10-11. Строение аллопуринола и гипоксантина.

Аллопуринол оказывает двоякое действие на обмен пуриновых нуклеотидов:

  • ингибирует ксантиноксидазу и останавливает катаболизм пуринов на стадии образования гипоксантина, растворимость которого почти в 10 раз выше, чем мочевой кислоты. Действие препарата на фермент объясняется тем, что сначала он, подобно гипоксанти-ну, окисляется в гидроксипуринол, но при этом остаётся прочно связанным с активным центром фермента, вызывая его инактивацию;
  • с другой стороны, будучи псевдосубстратом, аллопуринол может превращаться в нуклеотид по "запасному" пути и ингибировать ФРДФ синтетазу и амидофосфорибозилтрансферазу, вызывая торможение синтеза пуринов de novo.

При лечении аллопуринолом детей с синдромом Лёша-Нихена удаётся предотвратить развитие патологических изменений в суставах и почках, вызванных гиперпродукцией мочевой кислоты, но препарат не излечивает аномалии в поведении, неврологические и психические расстройства.

Гипоурикемия и возросшая экскреция гипоксантина и ксантина может быть следствием недостаточности ксантиноксидазы, вызванной нарушениями в структуре гена этого фермента, либо результатом повреждения печени.

Образование мочевой кислоты биохимия

III. КАТАБОЛИЗМ ПУРИНОВЫХ НУКЛЕОТИДОВ

У человека основной продукт катаболизма пуриновых нуклеотидов - мочевая кислота. Её образование идёт путём гидролитического отщепления фосфатного остатка от нуклеотидов с помощью нуклеотидаз или фосфатаз, фосфоролиза N-гликозидной связи нуклеозидов пуриннуклеозидфосфорилазой, последующего дезами-нирования и окисления азотистых оснований (рис. 10-9).

От АМФ и аденозина аминогруппа удаляется гидролитически аденозиндезаминазой с образованием ИМФ или инозина. ИМФ и ГМФ превращаются в соответствующие нуклеозиды: инозин и гуанозин под действием 5´-нуклеотидазы. Пуриннуклеозидфосфорилаза катализирует расщепление N-гликозидной связи в инозине и гуанозине с образованием рибозо-1-фосфата и азотистых оснований: гуанина и гипоксантина. Гуанин дезаминируется и превращается в ксантин, а гипоксантин окисляется в ксантин с помощью ксантиноксидазы, которая катализирует и дальнейшее окисление ксантина в мочевую кислоту.

Ксантиноксидаза - аэробная оксидоредуктаза, простетическая группа которой включает ион молибдена, железа (Fe 3+) и FAD. Подобно другим оксидазам, она окисляет пурины молекулярным кислородом с образованием пероксида водорода. В значительных количествах фермент обнаруживается только в печени и кишечнике.

Мочевая кислота удаляется из организма главным образом с мочой и немного через кишечник с фекалиями. У всех млекопитающих, кроме приматов и человека, имеется фермент уриказа, расщепляющий мочевую кислоту с образованием аллантоина, хорошо растворимого в воде (рис. 10-10).

Амфибии, птицы и рептилии, подобно человеку, лишены уриказы и экскретируют мочевую

Рис. 10-9. Катаболизм пуриновых нуклеотидов до мочевой кислоты.

кислоту и гуанин в качестве конечных продуктов обмена.

Мочевая кислота является слабой кислотой. Содержание недиссоциированной формы и солей (уратов) зависит от рН раствора. При физиологических значениях рН у мочевой кислоты может диссоциировать только один протон из трёх (рК = 5,8), поэтому в биологических жидкостях присутствует как недиссоциированная кислота в комплексе с белками, так и её натриевая соль.

В сыворотке крови в норме содержание мочевой кислоты составляет 0,15-0,47 ммоль/л или 3-7 мг/дл. Ежесуточно из организма выводится от 0,4 до 0,6 г мочевой кислоты и уратов.

Мочевая кислота в крови: нормы и отклонения, почему повышается, диета, чтобы понизить

Казалось бы, такое вещество, как мочевая кислота, трудно сочетается с кровью. Вот в моче – другое дело, там ей место быть. Между тем, в организме постоянно идут различные обменные процессы с образованием солей, кислот, щелочей и других химических соединений, которые выводятся мочой и желудочно-кишечным трактом из организма, поступая туда из кровеносного русла.

