16.06.2019

Гидрофильно-липофильные мазевые основы. Биодоступность лекарственных средств Сравнительная характеристика биодоступности липофильных и гидрофильных лекарственных


Вопросы компьютерных тестов по Фармакологии на занятии № 4 по теме

«Фармакокинетика» - 200 8 год

Понятие «фармакокинетика» включает:

Фармакологические эффекты.

$Всасывание лекарственных веществ (ЛВ).

$Распределение ЛВ по органам и тканям.

Взаимодействие ЛВ со специфическими рецепторами.

$Депонирование ЛВ в организме.

$Биотрансформацию ЛВ.

$Выведение ЛВ из организма.

Введение лекарственных средств через пищеварительный тракт обозначают термином:

$Энтеральное введение.

Парентеральное введение.

Введение лекарственных средств, минуя пищеварительный тракт, обозначают термином:

Энтеральное введение.

$Парентеральное введение.

Энтеральные пути введения лекарственных средств:

$Сублингвально.

Подкожно.

$Трансбуккально.

$В двенадцатиперстную кишку.

$Ректально.

Внутримышечно.

Парентеральные пути введения лекарственных средств:

$Подкожно.

$Внутримышечно.

$Внутриартериально.

$Внутривенно.

Трансбуккально.

$Трансдермально.

Ректально.

Для введения лекарственных веществ внутрь характерны:

$Зависимость всасывания слабых электролитов от рН среды.

$Зависимость всасывания веществ от содержимого и моторики ЖКТ.

$Всасывание лекарственных веществ в воротную вену.

Всасывание лекарственных веществ в системный кровоток, минуя печень.

$Элиминация при первом прохождении через печень.

Внутримышечно можно вводить:

$Изотонические растворы.

Гипертонические растворы.

$Масляные растворы.

Взвеси веществ нельзя вводить:

$Внутривенно.

Подкожно.

Внутримышечно.

$Внутриартериально.

Под оболочки мозга.

Лекарственные вещества всасываются непосредственно в системный кровоток при введении:

$Сублингвально.

$Трансбуккально.

В двенадцатиперстную кишку.

В вену нельзя вводить:

Гипертонические растворы.

$Суспензии.

$Масляные растворы.

Лекарственные препараты должны быть стерильными при введении:

$Подкожно.

Сублингвально.

$Внутримышечно.

$Внутривенно.

Интраназально.

$Под оболочки мозга.

Ингаляционно.

При сублингвальном и трансбуккальном введении лекарственные вещества:

Всасываются с большей поверхности, чем при введении внутрь.

$Начинают действовать быстрее, чем при введении внутрь.

$Попадают в системный кровоток, минуя печень.

$Всасываются путем пассивной диффузии.

Лучше всасываются, если они гидрофильны.

Всасывание лекарственных веществ из полости рта может быть ограничено вследствие:

$Небольшой величины всасывающей поверхности.

Недостаточного кровоснабжения слизистой оболочки полости рта.

$Гидрофильности соединений.

Высокой липофильности соединений.

Основной механизм всасывания лекарственных веществ в пищеварительном тракте:

Фильтрация.

Пиноцитоз.

$Пассивная диффузия.

Активный транспорт.

Облегченная диффузия.

Пассивная диффузия липофильных веществ через мембраны клеток определяется:

$Степенью липофильности вещества.

Диаметром пор мембран.

$Трансмембранным градиентом концентрации вещества.

$Величиной всасывающей поверхности.

$Толщиной мембраны

Всасывание лекарственных веществ из кишечника против градиента концентрации может обеспечиваться:

Фильтрацией.

Пассивной диффузией.

$Активным транспортом.

Облегченной диффузией.

Активный транспорт лекарственных веществ через мембраны:

$Требует затраты энергии.

Осуществляется по градиенту концентрации.

$Специфичен по отношению к определенным веществам.

$Является насыщаемым процессом.

*1 8

Основные механизмы всасывания лекарственных веществ при подкожном и внутримышечном введении:

$Пассивная диффузия.

Активный транспорт.

Облегченная диффузия.

$Фильтрация через межклеточные промежутки.

* 19

#1 Всасывание лекарственных веществ путем фильтрации:

Не зависит от величины молекул лекарственных веществ.

Характерно для липофильных лекарственных веществ.

$Характерно для гидрофильных веществ.

$Зависит от величины межклеточных промежутков.

Всасывание из ЖКТ слабых электролитов при повышении степени их ионизации:

Усиливается.

$Ослабляется.

Не изменяется.

*2 1

Всасывание слабых кислот из желудочно-кишечного тракта увеличивается при изменении рН среды:

$В кислую сторону.

В щелочную сторону.

Всасывание слабых оснований из желудочно-кишечного тракта увеличивается при изменении рН среды:

В кислую сторону.

$В щелочную сторону.

*2 3

При внутримышечном введении хорошо всасываются:

Только неполярные липофильные соединения.

Только полярные гидрофильные соединения.

$Как липофильные, так и гидрофильные соединения.

При внутримышечном введении гидрофильные полярные соединения:

$Хорошо всасываются в кровь.

Не всасываются.

Всасываются только в ионизированном состоянии.

*2 5

При подкожном и внутримышечном введении лекарственные вещества всасываются в основном путем:

$Пассивной диффузии.

Активного транспорта.

Облегченной диффузии.

$Фильтрации через межклеточные промежутки.

*2 6

Путем фильтрации через межклеточные промежутки всасываются:

Липофильные соединения.

Как липофильные, так и гидрофильные соединения.

$Гидрофильные соединения.

*2 7

При ингаляционном введении лекарственные вещества:

$всасываются путем пассивной диффузии.

Хорошо всасываются если они гидрофильны.

Попадают в системный кровоток через печеночный барьер.

$непосредственно всасываются в системный кровоток.

* 28

Через гистогематические барьеры из крови в ткани легче проникают:

$Неионизированные молекулы слабых электролитов.

Более равномерно распределяются в организме:

$Липофильные соединения.

Гидрофильные соединения.

Связывание лекарственных веществ с белками плазмы крови:

$Относится к процессу депонирования лекарственных веществ.

Является строго специфичным (избирательным по отношению к определенным веществам).

$Является конкурентным процессом (одно вещество может вытеснять другое из связи с белком).

$Пролонгирует действие лекарственных веществ.

Лекарственные вещества, связанные с белками плазмы крови:

$ Не проникают через эндотелий сосудов.

Обладают фармакологической активностью.

$Высвобождаются из связи с белками при снижении концентрации свободного вещества в крови.

$Являются депо данного лекарственного вещества в крови.

Фильтруются в почечных клубочках.

*3 2

Лекарственные вещества, интенсивно связывающиеся с белками плазмы крови:

Быстрее метаболизируются.

Быстрее выводятся из организма.

$Действуют более продолжительно.

*3 3

Как связывание с белками плазмы крови влияет на почечную экскрецию лекарственных веществ?

Ускоряет.

$Замедляет.

Не изменяет.

*3 4

К процессам метаболической трансформации относятся:

$Гидролиз.

Образование соединений с глюкуроновой кислотой.

$Восстановление.

Метилирование.

$Окисление.

*3 5

К процессам конъюгации относятся:

Гидролиз.

$Ацетилирование.

$ Образование соединений с глюкуроновой кислотой.

$Метилирование.

Окисление.

*3 6

Преимущественная направленность процесса биотрансформации лекарственных веществ под влиянием микросомальных ферментов:

$Повышение полярности.

Повышение липофильности.

$Повышение гидрофильности.

Повышение токсичности.

*3 7

Микросомальные ферменты печени воздействуют преимущественно на:

$Липофильные соединения.

Гидрофильные соединения.

* 38

Микросомальные ферменты печени воздействуют на липофильные соединения, потому что:

$Липофильные вещества легко проникают через мембраны гепатоцитов.

Микросомальные ферменты обладают субстратной специфичностью в отношении липофильных веществ.

Липофильные вещества взаимодействуют со специфическими рецепторами гепатоцитов.

* 39

$Может происходить образование активных метаболитов.

Активность веществ всегда снижается.

*4 0

При биотрансформации лекарственных веществ:

$Может происходить образование более токсичных веществ.

Токсичность веществ всегда снижается.

*4 1

Метаболиты и конъюгаты лекарственных веществ, по сравнению с исходными веществами, как правило:

$Более гидрофильны.

Более липофильны.

$Менее токсичны.

*4 2

Биотрансформация лекарственных веществ обычно приводит к образованию метаболитов и конъюгатов, которые:

$Хуже реабсорбируются в почечных канальцах.

Лучше реабсорбируются в почечных канальцах.

$Быстрее выводятся из организма.

Медленнее выводятся из организма.

*4 3

Скорость биотрансформации лекарственных веществ снижена:

$У детей в первые месяцы жизни.

$У лиц пожилого возраста.

$При заболеваниях печени.

При применении индукторов микросомальных ферментов печени.

$При применении ингибиторов микросомальных ферментов печени.

*4 4

Скорость биотрансформации большинства лекарственных веществ увеличивается:

$При индукции микросомальных ферментов печени.

При ингибировании микросомальных ферментов печени.

При связывании веществ с белками плазмы крови.

При заболеваниях печени.

$При увеличении скорости печеночного кровотока.

*4 5

Выделение большинства лекарственных веществ и продуктов их биотрансформации из организма происходит преимущественно:

$Через почки.

$С желчью в просвет кишечника.

Через легкие.

*4 6

Лекарственные вещества могут выделяться:

$Потовыми железами.

$Слезными железами.

$Слюнными железами.

$Молочными железами.

$Бронхиальными железами.

Ничем из перечисленного.

Газообразные лекарственные вещества выделяются преимущественно:

Почками.