Мочевая кислота (МК) тоже присутствует в крови, она образуется в небольших количествах из пуриновых оснований. Необходимые организму пуриновые основания, в основном, поступают извне, с пищевыми продуктами, и используются в синтезе нуклеиновых кислот, хотя в некоторых количествах вырабатываются организмом тоже. Что касается мочевой кислоты, то она является конечным продуктом пуринового обмена и сама по себе организму, в общем-то, не нужна. Ее повышенный уровень (гиперурикемия) указывает на нарушение пуринового обмена и может грозить отложением ненужных человеку солей в суставах и других тканях, вызывая не только неприятные ощущения, но и тяжелые болезни.

Норма мочевой кислоты и повышенная концентрация

Норма мочевой кислоты в крови у мужчин не должна превышать 7,0 мг/дл (70,0 мг/л) или находится в пределах 0,24 – 0,50 ммоль/л. У женщин норма несколько ниже – до 5,7 мг/дл (57 мг/л) или 0,16 – 0,44 ммоль/л соответственно.

Образованная в ходе пуринового обмена МК должна раствориться в плазме, чтобы в дальнейшем уйти через почки, однако плазма не может растворить мочевой кислоты более чем 0,42 ммоль/л. С мочой из организма в норме удаляется 2,36 – 5,90 ммоль/сутки (250 – 750 мг/сут).

При своей высокой концентрации мочевая кислота образует соль (урат натрия), которая откладывается в тофусы (своеобразные узелки) в различных видах тканей, обладающих сродством к МК. Чаще всего тофусы можно наблюдать на ушных раковинах, кистях рук, стопах, но излюбленным местом являются поверхности суставов (локоть, голеностоп) и сухожильные влагалища. В редких случаях они способны сливаться и образовывать язвы, из которых в виде белой сухой массы выходят кристаллы уратов. Иногда ураты обнаруживаются в синовиальных сумках, вызывая воспаление, боль, ограничение подвижности (синовит). Соли мочевой кислоты можно найти в костях с развитием деструктивных изменений костных тканей.

Уровень мочевой кислоты в крови зависит от ее продукции в ходе пуринового обмена, клубочковой фильтрации и реабсорбции, а также канальцевой секреции. Чаще всего повышенная концентрация МК является следствием неправильного питания, особенно, это касается людей, имеющих наследственную патологию (аутосомно-доминантные или связанные с Х-хромосомой ферментопатии), при которой увеличивается выработка мочевой кислоты в организме или замедляется ее выведение. Генетически обусловленная гиперурикемия называется первичной , вторичная вытекает из ряда других патологических состояний или формируется под воздействием образа жизни.

Таким образом, можно сделать вывод, что причинами повышения мочевой кислоты в крови (излишняя продукция или замедленное выведение) являются:

  • Генетический фактор;
  • Неправильное питание;
  • Почечная недостаточность (нарушение клубочковой фильтрации, уменьшение канальцевой секреции – МК из кровяного русла не переходит в мочу);
  • Ускоренный обмен нуклеотидов (миелома, лимфо- и миелопролиферативные болезни, гемолитическая анемия).
  • Применение салициловых препаратов и мочегонных средств.

Главные причины повышения…

Одной из причин повышения мочевой кислоты в крови медицина называет неправильное питание, а именно, потребление неразумного количества продуктов, аккумулирующих пуриновые вещества. Это – копчености (рыба и мясо), консервы (особенно - шпроты), печень говяжья и свиная, почки, жареные мясные блюда, грибочки и другие всякие вкусности. Большая любовь к этим продуктам приводит к тому, что нужные организму пуриновые основания усваиваются, а конечный продукт – мочевая кислота, оказывается лишней.

Следует отметить, что продукты животного происхождения, играющие не последнюю роль в возрастании концентрации мочевой кислоты, поскольку несут пуриновые основания, как правило, содержат большое количество холестерина . Увлекаясь такими любимыми блюдами, не соблюдая меры, человек может наносить двойной удар по своему организму .

Диета, обедненная пуринами, состоит из молочных продуктов, груш и яблок, огурцов (не маринованных, конечно), ягод, картофеля и других овощей в свежем виде. Консервация, жарка или всякое «колдовство» над полуфабрикатами заметно ухудшают качество пищи в этом плане (содержание пуринов в еде и накопление мочевой кислоты в организме).

…И главные проявления

Лишняя мочевая кислота разносится по организму, где выражение ее поведения может иметь несколько вариантов:

  1. Кристаллы уратов откладываются и образуют микротофусы в хрящевых, костных и соединительных тканях, вызывая подагрические заболевания. Накопленные в хряще ураты, нередко освобождаются из тофусов. Обычно этому предшествует воздействие провоцирующих гиперурикемию факторов, например, новое поступление пуринов и, соответственно, мочевой кислоты. Кристаллы солей захватываются лейкоцитами (фагоцитоз) и обнаруживаются в синовиальной жидкости суставов (синовит). Это – острый приступ подагрического артрита .
  2. Ураты, попадая в почки, могут откладываться в интерстициальной почечной ткани и приводить к формированию подагрической нефропатии, а следом - и почечной недостаточности. Первыми симптомами болезни можно считать перманентно низкий удельный вес мочи с появлением в ней белка и повышение артериального давления (артериальная гипертензия), в дальнейшем происходят изменения органов выделительной системы, развивается пиелонефрит. Завершением процесса считают формирование почечной недостаточности .
  3. Повышенное содержание мочевой кислоты, образование солей (ураты и кальциевые конкременты) при ее задержке в почках + повышенная кислотность мочи в большинстве случаев приводит к развитию почечнокаменной болезни.

варианты поражения мочевой кислотой почек и суставов

Все движения и превращения мочевой кислоты, обусловливающие ее поведение в целом, могут быть взаимосвязаны или существовать изолированно (как у кого пойдет).

Мочевая кислота и подагра

Рассуждая о пуринах, мочевой кислоте, диете, никак не получается обойти вниманием такую неприятную болезнь, как подагра . В большинстве случаев ее связывают с МК, к тому же редкой ее назвать трудно.

Подагра преимущественно развивается у лиц мужского пола зрелого возраста, иной раз имеет семейный характер. Повышенный уровень мочевой кислоты (гиперурикемия) в биохимическом анализе крови наблюдается задолго до появления симптомов заболевания.

Первый приступ подагры тоже яркостью клинической картины не отличается, всего-то – заболел большой палец какой-нибудь ноги, а дней через пять человек опять чувствует себя вполне здоровым и забывает об этом досадном недоразумении. Следующая атака может проявиться через большой промежуток времени и протекает более выраженно:

  • Боль в мелких и крупных суставах (пальцы ног и рук, голеностопы, колени);
  • Повышение температуры тела;
  • Увеличение количества лейкоцитов в общем анализе крови, ускорение СОЭ;

суставы, наиболее часто поражаемые подагрой

Лечить болезнь непросто, а иногда и не безобидно для организма в целом. Терапия, направленная на проявление патологических изменений включает:

  1. При остром приступе – колхицин, который снижает интенсивность болей, но склонен накапливаться в белых клетках крови, препятствовать их передвижению и фагоцитозу, а, следовательно, участию в воспалительном процессе. Колхицин угнетает кроветворение;
  2. Нестероидные противовоспалительные препараты – НПВП, обладающие обезболивающим и противовоспалительным эффектом, но негативно влияющие на органы пищеварительного тракта;
  3. Диакарб препятствует камнеобразованию (участвует в их растворении);
  4. Противоподагрические препараты пробенецид и сульфинпиразон способствуют усиленному выведению МК с мочой, но применяются с осторожностью при изменениях в мочевыводящих путях, параллельно назначают большое потребление жидкости, диакарб и отщелачивающие препараты. Аллопуринол снижает продукцию МК, способствует обратному развитию тофусов и исчезновению других симптомов подагры, поэтому, наверное, этот препарат один из лучших средств лечения подагры.

Эффективность лечения пациент может значительно повысить, если возьмется за диету, содержащую минимальное количество пуринов (только для нужд организма, а не для накопления).