$Через легкие.

Через кожу.

В почечных канальцах хорошо реабсорбируются:

Полярные гидрофильные соединения.

$Неполярные липофильные соединения.

* 49

Почками эффективнее выводятся:

$Полярные гидрофильные соединения.

Неполярные липофильные соединения.

Пассивная реабсорбция в почечных канальцах характерна для:

Полярных гидрофильных соединений.

$Неполярных липофильных соединений.

Почечная экскреция слабых электролитов при повышении их ионизации:

$Увеличивается.

Уменьшается.

Не изменяется.

Для ускорения выведения почками слабокислых соединений реакцию первичной мочи необходимо изменить:

В кислую сторону.

$В щелочную сторону.

Для ускорения выведения почками слабых оснований реакцию первичной мочи необходимо изменить:

В щелочную сторону.

$В кислую сторону.

В почках ограничена фильтрация:

Липофильных веществ.

Гидрофильных веществ.

Слабых кислот.

Слабых оснований.

$Веществ, связанных с белками плазмы крови.

Липофильные вещества по сравнению с гидрофильными:

$Хорошо всасываются при энтеральном введении.

$Более равномерно распределяются в органах и тканях.

Выводятся, преимущественно, в неизмененном виде.

$Легко подвергаются реабсорбции в почках.

Не проникают через гистогематические барьеры.

Полярные лекарственные вещества:

Хорошо всасываются при энтеральном введении путем пассивной диффузии.

$Плохо проходят через гистогематические барьеры.

Выводятся, преимущественно, в виде метаболитов и конъюгатов.

Легко подвергаются реабсорбции в почках.

$Быстро выводятся почками в неизмененном виде.

Понятие биодоступность определяется как:

Степень всасывания лекарственного вещества при введении внутрь.

$Часть введенной дозы лекарственного вещества, которая достигла системного кровотока.

Количество введенного вещества, которое достигло места действия.

Биодоступность лекарственного вещества при введении внутрь в основном зависит от:

$Степени всасывания вещества в ЖКТ.

Связывания с белками плазмы крови.

$Элиминации вещества при первом прохождении через печень

Период полуэлиминации (период полужизни) определяется как:

$Время, за которое концентрация вещества в плазме крови снижается на 50%.

Время, равное половине периода полной элиминации вещества.

Время, за которое количество вещества в организме снижается на 50%.

$Неполярные липофильные вещества хорошо всасываются из ЖКТ.

$Основной механизм всасывания лекарственных веществ из ЖКТ - пассивная диффузия.

Гидрофильные вещества всасываются из ЖКТ лучше, чем липофильные.

Активный транспорт - основной механизм всасывания веществ из ЖКТ.

Отметьте правильные утверждения:

$Неполярные липофильные вещества всасываются с поверхности кожи и слизистых оболочек путем пассивной диффузии.

$Всасывание полярных гидрофильных веществ с поверхности кожи и слизистых оболочек затруднено.

Всасывание веществ с поверхности кожи и слизистых оболочек не зависит от степени ионизации.

Отметьте правильные утверждения:

$Основные пути всасывания лекарственных веществ при подкожном и внутримышечном введении - пассивная диффузия и фильтрация.

При подкожном и внутримышечном введении липофильные вещества всасываются путем фильтрации.

$Липофильные вещества могут всасываться путем пассивной диффузии при всех путях введения.

$Гидрофильные вещества хорошо всасываются при подкожном и внутримышечном введении.

Отметьте правильные утверждения:

$Липофильные вещества в отличие от гидрофильных лучше всасываются из ЖКТ и равномерно распределяются в организме.

Липофильные вещества быстрее выводятся почками, чем гидрофильные вещества.

$Гидрофильные вещества в отличие от липофильных хуже всасываются из ЖКТ и не проникают через гисто-гематические барьеры.

Отметьте правильные утверждения:

Метаболиты и конъюгаты лекарственных веществ всегда менее активны и менее токсичны, чем исходные соединения.

$Метаболиты и конъюгаты липофильных веществ быстрее выводятся почками, чем исходные соединения.

$В результате биотрансформации лекарственных веществ может происходить образование активных соединений.

Отметьте правильные утверждения:

В результате биотрансформации всегда образуются менее активные вещества.

$В результате биотрансформации фармакологическая активность некоторых лекарственных веществ повышается.

$Пролекарство - это фармакологически неактивное вещество, которое в результате биотрансформации превращается в активное соединение.

Отметьте правильные утверждения:

$Депонирование лекарственного вещества в крови обусловлено, как правило, его связыванием с белками плазмы крови.

$Вещества, связанные с белками плазмы крови, не оказывают действие на органы и ткани.

Депонирование лекарственного вещества в органах и тканях уменьшает кажущийся объем распределения этого вещества.

Отметьте правильные утверждения:

Пассивная диффузия слабых электролитов (кислот и оснований) через биологические мембраны не зависит от рН среды.

$Слабокислые соединени могут всасываться из желудка.

$Слабые основания всасываются из кишечника легче, чем слабые кислоты.

$Степень ионизации слабых электролитов при определенных значениях рН зависит от их константы ионизации.

Отметьте правильные утверждения:

PHпервичной мочи не влияет на скорость выведения слабых электролитов.

Скорость выведения слабых кислот можно ускорить, уменьшая рН почечного фильтрата.

$Для ускорения выведения слабых кислот рН почечного фильтрата необходимо увеличивать.

$Для ускорения выведения слабых оснований рН почечного фильтрата необходимо снижать.

Отметьте правильные утверждения:

Понятие "элиминация" включает локализацию и виды действия лекарственных веществ.

Понятие "элиминация" включает распределение, биотрансформацию и экскрецию лекарственных веществ.

$Понятие "элиминация" включает биотрансформацию и экскрецию лекарственных веществ.

Константа скорости элиминации первого порядка показывает:

$Какая часть от имеющегося в организме количества вещества элиминируется из организма в единицу времени.

Какое количество вещества удаляется из организма в единицу времени посредством биотрансформации и экскреции.

Какое количество вещества элиминируется из организма в единицу времени.

Площадь под кривой, отражающей изменение концентрации вещества в плазме крови во времени:

Прямо пропорциональна вводимой дозе вещества.

$Прямо пропорциональна количеству вещества, достигшему системного кровотока.

$Используется при расчете биодоступности вещества.

Параметр «кажущийся объем распределения» показывает:

В каком объеме жидкости организма равномерно распределяется вещество.

$В каком объеме жидкости должно равномерно распределиться вещество, чтобы его концентрация равнялась концентрации вещества в плазме крови.

В каком объеме жидкости должно равномерно распределиться попавше в кровоток вещество, чтобы его концентрация равнялась концентрации в тканях.

* 73

Параметр «кажущийся объем распределения» лекарственного вещества:

$Дает представление об относительном распределении вещества между жидкостями организма (плазмой крови, интерстициальной и внутриклеточной жидкостями).

Позволяет судить о концентрации вещества в спинномозговой жидкости.

Коррелирует с концентрацией вещества в плазме крови.

* 74

Если кажущийся объем распределения лекарственного вещества равен 3 литрам, то данное вещество:

$Не выходит за пределы кровеносного русла.

Находится в плазме и межклеточной жидкости.

Равномерно распределяется в организме.

Депонировано в тканях.

* 75

Если кажущийся объем распределения лекарственного вещества равен 40 литрам, то данное вещество:

$Липофильное соединение.

Гидрофильное соединение.

$Хорошо проникает через клеточные мемраны.

Распределяется только в крови и интерстициальной жидкости.

$Относительно равномерно распределяется в организме.

* 76

Если кажущийся объем распределения лекарственного вещества - 15 литров, то данное вещество:

$Гидрофильное соединение.

Депонировано в тканях.

$Распределяется только в крови и интерстициальной жидкости.

* 77

Если кажущийся объем распределения лекарственного вещества равен 1000 литров, то данное вещество:

Не выходит за пределы кровеносного русла.

Распределяется только в экстрацеллюлярной жидкости.

Относительно равномерно распределяется в организме.

$Депонировано в тканях.

* 78

При отравлении веществом, объем распределения которого 2500 литров, проведение гемодиализа:

Неэффективно.

$Эффективно.

*7 9

Интенсивное связывание лекарственного вещества с белками плазмы крови:

$Может уменьшить объем распределения лекарственного вещества.

Может увеличить объем распределения лекарственного вещества.

Уменьшает биодоступность лекарственного вещества.

* 80

Интенсивное связывание лекарственного вещества с тканями:

Уменьшает объем распределения лекарственного вещества.

$Увеличивает объем распределения лекарственного вещества.

Увеличивает биодоступность лекарственного вещества.

$Замедляет элиминацию лекарственного вещества.

$Может вызвать эффект последействия

* 81

Элиминация, соответствующая кинетике 1-го порядка характеризуется:

$Элиминацией определенной фракции вещества в единицу времени.

Элиминацией постоянного количества вещества в единицу времени.

$Зависимостью скорости элиминации от концентрации лекарственного вещества в крови.

* 82

Системный клиренс характеризует:

Степень всасывания лекарственного вещества.

Скорость всасывания лекарственного вещества.

$Скорость освобождения организма от лекарственного вещества.

Характер распределения лекарственного вещества.

* 83

На системный клиренс лекарственного вещества влияют:

Величина вводимой дозы.

Биодоступность.

$Скорость биотрансформации.

$Скорость экскреции.

* 84

Скорость освобождения организма от лекарственного вещества путем биотрансформации определяется как:

$Метаболический клиренс.

Константа элиминации.

Экскреторный клиренс.

Печеночный клиренс.

Почечный клиренс.

Фармакокинетика

Цель лекции

знать основные понятия фармакокинетики:
пути введения лекарств, характеристика
энтеральных и парентеральных путей
введения
всасывание и распределение
биотрансформация
выведение лекарств из организма.

План лекции

Понятие «фармакокинетика»
Общая характеристика путей введения
Пути прохождения ЛС в организме
всасывание
распределение
биотрансформация
выведение
Элиминация. Период полувыведения

Фармакокинетика

Раздел общей фармакологии
изучает пути введения, процессы
всасывания, распределения,
биотрансформации
(обезвреживание) и выведение.
От фармакокинетических характеристик
зависит скорость наступления эффекта,
продолжительность действия, степень
отрицательного воздействия на организм

Фармакокинетическая схема лекарств в организме

Лекарственный препарат
Что
организм
делает с
лекарством?
Организм
Высвобождение из лекарственной формы
Проникновение (всасывание, абсорбция, транспортировка)
лекарства в клетки органов и тканей
Распределение по организму в органы, ткани, жидкости
Превращения, инактивирующие лекарство и
способствующие выведению из организма
Выведение лекарств и продуктов их превращения из
организма

Пути введения

Энтеральные (через
желудочно-кишечный
тракт)
Парентеральные
(минуя желудочнокишечный тракт)
Пероральный
Сублингвальный
Ректальный
Ч-з 12ПК
Трансбуккально
Инъекционный
Ингаляционный
Трансдермальный
Интраназальный и др.

Поведение лекарственных веществ
в различных местах введения

Пероральный путь введения самый сложный для лекарства,
так как
до попадания в кровь оно должно преодолеть
два наиболее активных
внутренних барьера – кишечник и печень

Для введения лекарственных средств
внутрь характерно:
Зависимость всасывания слабых
электролитов от рН среды.
Зависимость всасывания от характера
содержимого ЖКТ.
Зависимость всасывания от интенсивности
моторики ЖКТ.

Ректальный путь введения используют при
заболеваниях ЖКТ, в педиатрии, гериатрии,
проктологии или бессознательном
состоянии, неукротимой рвоте. Используют
суппозитории и клизмы. Необходима
проверка доз.
1/3 лекарства поступает в общий кровоток,
минуя печень, попадает в геммороидальные
вены, полнота и скорость всасывания
быстрее.
Сублингвальный путь- резорбция
осуществляется по верхней полой вене,
минуя печень (нитроглицерин, гормоны)
Трансбуккально – защечно прикрепляется
полимерная пленка, с целью
пролонгирования действия лекарства.

Характеристика инъекционных путей введения

Внутримышечно можно вводить:
1. Изотонические растворы.
2. Масляные растворы.
3. Взвеси.
Взвеси веществ нельзя вводить:
1. Внутривенно.
2. Внутриартериально.
3. Под оболочки мозга.
Лекарственные формы должны быть
стерильными при введении:
1. Под кожу. 2. В мышцу. 3. В вену. 4. В
артерию. 5. В полость конъюнктивы

преимущества
осложнения
Быстрота
действия
Локализация
действия
Высокая
биодоступность
Точность
дозирования
Возможно проникнуть
через ГЭБ
недостатки
Сложность
введения
болезненность
Обученный
персонал
Спец.инструмент
Нарушение
правил
асептики
Неправиль
ный выбор
места
инъекции
Соблюдение
стерильности
Нарушения
техники
выполнения
Инфильтрат
Абсцесс
Сепсис
Сывороточый
гепатит
СПИД
Инфильтраты
Повреждение
надкостницы,
сосудов
(некроз,
эмболия),
нерврв
(паралич,
неврит)
Поломка
иглы
Эмболия
Некроз
гематома

ингаляционный
Поступление путем вдыхания (газа
или аэрозоля)
Всасывание через легочные
альвеолы (s=100м2), минуя ЖКТ
При астме, наркозе,
противовоспалительные и
антибактериальные препараты
Быстрота действия, простота и
удобства, высокая
биодоступность
Строгое соблюдение
дозирования, возможна
рефлекторная остановка
дыхания
трансдермальный
Нанесение на кожу:
электрофорез, диски,
пленки, мази
Проникновение через
кожу, минуя ЖКТ,
удлинение действия,
постоянная
концентрация,
стабильный эффект
Противовоспалительные,
болеутоляющие,
нитроглицерин
Пролонгирование
Простота и удобство
Высокая биодоступность

Всасывание (абсорбция)‏

Всасывание (абсорбция)
Большое влияние на проникновение
лекарственного вещества
имеет величина рН сред по сторонам
барьера (клеточной мембраны)
Клеточная мембрана –это белковофосфолипидная система:
Наружный слой состоит из двойного
слоя липидов
Внутренний слой-двойной слой
фосфолипидов

Биологические барьеры

Слизистые желудка, кишечника,
ротовой полости и носоглотки
Кожные покровы
Стенка капилляров (гистогематический
барьер)
Гематоэнцефалический барьер (ГЭБ)
Плацентарный барьер
Эпителий молочных желез
Почечный эпителий

Прохождение лекарственного вещества через барьеры (механизмы транспорта):

Пассивный транспорт или
Простая Диффузия – на основе разности концентраций,
самопроизвольное перемещение в область более низкой
концентрации, по градиенту концентрации. (липофильные
вещества (спирт, хлороформ)) водорастворимые не проникают.
Транспорт ионов – диффузия по ионным каналам
Фильтрация – (функция почек) под действием давления (
вода, мочевина. сахара и др. незаряженные водорастворимые
вещества)
Осмос – диффузия воды в область более концентрированного
раствора (гипотоническая, изотоническая, гипертоническая
среда) например солевые слабительные, мочегонные средства
Активный транспорт – с увеличением концентрации
вещества, осуществляется белками - переносчиками с затратой
энергии, процесс насыщаемый (аминокислоты, пурины)
Пиноцитоз – поглощение, захват макромолекул (белки, гормоны)
с затратой энергии

Всасывание лекарственных веществ из кишечника против
градиента концентрации может обеспечиваться
Активным транспортом
Активный транспорт лекарственных веществ через
мембраны
эпителиальных клеток кишечника:
1. Требует затраты энергии.
2. Может осуществляться против градиента концентрации.
3. Обеспечивает всасывание некоторых гидрофильных
полярных молекул.
4. Является насыщаемым процессом.
Всасывание лекарственных веществ из кишечника путем
фильтрации:
1. Зависит от величины молекул лекарственных веществ.
2. Характерно для мелких гидрофильных молекул.
Основные механизмы всасывания лекарственных веществ
при подкожном и внутримышечном введении:
1. Пассивная диффузия.
2. Фильтрация через межклеточные промежутки

Всасывание из ЖКТ слабых электролитов при
повышении степени их ионизации ослабляется
Лекарства, введенные через рот обычно
всасываются путем пассивной диффузии.
Скорость пассивной диффузии липофильных
лекарственных веществ через эпителий
пищеварительного тракта определяется:
1. Степенью липофильности вещества.
2. Градиентом концентрации.
В кислой среде пищеварительного тракта должны
лучше всасываться слабокислые лекарственные
вещества
В щелочной среде пищеварительного тракта
лучше всасываются лекарственные вещества,
являющиеся слабыми основаниями
При внутримышечном введении хорошо
всасываются:
как липофильные, так и гидрофильные соединения.

Через гистогематические барьеры из крови
в ткани легче проникают:
Неполярные липофильные соединения.
Более равномерно распределяются в
организме:
Липофильные соединения.
Лекарственные вещества, связанные с
белками плазмы крови Не проявляют
фармакологической активности.
связывание лекарственных веществ с
белками плазмы крови препятствует их
почечной экскреции

Распределение

От распределения зависит скорость наступления
фармакологического эффекта,
его интенсивность и продолжительность
Распределение проходит
с различной скоростью и равномерностью

Неравномерное распределение связано с
различиями в проницаемости биобарьеров,
интенсивности кровоснабжения тканей.
Лекарства неспецефически и обратимо
связываются с белками плазмы (прочность
связи влияет на скорость наступления
эффекта и продолжительность действия)
Существует динамическое равновесие между
свободной и связанной фракцией препарата
Свободная фракция препарата
диффундирует из сосудистого русла и
распределяется в водной фазе организма.
Липофильные вещества депонируются
жировой тканью, создавая депо
Накапливаются также в костной ткани и
соединительной ткани

Состояние лекарственного вещества
после всасывания
в кровь

Скорость распространения лекарств по организму
быстрой
медленной
умеренной
В тканях и органах
с интенсивным
кровоснабжением:
мышцы,
печень,почки
В крови и
межтканевой
жидкости
В костях, волосах.
ногтях,
стекловидном теле
Основные факторы, определяющие
распространение лекарств в организме
Особенности
препарата
Способ введения
Способность
преодоления
биобарьеров
органотроп
ность
Скорость
кровотока
Интенсивность
кровоснабжения

Распределение

Объем распределения показывает:
В каком объеме жидкости должно равномерно
распределиться попавшее в кровоток вещество,
чтобы его концентрация равнялась концентрации
вещества в плазме крови.
Показатель «объем распределения»:
Дает представление об относительном
распределении лекарственного вещества между
плазмой крови и другими жидкостями организма.
Связывание лекарственного вещества с белками
плазмы крови уменьшает объем его распределения.

Биотрансформация

Это биохимический процесс превращения
чужеродного вещества (ксенобиотика) в
водорастворимое (более ионизированное,
полярное) состояние для быстрого его
выведения.
Процесс ферментативный. Протекает в
основном в эпителиальных клетках печени.
Необходимо уменьшать дозы лекарства при
заболевании печени.
Незначительные количества инактивируются
в тканях желудочно-кишечного тракта,
легких, коже и плазме крови.