Диета при гиперурикемии

Малокалорийная диета (лучше всего подходит стол №5, если у пациента все в порядке с весом), мясо и рыбка – без фанатизма, граммов 300 в недельку и не более. Это поможет больному снизить мочевую кислоту в крови, жить полноценной жизнью, не мучаясь приступами подагрического артрита. Пациентам с признаками этой болезни, имеющим лишний вес, рекомендуется использовать стол №8, не забывая разгружаться каждую неделю, но при этом помнить, что полное голодание запрещено. Отсутствие еды в самом начале диеты быстренько поднимет уровень МК и обострит процесс. А вот о дополнительном поступлении аскорбиновой кислоты и витаминов группы В следует подумать всерьез.

Все дни, пока будет длиться обострение заболевания, должны протекать без употребления мясных и рыбных блюд. Пища должна быть не твердой, впрочем, лучше вообще потреблять ее в жидком виде (молоко, фруктовые кисели и компоты, соки из фруктов и овощей, супы на овощном бульоне, каша-«размазня»). Кроме этого, пациент должен много пить (не меньше 2 литров в сутки).

Следует иметь в виду, что значительное количество пуриновых оснований имеется в таких деликатесах, как:

  1. Мозги, зобная железа;
  2. Печень (прежде всего – говяжья);
  3. Язык и почки (тоже изъятые у крупного рогатого скота);
  4. «Молодое» мясо (телятина, цыпленок);
  5. Жирное мясо (независимо от вида животных);
  6. Копчености любых видов;
  7. Консервы в масле (шпроты, сардины, сельдь);
  8. Крутые наваристые рыбные и мясные бульоны.
  9. Свежие гороховые, чечевичные, фасолевые стручки;
  10. Грибы, особенно, сушеные;
  11. Шпинат, щавель;
  12. Брюссельская капуста;
  13. Кофе и какао.

Напротив, минимальная концентрация пуринов отмечается в:

  1. Всех молочных продуктах, начиная с самого молока;
  2. Яйцах домашней птицы;
  3. Икре (как ни странно);
  4. Картошке, салате, морковке, огурцах;
  5. Хлебных изделиях;
  6. Крупах всех видов;
  7. Любых орехах;
  8. Апельсинах, сливах, абрикосах;
  9. Грушах и яблоках.

Это краткий список продуктов, которые запрещены или разрешены пациентам, обнаружившим первые признаки подагры и повышенную мочевую кислоту в анализе крови. Снизить мочевую кислоту в крови поможет вторая часть списка (молоко, овощи и фрукты).

Мочевая кислота понижена. Что это может значить?

Мочевая кислота в крови понижена, в первую очередь, при использовании противоподагрических средств, что абсолютно естественно, ведь они снижают синтез МК.

Кроме этого, причиной понижения уровня мочевой кислоты может стать уменьшение канальцевой реабсорбции, наследственно обусловленное снижение продукции МК и в редких случаях – гепатиты и анемия.

Между тем, пониженный уровень конечного продукта метаболизма пуринов (ровно, как и повышенный) в моче связан с более широким кругом патологических состояний, однако анализ мочи на содержание МК не такой уж и частый, он обычно интересует узких специалистов, занимающихся какой-то конкретной проблемой. Для самодиагностики пациентам он вряд ли может пригодиться.

1. Является мощным стимулятором центральной нервной системы, ингибируя фосфодиэстеразу, которая служит посредником действия гормонов адреналина и норадреналина. Мочевая кислота пролонгирует (продлевает) действие этих гормонов на ЦНС.

2. Обладает антиоксидантными свойствами – способна взаимодействовать со свободными радикалами.

Уровень мочевой кислоты в организме контролируется на генетическом уровне. Для людей с высоким уровнем мочевой кислоты характерен повышенный жизненный тонус.

Однако повышенное содержание мочевой кислоты в крови (гиперурикемия ) небезопасно. Сама мочевая кислота и, особенно, ее соли ураты (натриевые соли мочевой кислоты) плохо растворимы в воде. Даже при незначительном повышении концентрации они начинают начинают выпадать в осадок и кристаллизоваться, образуя камни. Кристаллы воспринимаются организмом как чужеродный объект. В суставах они фагоцитируются макрофагами, сами клетки при этом разрушаются, из них освобождаются гидролитические ферменты. Это приводит к воспалительной реакции, сопровождающейся сильнейшими болями в суставах. Такое заболевание называется подагра . Другое заболевание, при котором кристаллы уратов откладываются в почечной лоханке или в мочевом пузыре, известно как мочекаменная болезнь .