Факторы, влияющие на метаболизм

Основные пути метаболизма
Лекарственных веществ
Метаболическая
Трансформация
Окисление
Восстановление
Гидролиз
Замена радикалов
и другие
Снижение или утрата
фармакологической
активности
Конъюгация молекул
лекарственных веществ
и его метаболитов
с глюкуроновой, серной,
Фосфорной и другими
кислотами
Увеличение растворимости
в воде и ускорение
выведения из организма

Биотрансформация

микросомальные ферменты печени
не обладают субстратной специфичностью
Преимущественная направленность изменений
лекарственных веществ под влиянием микросомальных
ферментов печени:
1.Повышение гидрофильности.
2. Снижение фармакологической активности.
3. Повышение полярности
Микросомальные ферменты печени воздействуют
преимущественно на липофильные соединения
при биотрансформации лекарственных веществ могут
образовываться фармакологически более активные вещества
(пролекарства), продукты биотрансформации лекарственных
веществ могут превосходить по токсичности исходные
соединения
Повышение активности микросомальных ферментов печени
обычно (индукция)
1.Уменьшает длительность действия лекарственных
средств.
2. Снижает концентрацию лекарственных средств в крови
3. приводит к привыканию (толерантности, адаптации)

Экскреция
почки
кишечник
железы
легкие

Пути выведения

Принципы выведения веществ почками

Выведение веществ зависит от их растворимости в воде и реакции
мочи.
Для ускорения выведения почками слабокислых соединений реакцию
первичной мочи необходимо изменить:
В щелочную сторону.
Для ускорения выведения почками слабых оснований реакцию
первичной мочи изменяют:
В кислую сторону.
При щелочной реакции мочи быстрее выводятся кислотные
соединения, это свойство используется при отравлении лекарствами
(алкалоидами)
Способность накапливаться в органах на пути выведения и создавать
там высокие концентрации используется в лечебных целях
(нитроксолин) и это нужно учитывать при осложнении
(сульфаниламиды)
Необходимо уменьшать дозы лекарства при почечной
недостаточности и печёночной патологии.
В почечных канальцах плохо реабсорбируются и быстрее
выводятся:
1. Полярные соединения.
2. Гидрофильные соединения
В почках ограничена фильтрация веществ, связанных с белками
плазмы крови.

Круги циркуляции
лекарственных веществ
в организме
Обратное
всасывание
В кровь

Липофильные вещества по сравнению с
гидрофильными:
1. Хорошо всасываются при энтеральном введении.
2. Более равномерно распределяются в тканях
организма.
3. Легко подвергаются реабсорбции в почках.
Полярные лекарственные вещества:
1. Плохо всасываются при энтеральном введении.
2. Плохо проходят через гистогематические барьеры.
3. Хорошо выводятся почками в неизмененном виде.

Элиминация

Процесс освобождения организма от лекарственного
вещества в результате инактивации и выведения.
Период полувыведения препарата Т 1/2 Период «полужизни» (период полу
элиминации):
Время, за которое концентрация вещества в
плазме крови снижается вдвое.
Константа скорости элиминации показывает:
какая часть имеющегося в организме вещества
удаляется из организма в единицу времени
посредством биотрансформации и экскреции.
Этот показатель используется для рационального
режима дозирования

Знание путей выведения позволяет
Правильно
рассчитать дозу
Предупредить
токсические
проявления
Усилить выведение
веществ при
отравлении

Общий клиренс - показатель,
характеризующий:
Элиминацию лекарственного вещества из организма
Факторы, влияющие на общий клиренс
лекарственного вещества:
1. Скорость биотрансформации.
2. Скорость экскреции.
Скорость элиминации лекарственного вещества
путем биотрансформации определяется
показателем:
Метаболический клиренс.
Основная составляющая метаболического
клиренса:
Печеночный клиренс.
Почечный клиренс показывает, какой объем плазмы
крови освобождается от лекарственного вещества в
единицу времени.

Биодоступность

Степень всасывания лекарственных веществ, при введении
внутрь, можно оценить с помощью показателя
биодоступность
При введении вещества внутрь его биодоступность в целом
определяется:
1. Степенью всасывания вещества в ЖКТ.
2. Метаболизмом вещества при первом прохождении через
печень.
биодоступность лекарственного вещества определяется как
отношение количества неизмененного вещества, достигшего
системной циркуляции, к введенной дозе или
Характеризуется долей лекарственного вещества от
введенной дозы, которая поступает в системный кровоток в
активной форме,
то есть - это полнота и скорость всасывания ЛС в системный
кровоток.
Определяют время наступления действия и его силу.
Высокая биодоступность при внутривенном и
внутриартериальном введении 100%

Биодоступность зависти от возраста больного
В педиатрии необходимо учитывать
особенности всасывания у детей (желудочный
сок нейтральный,меньше всасываются
жирорастворимые вещества)
У пожилых людей физиологическое старение
и наличие заболеваний, всасывание
непредсказуемо
У женщин эстрогены тормозят
перистальтику кишечника

биодоступность

Отношение количества неизменных лекарственных в-в, достигших
плазмы крови после биотрансформации, к общему количеству в-в
поступивших в органзм
Количество неизменных в-в,
поступивших в кровь
БД
Количество введенных
лекарственных в-в
На биодостуность влияют
Способ
введения
Лек.форма
Особенности
организма
Особенности
препарата
Фармакокинетические процессы - всасывание, распределение, депонирование, биотрансформация и выведение - связаны с проникновением ЛВ через биологические мембраны (в основном через цитоплазматические мембраны клеток). Существуют следующие способы проникновения веществ через биологические мембраны: пассивная диффузия, фильтрация, активный транспорт, облегченная диффузия, пиноцитоз (рис. 1.1).
Пассивная диффузия. Путем пассивной диффузии вещества проникают через мембрану по градиенту концентрации (если концентрация вещества с одной стороны мембраны выше, чем с другой, вещество перемещается через мембрану от большей концентрации к меньшей). Этот процесс не требует затраты энергии. Поскольку биологические мембраны в основном состоят из липидов, таким способом через них легко проникают вещества, растворимые в липидах и не имеющие заряда, т.е. липофильные неполярные вещества. И напротив, гидрофильные полярные соединения непосредственно через липиды мембран практически не проникают.

Внеклеточное через липиды пространство
Активный
транспорт
Биологическая
мембрана
Рис. 1.1. Основные способы проникновения веществ через биологические мембраны (Из: Rang Н.Р. etal. Pharmacology. - Ln, 2003, с изм.).

Если Л В являются слабыми электролитами - слабыми кислотами или слабыми основаниями, то проникновение таких веществ через мембраны зависит от степени их ионизации, так как путем пассивной диффузии через двойной липидный слой мембраны легко проходят только неионизированные (незаряженные) молекулы вещества.
Степень ионизации слабых кислот и слабых оснований определяется: значениями pH среды; константой ионизации (Ка) веществ.
Слабые кислоты в большей степени ионизированы в щелочной среде, а слабые основания - в кислой.
Ионизация слабых кислот
НА ^ Н+ + А~
щелочная среда
Ионизация слабых оснований
ВН+ ^ В + Н+
кислая
среда
Константа ионизации характеризует способность вещества к ионизации при определенном значении pH среды. На практике для характеристики способности веществ к ионизации используют показатель рКа, который является отрицательным логарифмом Ka(-lg Ка). Показатель рКа численно равен значению pH среды, при котором ионизирована половина молекул данного вещества. Значения рКа слабых кислот, так же как и слабых оснований, варьируют в широких пределах. Чем меньше рКа слабой кислоты, тем легче она ионизируется даже при относительно низких значениях pH среды. Так, ацетилсалициловая кислота (рКа= 3,5) при pH 4,5 ионизирована более чем на 90%, в то же время степень ионизации аскорбиновой кислоты (рКа=11,5) при том же значении pH составляет доли % (рис. 1.2). Для слабых оснований существует обратная зависимость. Чем выше рКа слабого основания, тем в большей степени оно ионизировано даже при относительно высоких значениях pH среды.
Степень ионизации слабой кислоты или слабого основания можно рассчитать по формуле Гендерсона-Гассельбальха:

Рис. 1.2. Зависимость степени ионизации слабых кислот от pH среды и рКа соединений.
А - ацетилсалициловая кислота (рКа = 3,5); Б - аскорбиновая кислота (рКа = 11,5).

lg-^-U рН-рК [ЯД] “
для слабых кислот, %-Щ- = рН-рКа [ВН + ]
для слабых оснований.
Эта формула позволяет определить, какова будет степень проникновения ЛВ (слабых кислот или слабых оснований) через мембраны, разделяющие среды организма с различными значениями pH, например при всасывании Л В из желудка (pH 2) в плазму крови (pH 7,4).
Пассивная диффузия гидрофильных полярных веществ возможна через водные поры (см. рис. 1.1). Это белковые молекулы в мембране клеток, проницаемые для воды и растворенных в ней веществ. Однако диаметр водных пор невелик (порядка 0,4 нм) и через них могут проникать только небольшие гидрофильные молекулы (например, мочевина). Большинство гидрофильных лекарственных веществ, диаметр молекул которых составляет более 1 нм, через водные поры в мембране клеток не проходят. Поэтому большинство гидрофильных лекарственных веществ не проникают внутрь клеток.
Фильтрация - этот термин используют как по отношению к проникновению гидрофильных веществ через водные поры в мембране клеток, так и по отношению к их проникновению через межклеточные промежутки. Фильтрация гидрофильных веществ через межклеточные промежутки происходит под гидростатическим или осмотическим давлением. Этот процесс имеет существенное значение для всасывания, распределения и выведения гидрофильных Л В и зависит от величины межклеточных промежутков.
Так как межклеточные промежутки в различных тканях не одинаковы по величине, гидрофильные ЛВ при различных путях введения всасываются в неодинаковой степени и распределяются в организме неравномерно. Например, про
межутки между эпителиальными клетками слизистой оболочки кишечника невелики, что затрудняет всасывание гидрофильных Л В из кишечника в кровь.
Промежутки между эндотелиальными клетками сосудов периферических тканей (скелетных мышц, подкожной клетчатки, внутренних органов) имеют достаточно большие размеры (порядка 2 нм) и пропускают большинство гидрофильных Л В, что обеспечивает достаточно быстрое проникновение Л В из тканей в кровь и из крови в ткани. В то же время в эндотелии сосудов мозга межклеточные промежутки отсутствуют. Эндотелиальные клетки плотно прилегают к друг другу, образуя барьер (гематоэнцефалический барьер), препятствующий проникновению гидрофильных полярных веществ из крови в мозг (рис. 1.3).
Активный транспорт осуществляется с помощью специальных транспортных систем. Обычно это белковые молекулы, которые пронизывают мембрану клетки (см. рис. 1.1). Вещество связывается с белком-переносчиком с наружной стороны мембраны. Под влиянием энергии АТФ происходит изменение конформации белковой молекулы, что приводит к уменьшению силы связывания между переносчиком и транспортируемым веществом и высвобождению вещества с внутренней стороны мембраны. Таким образом в клетку могут проникать некоторые гидрофильные полярные вещества.
Фильтрация гидрофильных веществ через межклеточные промежутки

Пассивная
диффузия
липофильных
веществ
Рис. 1.3. Проникновение веществ через стенки капилляров мозга (А) и капилляров скелетных мышц (Б). (Из: Wingard L.B. Human Pharmacology. - Phil., 1991, с изм.).
Активный транспорт веществ через мембрану обладает следующими характеристиками: специфичностью (транспортные белки избирательно связывают и пе-

реносят через мембрану только определенные вещества), насыщаемостью (при связывании всех белков-переносчиков количество вещества, переносимого через мембрану, не увеличивается), происходит против градиента концентрации, требует затраты энергии (поэтому угнетается метаболическими ядами).
Активный транспорт участвует в переносе через клеточные мембраны таких веществ, необходимых для жизнедеятельности клеток, как аминокислоты, сахара, пиримидиновые и пуриновые основания, железо, витамины. Некоторые гидрофильные лекарственные вещества проникают через клеточные мембраны с помощью активного транспорта. Эти Л В связываются с теми же транспортными системами, которые осуществляют перенос через мембраны вышеперечисленных соединений.
Облегченная диффузия - перенос веществ через мембраны с помощью транспортных систем, который осуществляется по градиенту концентрации и не требует затраты энергии. Так же, как активный транспорт, облегченная диффузия - это специфичный по отношению к определенным веществам и насыщаемый процесс. Этот транспорт облегчает поступление в клетку гидрофильных полярных веществ. Таким образом через мембрану клеток может транспортироваться глюкоза.
Кроме белков-переносчиков, которые осуществляют трансмембранный перенос веществ внутрь клетки, в мембранах многих клеток есть транспортные белки - Р-гликопротеины, способствующие удалению из клеток чужеродных соединений. Р-гликопротеиновый насос обнаружен в эпителиальных клетках кишечника, в эндотелиальных клетках сосудов мозга, образующих гематоэнцефалический барьер, в плаценте, печени, почках и других тканях. Эти транспортные белки препятствуют всасыванию некоторых веществ, их проникновению через гистогема- тические барьеры, влияют на выведение веществ из организма.
Пиноцитоз (от греч. ріпо - пью). Крупные молекулы или агрегаты молекул соприкасаются с наружной поверхностью мембраны и окружаются ею с образованием пузырька (вакуоли), который отделяется от мембраны и погружается внутрь клетки. Далее содержимое пузырька может высвобождаться внутри клетки или с другой стороны клетки наружу путем экзоцитоза.

Различия в продолжительности действия β-адреноблокаторов с невысоким индексом селективности зависят от особенностей химического строения, липофильности и путей элиминации. Выделяют гидрофильные, липофильные и амфофильные препараты.

Липофильные препараты, как правило, метаболизируются в печени и имеют сравнительно короткий период полуэлиминации (Т1/2). Липофильность сочетается с печеночным путем элиминации. Липофильные препараты быстро и полностью (более 90%) всасываются в желудочно-кишечном тракте, их метаболизм в печени составляет 80-100%, биодоступность большинства липофильных β-блокаторов (пропранолол, метопролол, алпренолол и др.) в связи с эффектом «первого прохождения» через печень составляет немногим больше 10-40% (табл. 5.4).

Состояние печеночного кровотока влияет на скорость метаболизма, на величины разовых доз и кратность приема препаратов. Это необходимо учитывать при лечении пожилых пациентов, больных с сердечной недостаточностью, при циррозе печени. При тяжелой печеночной недостаточности скорость элиминации снижается про-

Таблица 5.4

Фармакокинетические параметры липофильных β-адреноблокаторов

Порционально снижению функции печени. Липофильные препараты при длительном применении могут сами уменьшать печеночный кровоток, замедлять свой собственный метаболизм и метаболизм других липофильных препаратов. Этим объясняется увеличение периода полуэлиминации и возможность уменьшения разовой (суточной) дозы и кратности приема липофильных препаратов, нарастание эффекта, угрозы передозировки.

Существенно влияние уровня микросомального окисления на метаболизм липофильных препаратов. Препараты, индуцирующие микросомальное окисление липофильных β-блокаторов (злостное курение, алкоголь, рифампицин, барбитураты, дифенин), значительно ускоряют их элиминацию, снижают выраженность эффекта. Противоположное влияние оказывают лекарственные препараты, замедляющие печеночный кровоток, уменьшающие скорость микросомального окисления в гепатоцитах (циметидин, хлорпромазин).



Среди липофильных β-адреноблокаторов применение бетаксолола не требует коррекции дозы при печеночной недостаточности, однако при применении бетаксолола требуется коррекция доз препарата при тяжелой почечной недостаточности и проведении диализа. Коррекция дозы метопролола проводится при тяжелых нарушениях функции печени.

Липофильность β-блокаторов способствует их проникновению через гемато-энцефаличекий, гистеро-плацентарный барьеры в камеры глаза.

Гидрофильные препараты выводятся преимущественно почками в неизмененном виде и имеют более продолжительный Гидрофильные препараты не полностью (30-70%) и неравномерно (0-20%) всасываются в желудочно-кишечном тракте, экскретируются почками на 40-70% в неизмененном виде либо в виде метаболитов, имеют больший период полувыведения (6-24 ч), чем липофильные β-блокаторы (табл. 5.5).

Сниженная скорость клубочковой фильтрации (у пожилых больных, при хронической почечной недостаточности) уменьшает скорость экскреции гидрофильных препаратов, что требует уменьшения дозы и кратности приема. Ориентироваться можно по сывороточной концентрации креатинина, уровень которой повышается при снижении скорости клубочковой фильтрации ниже 50 мл/мин. В этом случае кратность назначения гидрофильного β-блокатора должна быть через день. Из гидрофильных β-блокаторов пенбуталол не требует

Таблица 5.5

Фармакокинетические параметры гидрофильных β-адреноблокаторов

Таблица 5.6

Фармакокинетические параметры амфофильных β-адреноблокаторов

коррекции дозы при нарушении функции почек. Надолол не снижает почечный кровоток и скорость клубочковой фильтрации, оказывая вазодилатируюий эффект на почечные сосуды.

Влияние уровня микросомального окисления на метаболизм гидрофильных β-блокаторов несущественно.

β-блокаторы сверхкороткого действия разрушаются эстеразами крови и используются исключительно для внутривенных инфузий. β-блокаторы, разрушающиеся эстеразами крови, имеют очень короткий период полуэлиминации, действие их прекращается через 30 мин после прекращения инфузии. Такие препараты применяются для лечения острой ишемии, контроля за желудочковым ритмом при пароксизме наджелудочковой тахикардии в период операции или в послеоперационном периоде. Кратковременность действия делает более безопасным их применение у больных с гипотонией, при сердечной недостаточности, а βl-селективность препарата (эсмолол) - при явлениях бронхообструкции.

Амфофильные β-блокаторы растворяются в жирах и в воде (ацебутолол, бисопролол, пиндолол, целипролол), имеют два пути элиминации - печеночный метаболизм и почечную экскрецию (табл. 5.6).

Сбалансированный клиренс этих препаратов определяет безопасность их применения у больных с умеренной почечной и печеночной недостаточностью, низкую вероятность взаимодействия с другими лекарственными препаратами. Скорость элиминации препаратов снижается только при тяжелой почечной и печеночной недостаточности. В этом случае суточные дозы β-адреноблокаторов со сбалансировнным клиренсом необходимо уменьшить в 1,5-2 раза.

Амфофильный β-адреноблокатор пиндол при хронической почечной недостаточности может повысить почечный кровоток.

Дозы β-адреноблокаторов необходимо подбирать индивидуально, ориентируясь на клинический эффект, уровни ЧСС, АД. Начальная доза β-адреноблокатора должна составлять 1/8-1/4 средней терапевтической разовой дозы, при недостаточном эффекте дозу увеличивают через каждые 3-7 дней до среднетерапевтической разовой дозы. ЧСС в покое в вертикальном положении должна быть в пределах 55- 60 в минуту, систолическое АД - не ниже 100 мм рт.ст. Максимальная выраженность β-адреноблокирующего эффекта наблюдается через 4-6 недель регулярного приема β-адреноблокатора, особенного контроля в эти сроки требуют липофильные β-адреноблокаторы, спо-

собные замедлять свой собственный метаболизм. Кратность приема препарата зависит от частоты ангинозных приступов и длительности действия β-адреноблокатора.