Для лечения подагры и мочекаменной болезни применяются:

    ингибиторы фермента ксантиноксидазы. Например, аллопуринол – вещество пуриновой природы, является конкурентным ингибитором фермента. Действие этого препарата приводит к повышению концентрации гипоксантина. Гипоксантин и его соли лучше растворимы в воде, и легче выводятся из организма.

    диетическое питание, исключающее продукты, богатые нуклеиновыми кислотами, пуринами и их аналогами: икра рыб, печень, мясо, кофе и чай.

    соли лития, поскольку они лучше растворимы в воде, чем ураты натрия.

Синтез нуклеиновых кислот синтез мононуклеотидов

Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO 2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает.

РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ

    Аспарагин . Является донором амидной группы.

    Аспарагиновая кислота .

а) Является донором аминогруппы

    Глицин

а) Является донором активного С 1 .

б) Участвует в синтезе всей молекулой.

    Серин . Является донором активного С 1 .

ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ

В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С 1 -группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина В С – фолиевой кислоты . Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ . Н 2 -зависимой редуктазы , и превращается в тетрагидрофолиевую кислоту (ТГФК).

Активный С­ 1 извлекается из глицина или серина.

В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С 1 . Схематически процесс можно представить так:

НАДН 2 , который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений:

    Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов.

    Метиленовая группировка может видоизменяться до:

Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов.

Поэтому любая из группировок, связанная с ТГФК, называется активным С 1 .

Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции:

Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра.

После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.

ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ:

Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид.

При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.

СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)

Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин.

Пуриновое кольцо строится из СО 2 , аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.

Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.

Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.

Серин: тоже является донором одноуглеродного радикала.

ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин

Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.

На второй стадии фосфорибозиламин взаимодействует с глицином.

Третья стадия - включение углеродного атома, донором которого является глицин или серин.

Затем достраивается шестичленный фрагмент пуринового кольца:

4-ая стадия - карбоксилирование с помощью активной формы СО 2 при участии витамина Н - биотина.

5-ая стадия - аминирование с участием аминогруппы из аспартата.

6-ая стадия - аминирование за счет аминогруппы глутамина.

7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ.

Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.

В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.

Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.

«Подагра же пошла по богачам и знатным». Эта строка из басни Крылова. Стих называется «Подагра и паук». Болезнью богатых подагру считали в былые времена, когда была дефицитом и стоила больших.

Позволить себе приправу могла лишь знать, порой, налегая на нее. В итоге, откладывалась в суставах, причиняя боль при движениях. Болезнь является нарушением обменных процессов.

Откладывается не просто соль, а соли мочевой кислоты . Их именуют уратами. Переизбыток же в организме мочевой называется гиперурекимией. Ее симптомом могут стать точки на, напоминающие укусы комаров.

Разрушение суставов при повышенной мочевой кислоте

В современности они проявляются не только на богачах. Соль доступна всем, как и многие другие продукты, содержащие ураты. Бывает и пониженное содержание мочевины. Но, прежде чем разбирать диагнозы, ознакомимся со свойствами.

Свойства мочевой кислоты

Героиню открыл Карл Шееле. Шведский химик извлек вещество из почечных. Поэтому, химик назвал соединение. Уже после Шееле обнаружил в моче, но переименовывать вещество не стал.

Это сделал Антуан Фуркруа. Однако, установить элементарный состав соединения не смог ни он, ни Шееле. Формулу узнал Лютус Либих спустя почти век, в середине 19-го столетия. В молекуле героини статьи оказались 5 атомов, 4 , столько же и 3 кислорода.

Что касается первичных форм нефропатии, то они в большинстве случаев возникают в результате нарушений метаболизма кислоты, которое передалось человеку по наследству. А вот вторичные формы данной патологии принято считать осложнениями таких недугов как хроническая гемолитическая, эритремия либо миеломная болезнь . Нередко данные формы дают о себе знать и на фоне продолжительного использования таких лекарственных средств как тиазидовые диуретики, циклоспорин А, цитостатики, салицилаты и так далее.




© 2024
womanizers.ru - Журнал современной женщины