Следует учитывать, что продолжительность брадикардитического и гипотензивного действия β-адреноблокаторов значительно превышает их периоды полуэлиминации, а продолжительность антиангинального действия меньше, чем продолжительность отрицательного хронотропного эффекта.

МЕХАНИЗМЫ АНТИАНГИНАЛЬНОГО И АНТИИШЕМИЧЕСКОГО ДЕЙСТВИЯ β-АДРЕНОБЛОКАТОРОВ ПРИ ЛЕЧЕНИИ СТЕНОКАРДИИ

Улучшение баланса между потребностью миокарда в кислороде и доставкой его по коронарным артериям может быть достигнуто за счет увеличения коронарного кровотока и путем снижения потребности миокарда в кислороде.

В основе антиангинального и антиишемического действия β-адреноблокаторов лежит их способность влиять на гемодинамические параметры - снижать потребление миокардом кислорода за счет уменьшения ЧСС, сократительной способности миокарда и системного АД. β-адреноблокаторы, уменьшая ЧСС, увеличивают продолжительность диастолы. Доставка кислорода к миокарду левого желудочка осуществляется в основном в диастолу, так как в систолу коронарные артерии сдавливаются окружающим миокардом и продолжительность диастолы определяет уровень коронарного кровотока. Снижение сократительной способности миокарда наряду с удлинением времени дистолического расслабления при снижении ЧСС способствует удлинению периода диастолической перфузии миокарда. Уменьшение диастолического давления в левом желудочке за счет снижения сократительной способности миокарда при снижении системного АД способствует увеличению градиента давления (разницы дастолического давления в аорте и диастолического давления в полости левого желудочка), обеспечивающего коронарную перфузию в диастолу.

Снижение системного АД определяется уменьшением сократительной способности миокарда со снижением сердечного выброса на

15-20%, торможением центральных адренергических влияний (для препаратов, проникающих через гематоэнцефа лический барьер) и антирениновым (до 60%) действием β-адреноблокаторов, что вызывает снижение систолического, а затем диастолического давления.

Снижение частоты сердечных сокращений и уменьшение сократительной способности миокарда в результате блокады β-адренорецепторов сердца приводит к увеличению объема и конечного диастолического давления в левом желудочке, что коррегируется сочетанием β-адреноблокаторов с препаратами, уменьшающими венозный возврат крови к левому желудочку (нировазодилататоры).

Липофильные блокаторы β-адренорецепторов, не имеющие внутренней симпатомиметической активности, вне зависимости от селективности, в большей степени обладают кардиопротективным действием у перенесших острый инфаркт миокарда больных при длительном применении, уменьшая риск повторного инфаркта миокарда, внезапной смерти и общей смертности этой группы пациентов. Такие свойства отмечены у метопролола, пропранолола (исследование BHAT, 3837 больных), тимолола (Norwegian MSG, 1884 больных). Липофильные препараты с внутренней симпатомиметической активностью имеют меньшую профилактическую антиангинальную эффективность. Эффекты карведилола и бисопролола по кардиопротективным свойствам сопоставимы с эффектами ретардированой формы метопролола. Гидрофильные β-адреноблокаторы - атенолол, соталол не влияли на общую летальность и частоту внезапной смерти у больных с ишемической болезнью сердца. Данные мета-анализа 25 контролируемых исследований представлены в табл. 5.8.

Для вторичной профилактики β-адреноблокаторы показаны всем пациентам, перенесшим Q-зубцовый инфаркт миокарда в течение, как минимум 3 лет при отсутствии абсолютных противопоказаний к назначению препаратов этого класса, особенно пациентам старше 50 лет с инфарктом передней стенки левого желудочка, ранней постинфарктной стенокардией, высокой частотой сердечных сокращений, желудочковыми нарушениями ритма сердца, явлениями стабильной сердечной недостаточности.

Таблица 5.7

Препараты β-адреноблокаторов в лечении стенокардии


Примечание, - селективный препарат; # - в настоящее время в России оригинальный препарат не зарегистрирован; оригинальный препарат выделен жирным шрифтом;

* - разовая доза.

Таблица 5.8

Кардиопротективная эффективность β-адреноблокаторов у больных, перенесших инфаркт миокарда

ЭФФЕКТЫ β-АДРЕНОБЛОКАТОРОВ ПРИ ХСН

Терапевтический эффект β-блокаторов при ХСН связан с прямым антиаритмическим действием, позитивным влиянием на функцию левого желудочка, уменьшением хронической ишемии дилатированного желудочка даже при отсутствии ИБС, подавлением процессов апоптоза миокардиоцитов, активируемых в условиях βl-адренерги- ческой стимуляции.

При ХСН отмечается повышение уровня базального норадреналина в плазме крови, связанное с его повышенной продукцией окончаниями адренергических нервов, скоростью поступления в плазму крови и уменьшением клиренса норадреналина из плазмы крови, сопровождающееся повышением допамина и часто адреналина. Концентрация базального уровня норадреналина плазмы крови является независимым предиктором смерти при ХСН. Первоначальное повышение активности симпатико-адреналовой системы при ХСН носит компенсаторный характер и способствует повышению сердечного выброса, перераспределению регионарного кровотока в сторону сердца и скелетной мускулатуры; почечная вазоконстрикция способствует улучшению перфузии жизненно важных органов. В дальнейшем повышение активности симпатико-адренало-

вой системы приводит к повышению потребности кислорода миокардом, усилению ишемии, нарушению ритма сердца, прямым влиянием на кардиомиоциты - ремоделированию, гипертрофии, апоптозу и некрозу.

При длительном повышенном уровне катехоламинов β-адренорецепторы миокарда переходят в состояние сниженной чувствительности к нейромедиаторам (состояние десинситизации) за счет уменьшения числа рецепторов на плазматической мембране, нарушения сопряжения рецепторов с аденилатциклазой. Плотность β-адренорецепторов миокарда уменьшается наполовину, степень уменьшения рецепторов пропорциональна тяжести ХСН, сократимости миокарда и фракции выброса. Меняется соотношение и β2 -адренорецепторов в сторону увеличения β2 -адренорецепторов. Нарушение сопряжения β-адренорецепторов с аденилатциклазой приводит к прямым кардиотоксическим эффектам катехоламинов, перегрузке митохондрий кардиомиоцитов ионами кальция, нарушению процессов рефосфорилирования АДФ, истощению запасов креатинфосфата и АТФ. Активация фосфолипаз и протеаз способствует разрушению клеточной мембраны и гибели кардиомиоцитов.

Снижение плотности адренорецепторов в миокарде сочетается с истощением локальных запасов норадреналина, нарушению адекватной нагрузки адренергической поддержки миокарда, прогрессированию заболевания.

Положительными эффектами β-адреноблоктаоров при ХСН являются: снижение симпатической активности, уменьшение ЧСС, антиаритмический эффект, улучшение диастолической функции, уменьшение гипоксии миокарда и регрессия гипертрофии, уменьшение некроза и апоптоза кардиомиоцитов, уменьшение выраженности застойных явлений за счет блокады ренин-ангиотензин-альдостероновой системы.

На основании данных исследований USCP - американской программы по карведилолу, CIBIS II с бисопрололом и MERIT HF с метопролола сукцинатом с замедленным высвобождением препарата, COPERNICUS, CAPRICORN о достоверном снижении общей, сердечно-сосудистой, внезапной смерти, уменьшению частоты госпитализаций, снижению риска смерти на 35% у тяжелой категории больных с ХСН, указанные выше β-блокаторы занимают одну из ведущих позиций фармакотерапии больных ХСН всех функциональных классов. β-адреноблокаторы наряду с ингибиторами АПФ

являются основными средствами в лечении ХСН. Их способность замедлять прогрессирование болезни, число госпитализаций и улучшать прогноз декомпенсированных больных не вызывает сомнений (уровень доказанности А). β-адреноблокаторы должны применяться у всех больных ХСН, не имеющих противопоказаний, обычных для этой группы лекарств. Тяжесть декомпенсации, пол, возраст, уровень исходного давления (САД не менее 85 мм рт.ст.) и исходная ЧСС не играют самостоятельной роли в определении противопоказаний к назначению β-адреноблокаторов. Назначение β-адреноблокаторов начинается с 1 /8 терапевтической дозы пациентам с достигнутой стабилизацией состояния ХСН. β-адреноблокаторы в лечении ХСН не относятся к препаратам «скорой помощи» и не могут выводить больных из состояния декомпенсации и гипергидратации. Возможно назначение βl -селективного β-адреноблокатора бисопролола как препарата начальной терапии у пациентов старше 65 лет с ХСН II - III ФК NYHA, фракцией выброса левого желудочка <35% с последующим присоединением ингибитора АПФ (степень доказанности В). Начальная терапия βl -селективным β-адреноблокатором может быть оправдана в клинических ситуациях преобладания выраженной тахикардии при невысоком АД, с последующим присоединением ингибитора АПФ.

Тактика назначения β-адреноблокаторов у больных с ХСН представлена в табл. 5.9.

В первые 2-3 мес применение даже малых доз β-адреноблокаторов вызывает повышение периферического сосудистого сопротивления, снижение систолической функции миокарда, что требует титрования дозы назначаемого больному ХСН β-адреноблокатора, динамического наблюдения за клиническим течением заболевания. В этих случаях рекомендуется увеличение доз диуретиков, ингибиторов АПФ, применение положительных инотропных препаратов (малых доз сердечных гликозидов или сенситизаторов кальция - левосимендана), более медленное титрование дозы β-адреноблокатора.

Противопоказаниями к назначению β-адреноблокаторов при СН являются:

Бронхиальная астма или тяжелая патология бронхов, сопровождающаяся нарастанием симптомов бронхообструкции при назначении β-адреноблокатора;

Симптомная брадикадия (<50 уд/мин);

Симптомная гипотония (<85 мм рт.ст.);

Таблица 5.9

Начальные, целевые дозы и схема подбора доз β-адреноблокаторов при сердечной недостаточности по результатам крупномасштабных плацебо-контролируемых

Исследований


A-V блокада II степени и выше;

Тяжелый облитерирующий эндартериит.

Абсолютно показанным является назначение β-адреноблокаторов пациентам с ХСН и СД 2-го типа. Все положительные свойства препаратов этого класса полностью сохраняются при наличии сахарного диабета. Применение некардиоселективного и адреноблокатора с дополнительными свойствами 04 -адреноблокатора карведилола у таких пациентов может являться средством выбора за счет улучшения чувствительности периферических тканей к инсулину (степень доказанности А).

Результаты исследования SENIORS с применением βl -селективного β-адреноблокатора небиволола, продемонстрировавшие небольшое, но достоверное суммарное снижение частоты госпитализаций и смертей у больных ХСН старше 75 лет, позволило рекомендовать небиволол для лечения больных ХСН старше 70 лет.

Дозы β-ареноблокаторов для лечения больных ХСН, закрепленные Национальными Рекомендациями ВНОК И ОССН, представлены в таблице 5.10.

Подробности

Общая фармакология. Фармакокинетика

Фармакокинетика – раздел фармакологии, посвященный изучению кинетических закономерностей распределения лекарственных веществ. Изучает высвобождение лекартсвенных веществ, всасывание, распределение, депонирование, превращения и выделение лекарственных веществ.

Пути введения лекарственных средств

От пути введения зависят скорость развития эффекта, его выраженность и продолжительность. В отдельных случаях путь введения определяет характер действия веществ.

Различают:

1) энтеральные пути введения (через пищеварительный тракт)

При этих путях введения вещества хорошо всасываются, в основном, путем пассивной диффузии через мембрану. Поэтому ххорошо всасываются липофильные неполярные соединения и плохо – гидрофильные полярные.

Под язык (сублингвально)

Всасывание происходит очень быстро, вещества попадают в кровь, минуя печень. Однако, всассывающая поверхность невелика, и таким путем можно вводить только высокоактивные вещества, назначаемые в малах дозах.

Пример: таблетки нитроглицерина, содержащие 0,0005 г нитроглицерина. Действие наступает через 1-2 мин.

Через рот (per os)

Лекарственные вещества просто проглатывают. Всасывание происходит частично из желудка, но по большей части – из тонкого кишечника (этому способствуют значительная всасывающая поверхность кишечника и ее интенсивное кровоснабжение). Основных механизмом всасывания в кишечнике является пассивная диффузия. Всасывание из тонкой кишки происходит относительно медленно. Оно зависит от моторики кишечника, рН среды, количества и качества содержимого кишечника.

Из тонкого кишечника вещество через систему воротной вены печени попадает в печень и только затем – в общий кровоток.

Абсорбция веществ регулируется также специальным мембранным транспортером – Р-гликопротеином. Он способствует выведению веществ в просвет кишечника и препятствует их абсорбции. Известны ингибиторы этого вещества – циклоспорин А, хинидин, верапамил, итракназол и т.д.

Следует помнить, что некоторые лекарственные вещества нецелесообразно назначать внутрь, так как они разрушаются в ЖКТ под действием желудочного сока и ферментов. В таком случае (или же если препарат оказывает раздражающее действие на слизистую желудка), его назначают в капсулах или драже, которые растворяются только в тонком кишечнике.

Ректально (per rectum)

Значительная часть вещества (около 50%)поступает в кровоток, минуя печень. Кроме того, при этом пути введения вещество не подвергается воздействию ферментов ЖКТ. Всасывание происходит путем простой диффузии. Ректально вещества назначают в виде суппозиториев или клизм.

Лекарственные вещества, имеющие структуру белков, жиров и полисахаридов, в толстой кишке не всасываются.

Также применяют подобный путь введения и для местного воздействия.

2) парентеральные пути введения

Введение веществ, минуя пищеварительный тракт.

Подкожный

Вещества могут всасываться путем пассивной диффузии и фильтрации через межклеточные промежутки. Таким орбазом, под кожу можно вводить и липофильные неполярные, и гидрофильные полярные вещества.

Обычно подкожно вводят растворы лекарственных веществ. Иногда – масляные растворы или взвеси.

Внутримышечное

Вещества всасываются так же, как и при подкожном введении, но более быстро, так как васкуляризация скелетных мышц более выражена по сравнению с подкожно-жировой клетчаткой.

В мышцы нельзя вводить гипертонические растворы, раздражающие вещества.

В то же время, в мышцы вводят масляные растворы, взвеси, для того, чтобы создать депо препарата, при котором лекарственное вещество может длительно всасываться в кровь.

Внутривенно

Лекарственное вещество сразу попадает в кровь, поэтому его действие развивается очень быстро – за 1-2 минуты. Чтобы не создавать слишком высокой концентрации вещества в крови, его обычно разводят в 10-20 мл изотонического раствора натрия хлорида и вводят медленно, в течение нескольких минут.

В вену нельзя вводить масляные растворы, взвеси в связи опасностью закупорки сосудов!

Внутриартериально

Позволяет создать в области, которая кровоснабжается данной артерией, высокую концентрацию вещества. Таким путем иногда вводят противоопухолевые препараты. Для уменьшения общетоксического действия может быть искусственно затруднен отток крови путем наложения жгута.

Интрастернальный

Обычно используют при технической невозможности внутривенного введения. Лекарство вводят в губчатое вещество грудины. Метод используется для детей и людей пожилого возраста.

Внутрибрюшинный

Редко используется, как правило, на операциях. Действие наступает очень быстро, так как большинство лекарств хорошо всасывается через листки брюшины.

Ингаляционно

Введение лекарственных препаратов путем вдыхания. Так вводят газообразные вещества, пары летучих жидкостей, аэрозоли.

Легкие хорошо кровоснабжаются, поэтому всасывание происходит очень быстро.

Трансдермально

При необходимости длительного действия высоколипофильных лекарственных веществ, которые легко проникают через неповрежденную кожу.

Интраназально

Для введения в полость носа в виде капель или спрея в расчете на местное или резорбтивное действие.

Проникновение лекарственных веществ через мембрану. Липофильные неполярные вещества. Гидрофильные полярные вещества.

Основные способы проникновения – пассивная диффузия, активный транспорт, облегченная диффузия, пиноцитоз.

Плазматическая мембрана состоит, в основном, из липидов, а это значит, что проникать путем пассивной диффузии через мембрану могут только липофильные неполярные вещества. Наоборот, гидрофильные полярные вещества (ГПВ) таким путем через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролитами. В растворе часть таких веществ находится в неионизированной форме, т.е. в неполярной, а часть – в виде ионов, несущих электрические заряды.

Путем пассивной диффузии через мембрану проникает неионизированная часть слабого электролита

Для оценки ионизации используют величину pK a – отрицательный логарифм константы ионизации. Численно pK a равен pH, при котором ионизирована половина молекул соединения.

Для определения степени ионизации используют формулу Хендерсона-Хассельбаха:

pH = pKa+-для оснований

Ионизация оснований происходит путем их протонирования

Степень ионизации определяется так

pH = pK а +-для кислот

Ионизация кислот происходит путем их протонирования.

НА = Н + + А -

Для ацетилсалициловой кислоты рКа = 3.5. При рН = 4.5:

Следовательно, при рН = 4.5 ацетилсалициловая кислота будет почти полностью диссоциирована.

Механизмы всасывания веществ

Лекарственные вещества могут проникать в клетку путем:

Пассивной диффузии

В мембране есть аквапорины, через которые поступает вода в клетку и могут проходить путем пассивной диффузии по градиенту концентрации растворенные в воде гидрофильные полярные вещества с очень малыми размерами молекул (эти аквапорины очень узкие). Однако, такой тип поступления лекарственных веществ в клетке очень редок, так как размер большинства молекул лекарственных веществ превышает размер диаметр аквапоринов.

Также путем простой диффузии проникают липофильные неполярные вещества.

Активного транспорта

Транспорт лекарственного гидрофильного полярного вещества через мембрану против градиента концентрации с помощью специального переносчика. Такой транспорт избирателен, насыщаем и требует затрат энергии.

Лекарственное вещество, имеющее аффинитет к транспортному белку, соединяется с местами связывания этого переносчика с одной стороны мембраны, затем происходит конформационное изменение переносчика, и, наконец, вещество высвобождается с другой стороны мембраны.

Облегченной диффузии

Транспорт гидрофильного полярного вещества через мембрану специальной транспортной системой по градиенту концентрации, без затрат энергии.

Пиноцитоза

Впячивания клеточной мембраны, окружающие молекулы вещества и образующие везикулы, которые проходят через цитоплазму клетки и высвобождают вещество с другой стороны клетки.

Фильтрации

Через поры мембран.

Также имеет значение фильтрация лекарственных веществ через межклеточные промежутки.

Фильтрация ГПВ через межклеточные промежутки имеет важное значение при всасывании, распределении и выведении и зависит от:

а) величины межклеточных промежутков

б) величины молекул веществ

1) через промежутки между клетками эндотелия в капиллярах почечных клубочков путем фильтрации легко проходят большинство лекарственных веществ, находящихся в плазме крови, если они не связаны с белками плазмы.

2) в капиллярах и венулах подкожно-жировой клетчатки, скелетных мышц промежутки между клетками эндотелия достаточны для прохождения большинства лекарственных веществ. Поэтому при введении под кожу или в мышцы хорошо всасываются и проникают в кровь и липофильные неполярные вещества (путем пассивной диффузии в липидной фазе), и гидрофильные полярные (путем фильтрации и пассивной диффузии в водной фазе через промежутки между клетками эндотелия).

3) при введении ГПВ в кровь вещества быстро проникают в большинство тканей через промежутки между эндотелиоцитами капилляров. Исключения вещества, для которых существуют системы активного транспорта (противопаркинсонический препарат левадопа) и ткани, отделенные от крови гистогематическими барьерами. Гидрофильные полярные вещества могут проникнуть через такие барьеры только в некоторых местах, в которых барьер мало выражен (в area postrema продолговатого мозга проникают ГПВ в триггер-зону рвотного центра).

Липофильные неполярные вещества легко проникают в центральную нервную системы через гемато-энцефалический барьер путем пассивной диффузии.

4) В эпителии ЖКТ межклеточные промежутки малы, поэтому ГПВ достаточно плохо всасываются в нем. Так, гидрофильное полярное вещество неостигмин под кожу назначают в дозе 0,0005 г, а для получения сходноого эффекта при назначении внутрь требуется доза 0,015 г.

Липофильные неполярные вещества легко всасываются в ЖКТ путем пассивной диффузии.

Биодоступность. Пресистемная элиминация.

В связи с тем, что системное действие вещества развиваеся только при попадании его в кровоток, откуда оно поступает в ткани, предложен термин «биодоступность».

В печени многие вещества подвергаются биотрансформации. Частично вещество может выделяться в кишечник с желчью. Именно поэтому в кровь может попасть лишь часть вводимого вещества, остальная часть подвергается элиминации при первом прохождении через печень.

Элиминация – биотрансформация + экскреция

Кроме того, лекарства могут не полностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника, частично выводиться из него. Все это, вместе с элиминацией при первом прохождении через печень называют пресистемной элиминацией .

Биодоступность – количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству.

Как правило, в справочниках указано значения биодоступности при их назначении внутрь. Например, биодоступность пропранолола – 30%. Это означает, что при введении внутрь в дозе 0.01 (10 мг) только 0,003 (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарство вводят в вену (при в/в способе введения биодоступность вещества составляет 100%). Через определенные интервалы времени определяются концентрации вещества в плазме крови, затем строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрацию вещества в крови и также строят кривую. Измеряют площади под кривыми – AUC. Биодоступность – F – определяют как отношение AUC при назначении внутрь к AUC при внутревенном введении и обозначают в процентах.

Биоэквивалентность

При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной! Соответственно различными будут:

Время достижения пиковой концентрации

Максимальная концентрация в плазме крови

Величина фармакологического эффекта

Именно поэтому вводят понятие биоэквивалентность.

Биоэквивалентность – означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

Распределение лекарственных веществ.

При попадании в кровоток липофильные вещества, как правило, распределяются в организме относительно равномерно, а гидрофильные полярные – неравномерно.

Существенное влияние на характер распределения веществ оказывают биологические барьеры, которые встречаются у них на пути: стенки капилляров, клеточные и плазматические мембраны, гемато-энцефалический и плацентарный барьеры (уместно посмотреть раздел «Фильтрафия через межклеточные промежутки»).

Эндотелий капилляров мозга не имеет пор, там практически отсутствует пиноцитоз. Также роль играют астроглии, которые увеличивают барьерную силу.

Гематоофтальмический барьер

Препятствует проникновению гидрофильных полярных веществ из крови в ткань глаза.

Плацентарный

Препятствует проникновению гидрофильных полярных веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества в системе однокамерной фармакокинетической модели (организм условно представляется как единое пространство, заполненное жидкостью. При введении лекарственное вещество мгновенно и равномерно распределяется) используют такой показатель как кажущийся объем распределения - V d

Кажущийся объем распределения отражает предположительный объем жидкости, в котором распределяется вещество.

Если для лекарственного вещества V d = 3 л (объем плазмы крови), то это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и невыходит за пределы кровеносного русла. Возможно, это высокомолекулярное вещество (V d для гепарина = 4 л).

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Вероятно, это гидрофильное полярное вещество.

V d = 400 – 600 – 1000л означает, что ещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина – трициклический антидепрессант - V d = 23л/кг, то есть примерно 1600 л. Это означает, что концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ неэффективен.

Депонирование

При распределении лекарственного вещества в организме часть может задерживаться (депонироваться) в различных тканях. Из депо вещество высвобождается в кровь и оказывает фармакологическое действие.

1) Липофильные вещества могут депонироваться в жировой ткани. Средство для наркоза тиопентал-натрий вызывает наркоз продолжительнотью 15-20 минут, так как 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон 2-3 часа в связи с высвобождением тиопентала-натрия.

2) Тетрациклины на длительное время депонируются в костной ткани. Поэтому не назначают детям до 8 лет, так как может нарушить развитие костей.

3) Депонирование, связанное с плазмой крови. В соединении с белками плазмы вещества не проявляют фармакологической активности.

Биотрансформация

В неизменном виде выделются лишь высокогидрофильные ионизированные соединения, средства для ингаляционного наркоза.

Биотрансформация большинства веществ происходит в печени, где обычно создаются высокие концентрации веществ. Кроме того, может происходить биотрансформация в легких, почках, стенке кишечника, коже и т.д.

Различают два основных вида биотрансформации:

1) метаболическая трансформация

Превращение веществ за счет окисления, восстановления и гидролиза. Окисление происходит, в основном, за счет микросомальных оксидаз смешанного действия при участии НАДФ, кислорода и цитохрома Р-450. Восстановление происходит под влиянием системы нитро- и азоредуктаз и т.п. Гидролизируют, обычно, эстерзы, карбоксилэстеразы, амидазы, фосфатазы и т.д.

Метаболиты, как правило, менее активны, чем исходные вещества, но иногда активнее них. Например: эналаприл метаболизируется в энаприлат, который оказывает выраженное гипотензивное действие. Однако, он плохо всасывается в ЖКТ, потому стараются вводить в/в.

Метаболиты могут быть токсичнее исходных веществ. Метаболит парацетамола – N-ацетил-пара-бензохинонимин при передозировке вызывает некроз печени.

2) конъюгация

Биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул эндогенных соединений.

Процессы идут либо один за другим, либо протекают отдельно!

Различают также :

-специфическую биотрансформацию

Отдельный фермент воздействует на одно или несколько соединений, проявляя при этом высокую субстратную активность. Пример: метиловый спирт окисляется алкогольдегидрогеназой с образованием формальдегидом и муравьиной кислоты. Этиловый спирт также окисляется аклогольдегидрогеназой, но аффинитет этанола к ферменту значительно выше, чем у метанола. Поэтому этанол может замедлять биотрансформацию метанола и уменьшать его токсичность.

-неспецифическую биотрансформацию

Под влиянием микросомальных ферментов печени (в основном, оксидазы смешанных функций), локализованных в гладкоповерхностных участках эндоплазматического ретикулума клеток печени.

В результате биотрансформации липофильные незаряженные вещества обычно превращаются в гидрофильные заряженные, поэтому легко выводятся из организма.

Выведение (экскреция)

Лекарственные вещества, метаболиты и конъюгаты, в основном выводятся с мочой и желчью.

-с мочой

В почках низкомолекулярные соединения, растворенные в плазме (не связанные с белками), фильтруются через мембраны капилляров клубочков и капсул.

Также активную роль играет активная секреция веществ в проксимальном канальце с участием транспортных систем. Этим путем выделяются органические кислоты, салицилаты, пенициллины.

Вещества могут замедлять выведение друг друга.

Липофильные незаряженные вещества подвергаются реабсорбции путем пассивной диффузии. Гидрофильные полярные не реабсорбируются и выводятся с мочой.

Большое значение имеет рН. Для ускоренного выведения кислых соединений реакцию мочи стоит изменять в щелочную сторону, а для выведения оснований – в кислую.

- с желчью

Так выводятся тетрациклины, пенициллины, колхицин и др. Эти препараты значительно выделяются с желчью, затем частично выводятся с экскрементами, либо реабсорбируются (кишечно -печеночная рециркуляция ).

- с секретами разных желез

Особое внимание стоит обратить на то, что в период лактации молочными железами выделяются многие вещества, которые получает кормящая мать.

Элиминация

Биотрансформация + экскреция

Для количественной характеристики процесса используется ряд параметров: константа скорости элиминации (К elim), период полуэлиминации (t 1/2), общий клиренс (Cl T).

Константа скорости элиминации - К elim – отражает скорость удаления вещества из организма.

Период полуэлиминации - t 1/2 – отражает время, необходимое для снижения концентрации вещества в плазме на 50%

Пример: в вену введено вещество А в дозе 10 мг. Константа скорости элиминации = 0,1 / ч. Через час в плазме останется 9 мг, через два часа – 8,1 мг.

Клиренс - Cl T – количество плазмы крови, очищаемое от вещества в единицу времени.

Различают почечный, печеночный и общий клиренс.

При постоянной концентрайии вещества в плазме крови почечный клиренс – Cl r определяется так:

Cl = (V u х C u)/ C p [мл/мин]

Где C u и C p - концентрация вещества в моче и плазме крови, соответственно.

V u - скорость мочеотделения.

Общий клиренс Cl T определяется по формуле: Cl T = V d х K el

Общий клиренс показывает, какая часть объема распределения освобождается от вещества в единицу времени.




© 2024
womanizers.ru - Журнал современной женщины